大豆遗传连锁图谱的构建、整合及苗期耐旱性的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆[Glycine max (L.) Merr.]是世界上最重要的经济作物之一,是人类蛋白质和脂肪的重要来源,在食品、饲料、工业上具有广泛的用途。消费需求的日益增加推动了大豆产量的不断提高。诸多的环境胁迫影响着大豆的产量和质量,其中干旱对大豆的生产危害最为严重。培育耐旱品种是解决干旱胁迫的根本途径。种质资源的耐旱性鉴定是耐旱育种的前提和基础,贯穿于育种过程的始终。耐旱QTL的挖掘和利用对阐明耐旱遗传机制、提高育种效率、加快育种进程有着重要意义。QTL定位的有效性与遗传连锁图谱的饱和度、精确度,以及实用性和通用性密切相关。为得到更高饱和度和精确度的大豆遗传连锁图谱,本文使用967对SSR引物对8个大豆重组自交系群体多态性进行检测,选择多态性高的群体分别构建遗传连锁图谱,然后利用各图谱共同标记整合成一张较高饱和度的遗传连锁图谱,并利用加密后的NJRIKY图谱对8个农艺性状进行了QTL重定位。利用隶属函数法以平均隶属函数值为指标鉴定了945份大豆种质以及大豆重组自交系群体NJRIKY的苗期耐旱性,采用两种QTL分析方法对苗期耐旱性进行了QTL分析,并对我国黄淮和南方育成品种抽样群体进行了耐旱性状与SSR的关联分析,对耐旱相关位点的优异等位变异进行了5个育成品种家族内的系谱追踪。
     全文主要结果如下:
     1、利用SSR标记对已有NJRIKY遗传图谱进行加密,获得一张含有553个遗传标记,25个连锁群,总长2071.6 cM,平均图距为3.70 cM的新遗传连锁图谱,其中SSR标记316个,RFLP标记197个,EST标记39个,形态标记1个。连锁群上大于20 cM的标记间隔由原来39个减少到2个。利用加密图谱将7个SMV抗性基因重定位于Dlb连锁群,与相邻分子标记距离均缩小,进一步验证了抗性基因成簇分布的现象。对本群体8个农艺性状进行QTL重定位,各QTL的标记区间明显缩短,与相邻标记的连锁更加紧密。
     2、利用筛选出的具明显农艺性状差异的4个大豆重组自交系群体分别构建了遗传连锁图谱,以图谱间共有SSR标记作为锚定标记,使用JoinMap 3.0进行图谱整合,得到一张包含20个连锁群,795个分子标记,总遗传距离2772.9 cM,平均图距3.49 cM的高密度整合图谱。与Song等的公共图谱比较,本图谱定位了5个在公共图谱上没有的SSR标记,另有6个SSR标记定位在不同的连锁群上,其余标记在连锁群上的分布和位置与公共图谱高度吻合。整合图谱可用于将标记分析或关联分析所获基因/QTL定位到连锁群区间,便于不同群体定位结果间的比较,并通过整合图谱寻找与之连锁更紧密的邻近标记。鉴于本图谱所用作图群体的亲本与国内育种常用材料的遗传来源相近,将更有利于国内育种性状QTL的相关研究。
     3、利用隶属函数法,以株高、叶龄、地上部分干重和地下部分干重四个指标的平均隶属函数值为标准评价了945份大豆种质的耐旱能力,以5级标准划分,鉴定出Ⅰ级耐旱材料3个(平均隶属函数值Fi≥0.8,强耐旱型),Ⅱ级材料48个(平均隶属函数值0.6≤Fi<0.8,较强耐旱型),Ⅲ级材料478个(平均隶属函数值0.4≤Fi<0.6,中间型),Ⅳ级材料401个(平均隶属函数值0.2≤Fi<0.4,干旱较敏感型),Ⅴ级材料15个(平均隶属函数值0.2     4、运用家系连锁分析方法在重组自交系群体NJRIKY中定位了3个耐旱QTL(LOD≥3.0):C1连锁群上qDr-C1-1的标记区间为Satt396-GMAC7L,表型变异解释率为14.1%;D1b连锁群上qDr-D1b-1的标记区间为BE475343-Satt271,表型变异解释率为7.8%;F2连锁群上qDr-F2-1的标记区间为Satt586-Satt343,表型变异解释率为7.9%。
     5、运用基于连锁不平衡的关联分析方法在173份黄淮及南方育成品种构成的群体中检测到5个与耐旱性状关联的SSR位点:位于C2连锁群上的Satt277、Satt307,位于D1b连锁群上的Satt005,位于F连锁群上的Satt334以及位于H连锁群上的Satt442。5个SSR位点的贡献率均大于6%,其中位于C1连锁群上的位点Satt277的贡献率达12.5%。耐旱材料矮脚青(南农编号:N03191,Fi=0.789)在5个耐旱关联位点中都存在增效等位变异,总效应达到了0.671,可作为优异种质运用于耐旱育种。
     6、对5个关联SSR标记的15个优异等位变异在5个大豆育成品种家族内进行系谱内优异等位变异追踪,发现不同的家族包含的优异等位变异数不同,各自的优势等位变异也不相同。Satt307-A183是5个家族共有的优异等位变异,但贡献率各异。徐豆1号、齐黄1号和南农493-1家族拥有各自的特异优异等位变异。家族内品种耐旱能力与所含有的优异等位变异数有一定的正相关。优异等位变异仅能解释部分耐旱效应,耐旱性不是优异等位变异效应的简单叠加。
Soybean [Glycine max (L.) Merr] is now an essential and dominant source of protein and oil with numerous uses in feed, food, and industrial applications. It is the world's primary source of vegetable oil for people and protein feed supplement for livestock. The steadily increasing consumption of soybean year by year requests more and more soybean seeds can be yielded from the field. Global soybean production and crop quality are severely affected by various environmental stresses and drought is the most devastating. The essential solution to drought stress is to develop soybean plants with enhanced drought tolerance. The identification of soybean germplasms with drought tolerance through the breeding process is the very basic work prior to all other efforts. So a set of 945 germplasms from over 15,000 of NJAU-NCSI resources collections is selected to identify their respective drought tolerance to find out the ones with high tolerance. Dought tolerance is a complex quantitative trait controlled by many minor effect genes called quantitative trait loci (QTL). The isolation and utilization of drought tolerance QTL can be very helpful to understand genetic mechanism of drought tolerance, speed up the breeding process and improve breeding efficiency. And these rely on a suitable genetic linkage map with high saturation.967 pairs primers of SSR were used to detect the polymorphism of 8 recombined inbred lines populations derived from Chinese domestic soybean varieties to find the ones with highest polymorphism to construct soybean genetic linkage maps and, an integrated map. Together with the trait phenotypic value, two QTL mapping strategies, family-based linkage mapping and linkage-disequilibrium-based association analysis, were applied to detect the drought tolerance QTL in the recombined inbred lines population NJRIKY and in a natural population that contains 173 released cultivars from Huanghuai and Southern China. and with that, tracing elite alleles of drought tolerance in the pedigree of major cultivar families in HuangHuai and Southern China was completed. The main results of present study are as follows:
     a) Total 401 polymorphic SSR markers were screened out from 967 ones for density-enhancement of the previous NJRIKY genetic linkage map. Along with other marker data, a new genetic linkage map was constructed by using Mapmaker/exp 3.0b, with 553 markers, including 316 SSR,197 RFLP,39 EST and one morphologic markers, spanning 25 linkage groups, covering total length 2071.6cM of the soybean genome, with an average marker interval distance of 3.70cM. In comparison with the old map, the number of gaps larger than 20 cM decreased from 39 to two on the enhanced map. Using this map to relocate the seven SMV resistant genes, Rsc-3, Rsc-7, Rsc-9, Rsc-13, Rsa, Rn1 and Rn3 were mapped on LG D1b again with distances to the flanking markers all less than 6cM, among them, Rsc-9, Rn1 and Rsa less than 1cM and Rsc-13 co-segregating with EST-SSR marker GMKF168a. After re-mapping the QTL of the eight agronomic traits,42 ones were detected on 12 linkage groups, with 20 of them accounted for more than 10% of the total variation, respectively, and their marker intervals obviously shortened, as well as some of the false QTL eliminated.
     b) By evaluating the polymorphism of the 8 RIL populations, the highest polymorphic three RIL populations, Nannong 87-23×NG94-156, Su 88-M21×Xinyixiaoheidou and Wan 82-178×Tongshanbopihuangdoujia derived from the crosses between distinct elite cultivars of Glycine max (L.) Merr. were used at first to construct individual genetic linkage maps with 560,223,195 and 133 markers, respectively, by using the software JoinMap 3.0. Then based on the common SSR markers across the four maps, the individual maps were integrated into a joint genetic linkage map by using the same software, which containing 795 markers spanning 2772.9 cM of the soybean genome, distributed on 20 linkage groups with the length of linkage groups varied from 77.1 cM to 224.7 cM, the marker number from 24 to 69, and an average marker distance of 3.49 cM. Among the linkage groups, C2, C1, N and F are obviously highly saturated. In comparison with Song et al.'s genetic linkage map, the present map shows a good coincidence except the six SSR markers located on other linkage groups and five new SSR markers added to the present map. The integrated map was used in QTL mapping and performed a reasonable result in comparison with the individual map itself. Therefore, the present map is potential in QTL mapping study, especially for domestic soybean breeding purposes since the parental materials of the four RIL populations are closely related to the breeding materials in Chinese breeding programs.
     c) A total of 945 soybean germplasms from the NJAU-NCSI soybean germplasm collection were evaluated for drought tolerance in rain-proof sheds in Nanjing and were ranked in one of the five drought tolerance degrees by their respective average membership function values(Fi). Among the 945 germplasms, three with the Fi over 0.8, the most tolerant, were ranked in Grade One (Ⅰ) according to the grading standard; 48 with Fi between 0.6 and 0.8, more tolerant, were ranked in Grade Two (Ⅱ); 478 and 401 with Fi lies in 0.4~0.6 and 0.2~0.4, the medium and more sensitive, were in Grade Three (Ⅲ) and Grade Four (Ⅳ), respectively; 14 germplasms, with the lowest Fi values, less than 0.2, were most sensitive to drought, belongs to Grade Five(Ⅴ). When sorting them by ecological regions and by genetic origins, a same tendency was seen on the distribution of germplasms of each status, ie. most germplasms are intermediate between tolerant and sensitive and only a few ones in the two terminals.
     d) The drought tolerance of 184 lines of RIL population NJRIKY were identified and then used in the QTL analysis by using the family-based likage analysis strategy with the CIM arithmetic of QTL software, WinQTLCart 2.5. Three QTL with LOD score greater than 3.0 were detected and mapped on linkage groups C1, Dlb and F2. The most significant QTL, qDr-C1-1, which located at the interval Satt396-GMAC7L on linkage group C1, accounted for 14.1% variation. The other two QTL, qDr-D1b-1 on LG D1b and qDr-F2-1 on LG F2, accounted of 7.8% and 7.9% variation, respectively.
     e) A set of 173 released cultivars from Huanghuai and Southern China were picked out from the 945 germplasm to detect the SSR loci which associated with drought tolerance by using the association analysis method. Five SSR loci were found to be associated with drought tolerance in the released cultivar population. These five loci distributed on 4 linkage groups and all of them acounted for over 6% variation. Among them, the locus Satt277 on LG C2 acounted for 12.5%. The cultivar Aijiaoqing (N03191), whose Fi was 0.789, had positive effect alleles in all the five SSR loci and the total effect value amazingly reached 0.671. Considering its highly pyramiding of elite alleles, maybe it can act as an excellent material and play a very important role in the drought tolerance breeding.
     f) 149 cultivars belonged to five mainly released cultivar families of Huanghuai and Southern in China,58-161, Xudou 1, Qihuang 1, Nannong 493-1 and Nannong 1138-2 were used to trace the drought tolerance elite alleles in each pedigree. The number of elite alleles differed in different families, also each family had its own elite alleles. Satt307-A183 was the only common allele among five families, but the variation is different. The families Xudou 1, Qihuang 1 and Nannong 493-1 had their own unique elite alleles. The general trend in five families was that the elite alleles number was positive correlated with the drought tolerance, the cultivars with more elite alleles often showed higher tolerance than those with fewer. Elite alleles can only acounted partial variation, tolerance was not a simple addition of them. Enhancing drought tolerance by pyramiding elite alleles was still far from realization.
引文
1. Abdurakhmonov, I., S. Saha, J. Jenkins, Z. Buriev, S. Shermatov, B. Scheffler, A. Pepper, J. Yu, R. Kohel and A. Abdukarimov (2008). Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136(3):401-417.
    2. Akkaya, M. S., A. A. Bhagwat and P. B. Cregan (1992). Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132(4):1131-1139.
    3. Akkaya, M. S., R. C. Shoemaker and J. E. Specht (1995). Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439-1445.
    4. Apuya, N., B. Frazier, P. Keim, E. Jill Roth and K. Lark (1988). Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill. Theor Appl Genet 75(6):889-901.
    5. Arumuganathan, K. and E. Earle (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9(3):208-218.
    6. Atibalentja, N., S. Bekal, L. L. Domier, T. L. Niblack, G. R. Noel and K. N. Lambert (2005). A genetic linkage map of the soybean cyst nematode Heterodera glycines. Mol Genet Genomics 273(3):273-281.
    7. Beilinson, V., Z. Chen, C. Shoemaker, L. Fischer, B. Goldberg and C. Nielsen (2002). Genomic organization of glycinin genes in soybean. Theor Appl Genet 104(6-7):1132-1140.
    8. Bernard, R. L. and M. G. Weiss (1973). Qualitative Genetics:Soybeans, Production and Uses. Madison, Wisconsin, USA., American Society of Agronomy.
    9. Broman, K. W. and J. L. Weber (1999). Method for constructing confidently ordered linkage maps. Genet Epidemiol 16(4):337-343.
    10. Burnham, K. D., D. M. Francis, A. E. Dorrance, R. J. Fioritto and S. K. S. Martin. (2002). Genetic diversity patterns among Phytophthora resistant soybean plant introductions based on SSR markers. Crop Sci 42:338-343.
    11. Cardle, L., L. Ramsay, D. Milbourne, M. Macaulay, D. Marshall and R. Waugh (2000). Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156(2):847-854.
    12. Carlson, C. S., M. A. Eberle, L. Kruglyak and D. A. Nickerson (2004). Mapping complex disease loci in whole-genome association studies. Nature 429:446-452.
    13. Cattivelli, L., F. Rizza, F.-W. Badeck, E. Mazzucotelli, A. M. Mastrangelo, E. Francia, C. Mare, A. Tondelli and A. M. Stanca (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research 105:1-14.
    14. Choi, I. Y., D. L. Hyten, L. K. Matukumalli, Q. Song, J. M. Chaky, C. V. Quigley, K. Chase, K. G. Lark, R. S. Reiter, M. S. Yoon, E. Y. Hwang, S. I. Yi, N. D. Young, R. C. Shoemaker, C. P. van Tassell, J. E. Specht and P. B. Cregan (2007). A soybean transcript map:gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176(1): 685-696.
    15. Concibido, V. C., B. La Vallee, P. McLaird, N. Pineda, J. Meyer, L. Hummel, J. Yang, K. Wu and X. Delannay (2003). Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106(4):575-582.
    16. Cregan, N. D. P. B. (1997). Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723-733.
    17. Cregan, P. B., K. P. Kollipara, S. J. Xu, R. J. Singh, S. E. Fogarty and T. Hymowitz (2001). Primary Trisomics and SSR Markers as Tools to Associate Chromosomes with Linkage Groups in Soybean. Crop Sci 41(4):1262-1267.
    18. Cregan, P. B., T. Jarvik, A. L. Bush, R. C. Shoemaker, K. G. Lark, A. L. Kahler, N. Kaya, T. T. VanToai, D. G. Lohnes, J. Chung and J. E. Specht (1999). An Integrated Genetic Linkage Map of the Soybean Genome. Crop Sci 39(5):1464-1490.
    19. Devine, T. E. (1998). Assignment of the Y17 Locus to Classical Soybean Linkage Group 14. Crop Sci 38:696-697.
    20. Devine, T. E. (2003). The Pd2 and Lf2 Loci Define Soybean Linkage Group 16. Crop Sci 43(6):2028-2030.
    21. Diers, B., P. Keim, W. Fehr and R. Shoemaker (1992). RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83(5):608-612.
    22. Ersoz, E., J. Yu and E. Buckler (2007). Applications of linkage disequilibrium and association mapping in crop plants. Genomics-assisted crop improvement. Springer, Dordrecht, the Netherlands:97-120.
    23. Evanno, G., S. Regnaut and J. Goudet (2005). Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology 14:2611-2620.
    24. Ferreira, A. R., K. R. Foutz and P. Keim (2000). Soybean genetic map of RAPD markers assigned to an existing scaffold RFLP map. J Hered 91(5):392-396.
    25. Fischer, R. and R. Maurer (1978). Drought resistance in spring wheat cultivars. Ⅰ. Grain yield responses. Aust. J. Agric. Res 29(5):897-912.
    26. Flint-Garcia, S. A., J. M. Thornsberry and E. S. B. Ⅳ(2003). Structure of linkage disequilibrium in plants. Annu. Rev.Plant Biol 54:357-374.
    27. Francia, E., G. Tacconi, C. Crosatti, D. Barabaschi, D. Bulgarelli, E. Dall' Aglio and G. Vale (2005). Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture 82(3): 317-342.
    28. Fu, S. X., Y. Zhan, H. J. Zhi, J. Y. Gai and D. Y. Yu (2006). Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 128(1-3):63-69.
    29. Funke, R. P., A. Kolchinsky and P. M. Gresshoff(1993). Physical mapping of a region in the soybean (Glycine max) genome containing duplicated sequences. Plant Mol Biol 22(3): 437-446.
    30. Gai, J., Y. Liu, H. Lv, H. Xing, T. Zhao, D. Yu and S. Chen (2007). Identification, inheritance and QTL mapping of root traits related to tolerance to rhizo-spheric stresses in soybean (G. max (L.) Merr.). Frontiers of Agriculture in China 1(2):119-128.
    31. Ganal, M. W., T. Altmann and M. S. Rder (2009). SNP identification in crop plants. Current Opinion in Plant Biology 12:1-7.
    32. Gardner, M. E., T. Hymowitz, S. J. Xu and G. L. Hartman (2001). Physical Map Location of the Rps1-k Allele in Soybean. Crop Sci 41(5):1435-1438.
    33. Gary Stacey, A. D., Henry Nguyen, Vince Pantalone, Wayne Parrott, Randy Shoemaker, and David Sleper (2004). SoyCAP:Roadmap for Soybean Translational Genomics. SoyCAP planning conference. St. Louis, MO.
    34. Gaut, B. and A. Long (2003). The lowdown on linkage disequilibrium, Am Soc Plant Biol.15: 1502-1506.
    35. Gijzen, M., C. Weng, K. Kuflu, L. Woodrow, K. Yu and V. Poysa (2003). Soybean seed lustre phenotype and surface protein cosegregate and map to linkage group E. Genome 46(4): 659-664.
    36. Graham, M. A., L. F. Marek and R. C. Shoemaker (2002). Organization, expression and evolution of a disease resistance gene cluster in soybean. Genetics 162(4):1961-1977.
    37. Graham, M. A., L. F. Marek, D. Lohnes, P. Cregan and R. C. Shoemaker (2000). Expression and genome organization of resistance gene analogs in soybean. Genome 43(1):86-93.
    38. Gupta, P., S. Rustgi and P. Kulwal (2005). Linkage disequilibrium and association studies in higher plants:present status and future prospects. Plant Molecular Biology 57(4):461-485.
    39. Guzman, P. S., B. W. Diers, D. J. Neece, S. K. St. Martin, A. R. LeRoy, C. R. Grau, T. J. Hughes and R. L. Nelson (2007). QTL Associated with Yield in Three Backcross-Derived Populations of Soybean. Crop Sci 47(1):111-122.
    40. Hirschhorn, J. N. and M. J. Daly (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics 6(2):95-108.
    41. Hwang, T. Y, J. K. Moon, S. Yu, K. Yang, S. Mohankumar, Y. H. Yu, Y. H. Lee, H. S. Kim, H. M. Kim, M. A. Maroof and S. C. Jeong (2006). Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome 49(4):380-388.
    42. Hwang, T.-Y., T. Sayama, M. Takahashi, Y. Takada, Y. Nakamoto, H. Funatsuki, H. Hisano, S. Sasamoto, S. Sato, S. Tabata, I. Kono, M. Hoshi, M. Hanawa, C. Yano, Z. Xia, K. Harada, K. Kitamura and M. Ishimoto (2009). High-density integrated linkage map based on SSR markers in soybean. DNA Res:dsp010 1-13.
    43. Hyten, D. L., I. Y. Choi, Q. Song, R. C. Shoemaker, R. L. Nelson, J. M. Costa, J. E. Specht and P. B. Cregan (2007). Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175(4):1937-1944.
    44. Hyten, D. L., Q. Song, Y. Zhu, I. Y. Choi, R. L. Nelson, J. M. Costa, J. E. Specht, R. C. Shoemaker and P. B. Cregan (2006). Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103(45):16666-16671.
    45. Jannink, J.-L. (2008). QTL×genetic background interaction:Predicting inbred progeny value. Euphytica 161(1):61-69.
    46. Jansen, J., A. G. de Jong and J. W. van Ooijen (2001). Constructing dense genetic linkage maps. Theor Appl Genet 102(6):1113-1122.
    47. Jayashree, B., R. Punna, P. Prasad, K. Bantte, C. T. Hash, S. Chandra, D. A. Hoisington and R. K. Varshney (2006). A database of simple sequence repeats from cereal and legume expressed sequence tags mined in silico:survey and evaluation. In Silico Biol 6(6):607-620.
    48. Jenkins, G. (2003). Unfolding large-scale maps. Genome 46:947-952.
    49. Jeong, S. C., K. Yang, J. Y. Park, K. S. Han, S. Yu, T. Y. Hwang, C. G. Hur, S. H. Kim, P. B. Park, H. M. Kim, Y. I. Park and J. R. Liu (2006). Structure, expression, and mapping of two nodule-specific genes identified by mining public soybean EST databases. Gene 383:71-80.
    50. Jeong, S. C., S. Kristipati, A. J. Hayes, P. J. Maughan, S. L. Noffsinger, I. Gunduz, G. R. Buss and M. A. Maroof (2002). Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3. Crop Sci 42(1):265-270.
    51. Jiang, R., M. S. Akkaya, A. A. Bhagwat, U. Lavi and P. B. Cregan (1995). The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90(1): 43-48.
    52. Kabelka, E. A., B. W. Diers, W. R. Fehr, A. R. LeRoy and et al. (2004). Putative alleles for increased yield from soybean plant introductions. Crop Science 44(3):784-791.
    53. Kassem, M. A., J. Shultz, K. Meksem, Y. Cho, A. J. Wood, M. J. Iqbal and D. A. Lightfoot (2006). An updated 'Essex' by 'Forrest' linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 113(6):1015-1026.
    54. Kato, K. K. and R. G. Palmer (2003). Molecular mapping of the male-sterile, female-sterile mutant gene (st8) in soybean. J Hered 94(5):425-428.
    55. Kato, K. K. and R. G. Palmer (2004). Duplicate chlorophyll-deficient loci in soybean. Genome 47(1):190-198.
    56. Keim, P., B. W. Diers, T. C. Olson and R. C. Shoemaker (1990). RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126(3): 735-742.
    57. Keim, P., J. Schupp, S. Travis, K. Clayton, T. Zhu, L. Shi, A. Ferreira and D. Webb (1997). A high-density soybean genetic map based on AFLP markers. Crop Science 37(2):537-543.
    58. Keim, P., W. Beavis, J. Schupp and R. Freestone (1992). Evaluation of soybean RFLP marker diversity in adapted germ plasm. Theor Appl Genet 85:205-212.
    59. Khan, N., S. Githiri, E. Benitez, J. Abe, S. Kawasaki, T. Hayashi and R. Takahashi (2008). QTL analysis of cleistogamy in soybean. Theor Appl Genet 117(4):479-487.
    60. Kimura, T., K. Yoshida, A. Shimada, T. Jindo, M. Sakaizumi, H. Mitani, K. Naruse, H. Takeda, H. Inoko, G. Tamiya and M. Shinya (2005). Genetic linkage map of medaka with polymerase chain reaction length polymorphisms. Gene 363:24-31.
    61. Landau-Ellis, D., S. Angermuller, R. Shoemaker and P. Gresshoff (1991). The genetic locus controlling supernodulation in soybean (Glycine max L.) co-segregates tightly with a cloned molecular marker. Molecular Genetics and Genomics 228(1):221-226.
    62. Lander, E. S. (1996). The new genomics:Global view of biology. Science 274:536-539.
    63. Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S. E. Lincoln and L. Newburg (1987). MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174-181.
    64. Lark, K., J. Weisemann, B. Matthews, R. Palmer, K. Chase and T. Macalma (1993). A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars:'Minosy'and 'Noir 1'. Theor Appl Genet 86(8):901-906.
    65. Leal, S. M. (2003). Genetic maps of microsatellite and single-nucleotide polymorphism markers:Are the distances accurate? Genet Epidemiol 24(4):243-252.
    66. Lee, S. H., D. R. Walker, P. B. Cregan and H. R. Boerma (2004). Comparison of four flow cytometric SNP detection assays and their use in plant improvement. Theor Appl Genet 110(1):167-174.
    67. Levitt, J. (1980). Response of plants to environmental stress. Vol Ⅱ Water, radiation, salt and other stresses. New York; London; Syndey, San Francisco:Academic Press.
    68. Lewers, K. S., S. D. Nilmalgoda, A. L. Warner, H. T. Knap and B. F. Matthews (2001). Physical mapping of resistant and susceptible soybean genomes near the soybean cyst nematode resistance gene Rhg4. Genome 44(6):1057-1064.
    69. Lewers, K., R. Heinz, H. Beard, L. Marek and B. Matthews (2002). A physical map of a gene-dense region in soybean linkage group A2 near the black seed coat and Rhg (4) loci. Theor Appl Genet 104(2-3):254-260.
    70. Li, H., J.-M. Ribaut, Z. Li and J. Wang (2008). Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116(2): 243-260.
    71. Li, Y. C, A. B. Korol, T. Fahima and E. Nevo (2004). Microsatellites within genes:Structure, function, and evolution. Mol Biol Evol 21(6):991-1007.
    72. Lincoln, S. E. and S. L. Lander (1993). MAPMAKER/EXP 3.0b and MAPMAKER/QTL 1.1, Whitehead Institute of Medical Research, Cambridge, Mass.
    73. Litt, M. and J. A. Luty (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics 44:397-401.
    74. Lorenzen, L. L., S. F. Lin and R. C. Shoemaker (1996). Soybean pedigree analysis using map-based molecular markers:recombination during cultivar development. Theor Appl Genet 93(8):1251-1260.
    75. Lu, H., M. A. Redus, J. R. Coburn, J. N. Rutger, S. R. McCouch and T. H. Tai (2005). Population structure and breeding patterns of 145 U.S. rice cultivars based on SSR marker analysis. Crop Sci 45(1):66-76.
    76. Mackay, I. and W. Powell (2007). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science 12(2):57-63.
    77. Mahama, A. A., K. S. Lewers and R. G. Palmer (2002). Genetic Linkage in Soybean: Classical Genetic Linkage Groups 6 and 8. Crop Sci 42(5):1459-1464.
    78. Mansur, L. M., J. H. Orf and K. Chase (1996). Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327-1336.
    79. Marino, M. A., L. A. Turni, S. A. Del Rio, P. E. Williams and P. B. Cregan (1995). The analysis of simple sequence repeat DNA in soybean by Capillary Gel Electrophoresis. Appl Theor Electrophor 5(1):1-5.
    80. Mark T Osterlund (2002). Applied plant genomics:the secret is integration. Current Opinion in Plant Biology 5:141-145.
    81. Matthews, B., T. Devine, J. Weisemann, H. Beard, K. Lewers, M. MacDonald, Y. Park, R. Maiti, J. Lin and J. Kuo (2001). Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Science 41(2):516-521.
    82. Mayer, K. and H. W. Mewes (2002). How can we deliver the large plant genomes? Strategies and perspectives. Curr Opin Plant Biol 5(2):173-177.
    83. Meksem, K., E. Ruben, D. Hyten, K. Triwitayakorn and D. A. Lightfoot (2001). Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics 265(2):207-214.
    84. Miklas, P. N., J. D. Kelly, S. E. Beebe and M. W. Blair (2006). Common bean breeding for resistance against biotic and abiotic stresses:From classical to MAS breeding. Euphytica 147: 105-131.
    85. Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science 80(6):758-763.
    86. Molnar, S. J., S. Rai, M. Charette and E. R. Cober (2003). Simple sequence repeat (SSR) markers linked to El, E3, E4, and E7 maturity genes in soybean. Genome 46(6):1024-1036.
    87. Morgante, M. and A. M. Olivieri (1993). PCR-amplified microsatellites as markers in plant genetics. The Plant Journal 3(1):175-182.
    88. Morgante, M., A. Rafalski, P. Biddle, S. Tingey and A. M. Olivieri (1994). Genetic mapping and variability of seven soybean simple sequence repeat loci. Genome 37(5):763-769.
    89. Morgante, M., M. Hanafey and W. Powell (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet.30:194-200.
    90. Muehlbauer, G. J., P. E. Staswick, J. E. Specht, G. L. Graef, R. C. Shoemaker and P. Keim (1991). RFLP mapping using near-isogenic lines in the soybean [Glycine max (L.) Merr.]. Theor Appl Genet 81(2):189-198.
    91. Nguyen, H. T., X. L. Wu, T. D. Vuong, D. A. Sleper, G. J. Shannon and G. Stacey (2007). Genome maps, genetic diversity and marker-assisted selection for soybean improvement. Molecular Plant Breeding 5(2):196-198.
    92. Nielsen, R. (2005). Molecular signatures of natural selection. Annual Review of Genetics 39(1):197-218.
    93. Palmer, R. and B. Hedges (1993). Linkage map of soybean (Glycine max L. Merr.). Genetic Maps:Locus Mips of Complex Genomes.(ed. Brien, SJO), New York:Cold Spring Harbor Laboratory Press 6:139-146.
    94. Palmer, R. G. and R. C. Shoemaker (1998). Soybean genetics. Soybean Institute of Field and Vegetable Crops. M. Hrustic. Novi Sad, Yugoslavia:45-82.
    95. Pathan, M. S. and D. A. Sleper (2008). Advances in soybean breeding. Genetics and genomics of soybean. G. Stacey:113-133.
    96. Pathan, M., J. Lee, J. Shannon and H. Nguyen (2007). Recent advances in breeding for drought and salt stress tolerance in soybean. Advances in molecular-breeding toward drought and salt tolerant crops. Springer, Dordrecht, the Netherlands:739-773.
    97. Pritchard, J. K. and N. A. Rosenberg (1999). Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet.65:220-228.
    98. Pritchard, J., X. Wen and D. Falush (2007). Documentation for structure software:Version 2.2. University of Chicago, Chicago:1-36.
    99. Rafalski, A. and E. Ananiev (2009). Genetic diversity, linkage disequilibrium and association mapping. Handbook of Maize:201-219.
    100. Salas, P., J. C. Oyarzo-Llaipen, D. Wang, K. Chase and L. Mansur (2006). Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet 113(8):1459-1466.
    101. Sammons, D. J., D. B. Peters and T. Hymowitz (1980). Screening soybeans for tolerance to moisture stress:A field procedure. Field Crops Research 3:321-335.
    102. Sandhu, D., K. G. Schallock, N. Rivera-Velez, P. Lundeen, S. Cianzio and M. K. Bhattacharyya (2005). Soybean phytophthora resistance gene Rps8 maps closely to the Rps3 region. J Hered 96(5):536-541.
    103. Schneider, K. A., R. Rosales-Serna, F. Ibarra-Perez, B. Cazares-Enriquez, J.A. Acosta-Gallegos, P. Ramirez-Vallejo, N. Wassimi and J.D. Kelly. (1997). Improving common bean performance under drought stress. Crop Sci 37:43-50.
    104. Senior, M. L., J. P. Murphy, M. M. Goodman and C. W. Stuber (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088-1098.
    105. Seversike, T. M., J. D. Ray, J. L. Shultz and L. C. Purcell (2008). Soybean molecular linkage group B1 corresponds to classical linkage group 16 based on map location of the 1f2 gene. Theor Appl Genet 117:143-147.
    106. Sharma, S. and S. N. Raina (2005). Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109(1-3):15-26.
    107. Shoemaker, R. and J. Specht (1995). Integration of the soybean molecular and classical genetic linkage groups. Crop Science 35(2):436-446.
    108. Shoemaker, R. and T. Olson (1993). Molecular linkage map of soybean (Glycine max L. Merr.). Genetic maps:locus maps of complex genomes. Edited by SJ O'Brian. Cold Spring Harbor Laboratory Press, Plainview, NY:6131-6138.
    109. Shoemaker, R. C., J. Schlueter and J. J. Doyle (2006). Paleopolyploidy and gene duplication in soybean and other legumes. Current Opinion in Plant Biology 9(2):104-109.
    110. Shoemaker, R., K. Polzin, J. Labate, J. Specht, E. Brummer, T. Olson, N. Young, V. Concibido, J. Wilcox and J. Tamulonis (1996). Genome duplication in soybean (Glycine subgenus soja). Genetics 144(1):329-338.
    111. Shoemaker, R., P. Keim, L. Vodkin, E. Retzel, S. W. Clifton, R. Waterston, D. Smoller, V. Coryell, A. Khanna, J. Erpelding, X. Gai, V. Brendel, C. Raph-Schmidt, E. G. Shoop, C. J. Vielweber, M. Schmatz, D. Pape, Y. Bowers, B. Theising, J. Martin, M. Dante, T. Wylie and C. Granger (2002). A compilation of soybean ESTs:generation and analysis. Genome 45(2): 329-338.
    112. Shoemaker, R., W. Parrott and H. Nguyen (2005). Meeting report:Soybean genomics assessment and strategy workshop:1-15.
    113. Shultz, J. L., D. Kurunam, K. Shopinski, M. J. Iqbal, S. Kazi, K. Zobrist, R. Bashir, S. Yaegashi, N. Lavu, A. J. Afzal, C. R. Yesudas, M. A. Kassem, C. Wu, H. B. Zhang, C. D. Town, K. Meksem and D. A. Lightfoot (2006). The Soybean Genome Database (SoyGD):a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34(Database issue): D758-765.
    114. Shultz, J. L., J. D. Ray, J. R. Smith and A. Mengistu (2007). A soybean mapping population specific to the early soybean production system. DNA Seq 18(2):104-111.
    115. Shultz, J. L., S. Kazi, R. Bashir, J. A. Afzal and D. A. Lightfoot (2007). The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114(6):1081-1090.
    116. Soliman, K. M., M. Paladugu and T. E. Devine (2000). Linkage mapping of DNA markers generated with specific and nonspecific gene primers in soybean. Biologia Plantarum 43(3): 337-346.
    117. Song, Q. J., J. R. Shi, S. Singh, E. W. Fickus, J. M. Costa, J. Lewis, B. S. Gill, R. Ward and P. B. Cregan (2005). Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110(3):550-560.
    118. Song, Q. J., L. F. Marek, R. C. Shoemaker, K. G. Lark, V. C. Concibido, X. Delannay, J. E. Specht and P. B. Cregan (2004). A new integrated genetic linkage map of the soybean. Theor Appl Genet 109(1):122-128.
    119. Sorkheh, K., L. V. Malysheva and M. G. Wirthensohn (2008). Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genet. Mol. Biol: 1415-1475.
    120. Specht, J. E., K. Chase, M. Macrander, G. L. Graef, J. Chung, J. P. Markwell, M. Germann, J. H. Orf and K. G. Lark (2001). Soybean response to water:A QTL analysis of drought tolerance. Crop Sci 41:493-509.
    121.Specht, J., D. Hume and S. Kumudini (1999). Soybean yield potential-a genetic and physiological perspective, Crop Sci Soc America.39:1560-1570.
    122. Specht, J., K. Chase, M. Macrander, G. Graef, J. Chung, J. Markwell, M. Germann, J. Orf and K. Lark (2001). Soybean response to water:a QTL analysis of drought tolerance. Crop Science 41(2):493-509.
    123.Stacey, G., L. Vodkin, W. A. Parrott and R. C. Shoemaker (2004). National science foundation-sponsored workshop report. Draft plan for soybean genomics. Plant Physiol. 135(1):59-70.
    124. Steve A. Quarrie, J. S., Sofija Pekic (1999). Improving drought resistance in small-grained cereals:A case study, progress and prospects. Plant Growth Regulation 29:1-21.
    125.Tayal, D., P. S. Srivastava and K. C. Bansal (2004). Transgenic Crops for Abiotic Stress Tolerance. Plant Biotechnology and Molecular Markers:346-365.
    126. Thomas, D. C., R. W. Haile and D. Duggan (2005). Recent developments in genomewide association scans:A workshop summary and review. Am J Hum Genet 77(3):337-345.
    127. Tuberosa, R. and S. Salvi (2007). Dissecting QTL for tolerance to drought and salinity. Advances in molecular breeding toward drought and salt tolerant crops. M. A. Jenks, Springer:381-411.
    128. Vahedian, M., L. Shi, T. Zhu, R. Okimoto, K. Danna and P. Keim (1995). Genomic organization and evolution of the soybean SB92 satellite sequence. Plant Mol Biol 29(4): 857-862.
    129. Valliyodan, B. and H. T. Nguyen (2008). Genomics of Abiotic Stress in Soybean. Genetics and Genomics of Soybean:343-372.
    130. Van Berloo, R., A. Zhu, R. Ursem, H. Verbakel, G. Gort and F. van Eeuwijk (2008). Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theor Appl Genet 117(1):89-101.
    131. Van Ooijen, J. W. and R. E. Voorrips (2001). JoinMap. Plant Research International, Wageningen, the Netherlands:Software for the calculation of genetic linkage maps.
    132. Van, K., E. Y. Hwang, M. Y. Kim, H. J. Park, S. H. Lee and P. B. Cregan (2005). Discovery of SNPs in soybean genotypes frequently used as the parents of mapping populations in the United States and Korea. J Hered 96(5):529-535.
    133. Varshney, A., T. Mohapatra and R. P. Sharma (2004). Molecular mapping and marker assisted selection of traits for crop improvement. Plant Biotechnology and Molecular Markers: 289-330.
    134. Varshney, R. K., A. Graner and M. E. Sorrells (2005). Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23(1):48-55.
    135. Varshney, R. K., T. Mahendar, R. K. Aggarwal and A. Borner (2007). Genic molecular markers in plants:Development and applications. Genomics-assisted crop improvement: 13-29.
    136. Varshney, R., A. Graner and M. Sorrells (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science 10(12):621-630.
    137. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Homes, A. Frijters, J. Pot, J. Peleman and M. Kuiper (1995). AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407-4414.
    138. Vuong, T. D., X. Wu, M. S. Pathan, B. Valliyodan and H. T. Nguyen (2007). Genomics approaches to soybean improvement. Genomics-assisted crop improvement:243-279.
    139. Walling, J. G, R. Shoemaker, N. Young, J. Mudge and S. Jackson (2006). Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172(3):1893-1900.
    140. Wang, D., G. L. Graef, A. M. Procopiuk and B. W. Diers (2004). Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet 108(3):458-467.
    141. Wang, H. L., D. Y. Yu, Y. J. Wang, S. Y. Chen and J. Y. Gai (2004). Mapping QTL of soybean root weight with RIL population NJRIKY. Yi Chuan 26(3):333-336.
    142. Wang, L., R. Guan, L. Zhangxiong, R. Chang and L. Qiu (2006). Genetic Diversity of Chinese Cultivated Soybean Revealed by SSR Markers. Crop Sci 46(3):1032-1038.
    143. Wang, L., T. Zhang and S. Ding (2006). Effect of drought and rewatering on photosynthetic physioecological characteristics of soybean. Acta Ecologica Sinica 26(7):2073-2078.
    144. Wang, S., C. J. Basten and Z.-B. Zeng (2007). Windows QTL Cartographer 2.5. C. J. B. Wang S., Z.-B. Zeng. Raleigh, NC., Department of Statistics, North Carolina State University.
    145. Wang, Z., J. L. Weber, G. Zhong and S. D. Tanksley (1994). Survey of plant short tandem DNA repeats. Theor Appl Genet 88(1):1-6.
    146. Williams, J., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531-6535.
    147. Wu, C. C., P. Nimmakayala, F. A. Santos, R. Springman, C. Scheuring, K. Meksem, D. A. Lightfoot and H. B. Zhang (2004). Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor Appl Genet 109(5):1041-1050.
    148. Wu, C., S. Sun, P. Nimmakayala, F. A. Santos, K. Meksem, R. Springman, K. Ding, D. A. Lightfoot and H. B. Zhang (2004). A BAC-and BIBAC-based physical map of the soybean genome. Genome Res 14(2):319-326.
    149. Wu, R., C. Ma and G. Casella (2002). Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160(2):779-792.
    150. Wu, X. L., C. Y. He, Y. J. Wang, Z. Y. Zhang, Y. Dongfang, J. S. Zhang, S. Y. Chen and J. Y. Gai (2001). Construction and analysis of a genetic linkage map of soybean. Yi Chuan Xue Bao 28(11):1051-1061.
    151. Xia, Z., Y. Tsubokura, M. Hoshi, M. Hanawa, C. Yano, K. Okamura, T. A. Ahmed, T. Anai, S. Watanabe, M. Hayashi, T. Kawai, K. G. Hossain, H. Masaki, K. Asai, N. Yamanaka, N. Kubo, K. Kadowaki, Y. Nagamura, M. Yano, T. Sasaki and K. Harada (2007). An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res 14:257-269.
    152. Xin, D.-W., H.-M. Qiu, D.-P. Shan, C.-Y. Shan, C.-Y. Liu, G.-H. Hu, C. Staehelin and Q.-S. Chen (2008). Analysis of quantitative trait loci underlying the period of reproductive growth stages in soybean (Glycine max [L.] Merr.). Euphytica 162(2):155-165.
    153. Xu, M. and R. G. Palmer (2005). Genetic analysis and molecular mapping of a pale flower allele at the W4 locus in soybean. Genome 48(2):334-340.
    154. Xu, P., H. Wang, Q. Li, J. Y. Gai and D. Y. Yu (2007). Mapping QTL related to oil content of soybeans. Yi Chuan 29(1):92-96.
    155. Xu, S. J., R. J. Singh and T. Hymowitz (2000). Monosomics in Soybean:Origin, Identification, Cytology, and Breeding Behavior. Crop Sci 40(4):985-989.
    156. Xu, S. J., R. J. Singh, K. P. Kollipara and T. Hymowitz (2000). Hypertriploid in Soybean: Origin, Identification, Cytology, and Breeding Behavior. Crop Sci 40(1):12-11.
    157. Xu, S. J., R. J. Singh, K. P. Kollipara and T. Hymowitz (2000). Primary Trisomics in Soybean: Origin, Identification, Breeding Behavior, and Use in Linkage Mapping. Crop Sci 40(6): 1543-1551.
    158. Xu, Z., R. Chang, L. Que, J. Sun and X. Li (1999). Evaluation of soybean germplasm in China. World Soybean Research Conference Ⅵ. Chicago,1L, Superior Printing, Champagne, IL:156-165.
    159. Yadeta Anbessa, G. B. (2002). Evaluation of Ethiopian chickpea landraces for tolerance to drought. Genetic Resources and Crop Evolution 49:557-564.
    160. Yamanaka, N., S. Ninomiya, M. Hoshi, Y. Tsubokura, M. Yano, Y. Nagamura, T. Sasaki and K. Harada (2001). An informative linkage map of soybean reveals QTL for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8(2):61-72.
    161. Yang, K., J.-K. Moon, N. Jeong, K. Back, H. M. Kim and S.-C. Jeong (2008). Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics 92(1):52-59.
    162. Zhang, W. K., Y. J. Wang, G. Z. Luo, J. S. Zhang, C. Y. He, X. L. Wu, J. Y. Gai and S. Y. Chen (2004). QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108(6):1131-1139.
    163. Zhu, Y. L., Q. J. Song, D. L. Hyten, C. P. Van Tassell, L. K. Matukumalli, D. R. Grimm, S. M. Hyatt, E. W. Fickus, N. D. Young and P. B. Cregan (2003). Single-nucleotide polymorphisms in soybean. Genetics 163(3):1123-1134.
    164. Zou, J. J., R. J. Singh, J. Lee, S. J. Xu and T. Hymowitz (2006). SSR Markers Exhibit Trisomic Segregation Distortion in Soybean. Crop Sci 46(4):1456-1461.
    165. Zou, J. J., R. J. Singh, J. Lee, S. J. Xu, P. B. Cregan and T. Hymowitz (2003). Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet 107(4):745-750.
    166.陈庆山,张忠臣,刘春燕,王伟权,李文滨(2005).应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱中国农业科学38(7):1312-1316.
    167.程芳艳,王继亮,刘海云,王敏,杜维俊(2007).野生和地方大豆品种耐旱性初步评价.山西农业科学(07):31-35.
    168.崔世友,喻德跃(2007).大豆光合性状QTL的初步定位.大豆科学26(01):6-10.
    169.冯琳(2008).2007年全国旱情及抗旱情况.中国防汛抗旱1:66-70.
    170.冯琳(2009).2008年全国旱灾及抗旱情况.中国防汛抗旱1:68-70.
    171.高中超,周宝库,张喜林(2007).大豆对干旱胁迫生理生化的响应.大豆通报90(5):27-29.
    172.巩鹏涛,木金贵,赵金荣,王晓玲,白羊年,方宣钧(2006).一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合.分子植物育种4(3):309-316.
    173.关荣霞,常汝镇,邱丽娟(2003).用于SSR分析的大豆DNA的快速提取.大豆科学22(1):73-74.
    174.郭宝林,刘万水,黄文华,斯金平,李世洁(2006).影响总DNA提取因素的探讨.中国中药杂志31(11):924-926.
    175.郭丽杰,冉学中(2008).大豆抗旱性状的探讨及应用.现代农业科技2008(7):105-106.
    176.郭志强,刘学义,张俊荣(1988).大豆抗旱生理指标研究.山西农业科学4:5-9.
    177.胡国玉,赵晋铭,周斌,左巧关,盖钧镒,喻德跃,邢邯(2008).大豆耐低温出苗的遗传分析与分子标记.大豆科学(06):905-910.
    178.黄中文,赵团结,喻德跃,陈受宜,盖钧镒(2008).大豆抗倒伏性的评价指标及其QTL分析.作物学报(04):605-611.
    179.黄中文,赵团结,喻德跃,陈受宜,盖钧镒(2008).大豆生物量积累、收获指数及产量间的相关与QTL分析.作物学报(06):944-951.
    180.贾继增(1995).分子标记种质资源鉴定和分子标记育种.中国农业科学29(4):1-10.
    181.兰巨生,胡福顺,张景瑞(1990).作物抗旱指数的概念和统计方法.华北农学报5(2):20-25.
    182.黎裕(1993).作物抗早鉴定方法与指标.干早地区农业研究11(1):91-99.
    183.李贵全,杜维俊,孔照胜,程舜华,郭显荣(2000).不同大豆品种抗旱生理生态的研究.山西农业大学学报20(3):197-200.
    184.李捷,吴慎杰(2003).QTL定位在作物遗传育种上的应用.青岛建筑工程学院学报24(1):33-36.
    185.刘顺湖,王晋华,张孟臣,盖钧镒(2005).大豆茎生长习性类型鉴别方法研究.大豆科学24(2):81-89.
    186.刘莹,盖钧镒,吕慧能(2005).大豆根区逆境耐性的种质鉴定及其与根系性状的关系.作物学报31(9):1132-1137.
    187.刘莹,盖钧镒,吕慧能(2007).大豆品种苗期根系性状的遗传变异及其与耐逆境胁迫的关系.大豆科学26(2):127-133.
    188.刘莹,盖钧镒,吕慧能(2007).黄淮海地区大豆耐旱根系性状的遗传分析.大豆科学26(5):669-674.
    189.刘莹,盖钧镒,吕慧能,王永军,陈受宜(2005).大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位.中国农业科学32(8):855-863.
    190.卢为国,盖钧镒,郑永战,李卫东(2006).大豆遗传图谱的构建和抗胞囊线虫(Heterodera glycines Ichinohe)的QTL分析.作物学报32(9):1272-1279.
    191.路贵和,刘学义,张学武(1994).不同抗旱类型大豆品种气孔特性初探.山西农业科学22(4):8-11.
    192.邱丽娟,王吕陵,周国安,陈受宜,常汝镇(2007).大豆分子育种研究进展.中国农业科学(11):2418-2436.
    193.任永波,吴中军,段拥军(2001).作物抗旱研究方法与抗旱性鉴定指标.西昌农业高等专科学校学报15(1):1-6.
    194.沈新莲,张天真(2003).作物分子标记辅助选择育种研究的进展与展望.高技术通讯2: 105-110.
    195.史宏(2003).野生大豆抗旱性鉴定及研究.大豆科学22(4):264-268.
    196.宋启建(1999).大豆SSR分子标记的创制及其应用.大豆科学18(3):248-254.
    197.宋显军,谢甫绨,张伟,曹萍,郭玉华(2007).大豆SSR检测体系的优化研究.大豆科学26(1):36-40.
    198.谭震波(1996).近等基因系和群分法在植物基因定位中的应用.遗传18(增刊):27-30.
    199.宛煜嵩,王珍,肖英华,吕蓓,方宣均(2005).一张含有227各SSR标记的大豆遗传连锁图.分子植物育种3(1):15-20.
    200.宛煜嵩,王珍,马俊奎,史宏,任小俊,任冬莲,张小虎,李有应,冯凤鸣,徐俊,李永起,方宣钧(2003).大豆重组自交系Jinf的构建及主要农艺性状和SSR基因型分析.分子植物育种1(2):157-177.
    201.汪立刚,李恭志,沈阿林(1998).抗旱指数在早地小麦引种中的应用.干旱地区农业研究16(4):61-64.
    202.王春娥,盖钧镒,傅三雄,喻德跃,陈受宜.大豆豆腐和豆乳得率的遗传分析与QTL定位.中国农业科学,2008,41(05):1274-1282.
    203.王敏,张从宇,马同富,姚维传(2004).大豆品种苗期抗旱性研究.中国油料作物学报26(3):29-32.
    204.王永军(2001).大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状QTL分析中的应用,南京农业大学.博士学位论文.
    205.王永军,东方阳,王修强,杨雅麟,喻德跃,盖钧镒,吴晓雷,贺超英,张劲松,陈受宜(2004).大豆5个花叶病毒株系抗性基因的定位.遗传学报(01):87-90.
    206.王永军,吴晓雷,贺超英,张劲松,陈受宜,盖钧镒(2003).大豆作图群体检验与调整后构建的遗传图谱.中国农业科学36(11):1254-1260.
    207.文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒(2008).中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析Ⅱ.优异等位变异的发掘.作物学报(08):1339-1349.
    208.文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒(2008).中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析Ⅰ.群体结构及关联标记.作物学报(07):1169-1178.
    209.吴慎杰,李贵全,李捷,杜维俊,岳爱琴,武云帅(2003).大豆抗旱育种中选择指标和标记的研究现状.干旱地区农业研究21(1):139-142.
    210.吴晓雷,王永军(2001).大豆重要农艺性状的QTL分析.遗传学报28(10):947-955.
    211.邢光南,周斌,赵团结,喻德跃,邢邯,陈受宜,盖钧镒(2008).大豆抗筛豆龟蝽Megacota cribraria(Fabricius)的QTL分析.作物学报(03):361-368.
    212.熊冬金,赵团结,盖钧镒(2007).1923-2005年中国大豆育成品种的核心祖先亲本分析.大豆科学(05):641-646.
    213.熊冬金,赵团结,盖钧镒(2008).1923-2005年中国大豆育成品种种质的地理来源及其遗传贡献.作物学报(02):175-183.
    214.许占友,常汝镇,邱丽娟,李向华(2001).大豆遗传图谱研究进展及对应的几个问题.大豆科学20(2):133-137.
    215.杨守萍,陈加敏,喻德跃,盖钧镒(2005).大豆苗期耐旱性与根系性状的鉴定和分析.大豆科学24(3):176-182.
    216.杨嚣一,关荣霞,王跃强,刘章雄,常汝镇,王曙明,邱丽娟(2004).大豆遗传图谱的构建和若干农艺性状的QTL定位分析.植物遗传资源学报5(4):309-314.
    217.尹田夫,刘丽君,宋英淑,薛津,王以芝,于智深,朱光新(1986).不同抗旱型大豆茸毛适早变态与茎形态解剖的比较研究.大豆科学5(03):223-229.
    218.张德水,陈受宜(1998).DNA分子标记,基因组作图及其在植物遗传育种上的应用.生物技术通报5:15-22.
    219.张德水,董伟,惠东威,陈受宜,庄炳昌(1997).用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图.科学通报42(12):1326-1330.
    220.张红梅,周斌,赵团结,邢邯,陈受宜,盖钧镒(2008).大豆重组自交系群体NJRISX豆腐和豆乳得率的QTL分析.作物学报(01):67-75.
    221.张军,赵团结,盖钧镒(2008).大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报(12):2059-2069.
    222.张军,赵团结,盖钧镒(2008).亚洲大豆栽培品种遗传多样性、特异性和群体分化研究.中国农业科学(11):3511-3520.
    223.张军,赵团结,盖钧镒(2008).中国东北大豆育成品种遗传多样性和群体遗传结构分析.作物学报(09):1529-1536.
    224.张军,赵团结,盖钧镒(2009).我国黄淮和南方主要大豆育成品种家族产量和品质优异等位变异在系谱中遗传的研究.作物学报(02):191-202.
    225.周元昌,陈启锋(2000).作物QTL定位研究进展.福建农业大学学报29(2):138-144.
    226.庄炳昌,陈受宜(2000).大豆遗传图谱的构建和分析.遗传学报27(11):1018-1026.