中国大豆育成品种(1923-2005)基于系谱和SSR标记的遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物种质资源具有广泛的遗传变异,是选育突破性新品种的物质基础,育成品种是经多年育种与生产实践证明最为重要的种质资源。我国1923-2005年共育成了1300个大豆育成品种,研究这些育成品种的遗传基础及其近年来的演变趋势,对指导中国大豆品种改良具有重要的现实意义。
     系谱分析能较好地阐明作物育成品种的整体遗传基础,并且具有经济、简便等优点;我国近百年大豆育种实践资料蕴涵丰富的系谱、亲本选配等信息,是研究我国大豆育成品种整体遗传基础的理想材料。本研究利用中国大豆育种系谱资料分析中国大豆育成品种的整体遗传基础,对10个主要家族的育成品种,利用均匀分布于大豆20个连锁群的161对简单重复序列(SSR)标记引物进行SSR分子标记研究,综合亲本系数(CP)分析育成品种间的遗传相似性和亲缘关系,揭示其遗传基础,以期为我国大豆育种亲本选配,扩大亲本来源以至拓宽我国大豆育成品种遗传基础提供参考。主要结果如下:
     1.我国1923-2005年所育成1300个大豆品种中,北方一熟春豆生态区(Ⅰ区)、黄淮海二熟春夏豆生态区(Ⅱ区)、长江中下游二熟春夏豆生态区(Ⅲ区)、中南多熟春夏秋豆生态区(Ⅳ区)、西南高原二熟春夏豆生态区(Ⅴ区)和华南热带多熟四季大豆生态区(Ⅵ区)分别有682、395、64、120、16和23个,其中1019、202、70和9个分别由杂交、系统选择、诱变和转DNA育种方法育成。1300个品种的细胞核和细胞质基因库分别追溯到670和344个祖先亲本,一些重要祖先亲本育成了早期骨干品种(如满仓金、紫花四号、徐豆1号、齐黄1号和南农493-1等),这些品种又育成新的品种,经过多轮育种过程形成复杂的祖先亲本家族,一些重要祖先亲本在Ⅰ区已经历5-8轮的育种过程,Ⅱ区也经历了5-7轮的育种过程,Ⅲ、Ⅳ、Ⅴ、Ⅵ区经历了3-5轮的育种过程。
     我国大豆杂交育成品种共使用1391个直接亲本,绝大多数为育成品种和育种品系,少量为地方品种与外国品种。生产上常采用性状优良适合当地条件的育成品种作为供体亲本以加速育种进程,如:合丰25、吉林20、徐豆1号、齐黄1号、矮脚早、南农493-1和十胜长叶等作为直接或间接亲本多次使用,形成一些重要亲本。我国大豆杂交育种的组配方式的演变发展趋向于以育成品种(C)和育种品系(S)相互组合(CxC、 SxS、c×s、SxC)的四种组配为主。全国71.78%的杂交育成品种是以这四种组配方式育成,近十年这四种组配方式更高,为83.50%。
     2.670个祖先亲本源自我国六个生态区及国外,其中Ⅰ、Ⅱ、Ⅲ生态区和国外的祖先亲本提供了主要核质遗传贡献,各生态区间的种质交流较少,以本生态区的祖先亲本的遗传基础为主,其它生态区的祖先亲本遗传贡献较少。大部分祖先亲本只衍生1-2个育成品种,少数重要祖先亲本,如:Ⅰ区的金元(A146)、四粒黄(A210)和白眉(A019),Ⅱ区的滨海大白花(A034)、山东张寿地方品种(A295)、滑县大绿豆(A122)、铜山天鹅蛋(A231)、即墨油豆(A133),Ⅲ区的奉贤穗稻黄(A084)、51-83(A002)、上海六月白(A201)等祖先亲本经多轮育种过程衍生出大量品种,形成了庞大祖先亲本家族。综合衍生品种数、细胞核、质遗传贡献值和衍生品种轮数四项指标,从670个祖先亲本中筛选出113个对中国大豆育成品种核心祖先亲本,这些祖先亲本来自国内六生态区和国外。113份祖先亲本(占总数的16.87%)对1300个育成品种的核、质遗传贡献分别占70.90%和74.85%;这些核心祖先亲本对大豆核心种质收集、利用以及亲本选配具有重要参考意义。
     3.各生态区育成品种的平均每个育成品种使用祖先亲本数在逐渐增加,其中Ⅰ、Ⅱ区尤其明显,六生态区1996-2005年育成品种的平均每个育成品种使用祖先亲本数较1986-1995年的增加近一倍,近期育成品种比早期育成品种的遗传基础较为宽广,这与大量育成品种(品系)作为杂交育种亲本有关。经过10年的育种进程我国大豆育成品种祖先亲本扩大近一倍,地理来源更广泛,各生态区育成品种的国外和异生态区祖先亲本的核质遗传贡献有所增加,整体上我国大豆育成品种的遗传基础有所拓宽。但单个祖先亲本对我国大豆育成品种的遗传贡献不均衡现象有所加剧,遗传贡献向一些重要祖先亲本集中。如:Ⅰ区的A146、A210和A019,Ⅱ区的A034、A231、A133,Ⅱ区的A084、A002、A201等少数祖先亲本衍生品种数较1923-1995间增加一倍多,遗传贡献值增加一半以上。
     4.亲本系数分析表明近期育成品种(1986-2005)较早期育成品种(1923-1985)遗传基础更为宽广,受试品种中Ⅱ区的品种遗传基础最为宽广,Ⅲ区的品种遗传基础较狭窄。各家族育成品种中,Ⅱ区的A295、A122、A231和A133四个家族系谱复杂,涉及祖先亲本多,遗传基础较为宽广。Ⅲ区一些家族如A084、A002、A201和矮脚早(A291)由于选择育种较多,亲本系数平均值较大,遗传基础较为狭窄。
     5.基于SSR标记的遗传多样性、互补等位变异和特异等位变异研究表明:近期品种(1986~2005)较早期品种(1923~1985)遗传多态性信息含量(PIC)丰富,平均和特有等位点多、特缺等位点少,遗传互补等位变异点差异大,两者遗传关系最远,近期品种较早期品种遗传基础更为宽广。育成品种间的遗传基础与其所在的地理区域分布有关,Ⅰ和Ⅳ生态区地理位置相隔较远,互补等位变异点数最多,遗传关系也最远,Ⅱ、Ⅲ两生态区地理位置较近,种质交流较多,互补等位变异点数最少,遗传关系最近。
     各家族育成品种的SSR标记的遗传多样性、群体遗传结构、遗传相似性和特异等位变异研究表明各家族品种间的遗传基础与其所在的地理分布有关。A201和A291家族的品种主要分布于Ⅲ区的湖南、湖北和四川等地遗传背景较为一致;A002和A084家族的品种主要分布于江苏、河南和四川等地其遗传背景也较为一致;Ⅱ区的A034和A231家族的品种主要分布于江苏、河南和四川等地其遗传背景较为一致,A133和A295家族的品种主要分布于山东和河南等地其遗传背景较为一致。东北白眉(A019)家族和其它9个家族地理距离较远,存在较多特有、特缺等位点,而Ⅲ区和Ⅱ区地理位置较近,种质交流较多,两区祖先亲本家族间特有、特缺等位点数较少。其中Ⅲ区A002和Ⅱ区的A231和A122间无特有等位点,Ⅲ区A084、A201和Ⅱ区的A034、A231亚群间无特缺等位变异点。
     6.亲本系数是静态地假定双亲遗传贡献相同,而SSR标记是动态地反映品种间DNA水平的遗传差异。10个家族的亲本系数和SSR相似性系数矩阵Mantel检验相关验证表明两者相关程度较低。通过对37个杂交组合的SSR标记数据分析证明基于SSR标记的遗传贡献率法(GC)与相似系数法(SC)两种遗传贡献计算方法结果十分接近,母本对子代的遗传都明显高于父本。两法和基于系谱资料计算遗传贡献率的亲本系数法(CP)的计算结果差别较大。对37个杂交组合的等位变异点的传递与遗传重组分析表明:母本传递给子代的位点数多于父本,20个连锁群中C2、A2、J、F连锁群传递位点数较多, Ⅰ连锁群最少;母本重组发生率明显高于父本,近期品种重组率高于早期品种。
Crop germplasm with abundant genetic variant is basic material for crop breeding program. The long-term breeding practice fully prove that crop released cultivars were important germplasm. Total1300soybean cultivars had been released in China from1923to2005. The knowledge of genetic base and their change for recent years of soybean cultivars can be useful for setting the approaches and steps of genetic base-broadening in soybeans in China.
     The genetic base of crop was elucidated efficient by the pedigree analysis, especially the population genetic base of crop; The soybean breeding pedigree data with abundant information of pedigree and parents selection for approximate hundred years was ideal for the their population genetic base. Based on an analysis of pedigree data of the1300soybean cultivars released, simple sequence repeats (SSR) molecular marker161pairs of primers located on well-distributed20molecular linkage groups (MLG) and coefficient of parents (CP). The objective of this study is to make a thorough analysis on the population genetic bases of soybean released cultivars; summarize the relation between geographical source and genetic contribution of ancestor from soybean cultivars released in various decade; determine genetic similarity and relationship among cultivars; so as to provide relevant information for further breeding plans of soybeans parents selection and enlarge sources parents up to broadening the genetic base released cultivar. The main results were as follows:
     1. Total1300soybean cultivars were released in China from1923to2005,682,395,64,120,16and23were released in Northern China single cropping spring planting varietal eco-region (I), Huang-Huai-Hai double cropping spring and summer planting varietal eco-region (II), Middle and Lower Changjiang valleys double cropping spring and summer planting varietal eco-region (III), Central-south multiple cropping spring summer and fall planting varietal eco-region(IV), Southwest plateau spring and summer planting varietal eco-region (V) and South China tropics multiple cropping all season planting eco-region (VI),1019、202、70and9were developed from artificial hybridization, natural variant selection, mutation and transfer DNA, respectively. These cultivars was traced back to670nuclear and344cytoplasmic ancestors; Some major ancestors were cultivated early major cultivars (such as Mancangjin, Zihua si hao, Xudou1hao, Qihuang1hao and Nannong493-1), which were bred more new cultivars, after many breeding cycles, major ancestors were developed the complicated ancestor family. Nowadays some major ancestor from I, II and III, IV, V, VI eco-region go through5-8,5-7and3-5breeding cycles, respectively.
     1391soybean accessions were selected with direct crossing parent, which included the majority of cultivars and breeding lines and a little landraces and foreign countries cultivar. In order to process of breeding, some important cultivars (such as Hefeng25、Jilin20, Xudou1hao, Qihuang1hao, Aijiaozao, Nannong493-land Shishengchangye etc.) were used for direct crossing parents time after time. Parental combination of71.78%soybean cultivars released were the four parent combination between cultivars (C) with breeding line(S)(CxC、SxS、C×S、SxC) in China, and were more83.5%recent ten years.
     2. Total670ancestors were composed of landraces, breeding lines, improved cultivars, wild accessions and uncertain type, come from Eco-region I, Ⅱ, Ⅲ,IV, V, V I and foreign countries. Both nuclear and cytoplasmic germplasm from Eco-region I, II, III and foreign countries accounted for most part of the ancestry of the released cultivars. The exchange and utilization of germplasm among eco-regions were poor and mostly still limited in their own eco-regions. The most part of the ancestors was used in only1-2released cultivars, while only a few ancestors provided large genetic contribution but still limited basically in their local ancestors. Such as from eco-regions I Jinyuan(A146), Silihuang (A196), Baimei (A019), Ⅱ Binhaidabaihua(A034), Shandongzhangshou landrace (A295), Huaxiandaludou (A122), Tongshantianedan(A231), Jimoyoudou(A133), III (Fengxiansuidaohuang(A084),51-83(A002), Shanghailiuyuebai(A201). The113core ancestors out of the670were nominated according to the number of derived cultivars, nuclear genetic contribution, cytoplasmic genetic contribution and number of breeding cycles of each ancestor. Among them,34,28,10,14,4,3and20were from I, Ⅱ, Ⅲ, IV, V, VI eco-region and abroad, respectively. It accounted for16.87%of the total ancestors and provided70.90%nuclear and74.85%cytoplasmic genetic contribution to the whole released1300cultivars.
     3. The average number of ancestors per cultivar released between1996to2005in various eco-regions was about double or more of that between1986to1995. The genetic base of a single cultivar is relatively narrow for most of the released cultivars but has been gradually broadened, especially in Eco-region Ⅰ and Ⅱ; and the average number of ancestors per cultivar released between1996and2005in various eco-regions was approximately double of the period between1986and1995. The of pedigree of recent cultivars were more complication than early ones because scale of cross-breeding and parent combination between cultivars with breeding line raise recent years.
     4. The analysis of parentage coefficient showed that the genetic base of recent cultivars (1923-1985) were more broad than early ones. The genetic base of cultivars for Ⅱ eco-region was most broad, and Ⅲ eco-region was most narrow among Eco-region Ⅰ, Ⅱ, Ⅲ and Ⅳ. Among ten ancestors family, the genetic bases of Ⅱ eco-region such as A295, A122, A231and133family released cultivars is broad, Ⅲ eco-region such as A084, A002, A201and Aijiaozao (A291)family were narrow.
     5. Based on analysis of SSR marker of polymorphism information content (PIC) and alleles, we find that The specifically existent alleles, complementary alleles and PIC of recent cultivars (1986~2005) was more than early cultivars (1923~1975), and the specifically deficient alleles was low. The results showed that the genetic base of recent cultivars (1923-1985) were more broad than early ones. The genetic base of cultivars were was related to geographical district of cultivars. The geographical district Ⅰ and Ⅱ eco-region is far and the number of complementary alleles were most, so the genetic relationship between them and was far. On the contrary,The geographical district Ⅰ and Ⅱ eco-region is near and exchange of germplasm was much, the number of complementary alleles were low, so the genetic relationship between them and was close.
     The result of analysis of genetic structure of the population, specifically existent alleles and genetic similarity were indicated that the genetic base of cultivars were was related to geographical district of cultivars. For example, A201and A291ancestor families cultivars from south region was the geographic distribution in Hunan, Hubei, Sichuan and Jiangxi province and was almost clustered in same group.
     The number of alleles of A201and A291ancestor family from south regions was more low than ones of A034, A231and A133ancestor family from Ⅱ region. Genetic diversity level in recent cultivars (1986~2005) was higher than that in early cultivars (1923~1975). The different geographical district cultivars can be differentiated by two methods and reveal the distribution of ancestor family characteristic. For example, A201and A291ancestor families cultivars from south region was the geographic distribution in Hunan, Hubei, Sichuan and Jiangxi province and was almost clustered in same group.
     6. The average genetic similarity indicated the genetic variant and relationships of among cultivars in DNA level. The degree of relationship between the similarity matrices based on SSR and pedigree was measured by comparing the similarity matrices with the normalized Mantel test. A low positive correlation between the two matrices was observed. based on pedigree analysis and genetic similarity SSR markers was different. Parental genetic contribution can be estimated by from pedigree or from molecular marker data; there are three ways to calculate CP by pedigree, GC and SC by marker. We studied37soybean inbreeds with known pedigrees. The inbreeds were genotyped using161SSR markers. Parental contributions were estimated from marker similarity among an inbred and both of its parents, and were subsequently used to estimate CP. Estimates of parental contribution differed significantly between pedigree data and marker. The parental genetic contribution estimated from GC and SC was highly correlated. We concluded that female parental contribution estimated from marker data was more than male one when both parents were same one from pedigree data.
     The study of distribution of recombination events show that the number of alleles from female parent were more than male parent. There was the difference of number of transition alleles among linkage groups, the linkage group C2, A2, J and F have much more number of transition alleles, but I was least. Recombination events of latest cultivars was more than old one.
引文
[1]Crawley M J, Brown S L, Hails R S, et al. Biotechnology-transgenic crops in natural habitats. Nature, 2001,409:682-683.
    [2]曾庆平.试论人工进化.科学技术与辩证法,1996,13:7-10.
    [3]盖钧镒,崔章林,邱家驯.大豆育种研究与发展.大豆通报,1995:1-3.
    [4]Tanksley S D, and McCouch S. Seed banks and molecular maps:unlocking genetic potential from the wild. Science,1997,277:1063-1066.
    [5]Vigouroux Y, Mitchell S E, Matsuoka Y, et al. An analysis of genetic diversity across the maize genome using microsatellites. Genetics,2005,169:1617-1633.
    [6]瓦维罗夫.世界主要栽培植物的起源中心,农业出版社,北京,1982.
    [7]Fukuda Y. Cytogenetical studies on the wild and cultivated Manchurian soybeans (Glycine L). Japanese Journal of Botany,1933,6:489-506.
    [8]李福山.大豆起源及其演化研究.大豆科学,1994,13:61-66.
    [9]Li Z, and Nelson R L. RAPD Marker Diversity among Cultivated and Wild Soybean Accessions from Four Chinese Provinces. Crop Sci,2002,42:1737-1744.
    [10]庄炳昌,惠东威,王玉等.中国不同纬度不同进化类型大豆的RAPD分析.科学通报,1994,39:2178-2180.
    [11]许东河,高忠,盖钧镒等.中国野生大豆与栽培大豆等位酶、RFLP和RAPD标记的遗传多样性与演化趋势分析.中国农业科学,1999.
    [12]Xu D H, and Gai J Y. Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breeding,2003,122:503-506.
    [13]盖钧镒,许东河,高忠等.中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究.作物学报,2000,26:513-520.
    [14]吕世霖.关于我国栽培大豆原产地问题的探讨.中国农业科学,1978,4:90-94.
    [15]Hymowitz T, and Newell C A. Taxonomy of genus Glycine, domestication and soybeans. Econ. Bot., 1981,35:272-288.
    [16]王连铮.大豆的起源演化和传播.大豆科学,1985,4:1-6.
    [17]徐豹,郑惠玉,路琴华等.大豆起源地的三个新论据.大豆科学,1986,5:123-130.
    [18]徐豹,赵树文,邹淑华等.中国野生大豆种子蛋白的电泳分析:Ti和Spl各等位基因频率、地理分布与大豆起源地问题.大豆科学,1985,4:7-13.
    [19]许占友,邱丽娟,常汝镇等.利用SSR标记鉴定大豆种质.中国农业科学,1999,32(增刊):40-48.
    [20]Tozuka A, Fukushi H, Hirata T, et al. Composite and clinal distribution of Glycine soja in Japan revealed by RFLP analysis of mitochondrial DNA. Theor Appl Genet,1998,96:170-176.
    [21]Xu H, Abe J, Gai J, et al. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans:evidence for multiple origins of cultivated soybean. Theor Appl Genet,2002,105:645-653.
    [22]Ahmad Q N, and Britten E J. The karyotype of Glycine soja and its relationship to that of the soybean,Glycine max. Cytologia 1984,49:645-658.
    [23]Kollipara K P, Singh R J, and Hymowitz T. Phylogenetic and genomic relationships in the genus Glycine Willd.based on sequences from the ITS region of nuclear rDNA. Genome,1997,40:57-68.
    [24]应存山.全球作物遗传资源概况与研究动向(上).世界农业,1999,237:19-22.
    [25]应存山.全球作物遗传资源概况与研究动向(下).世界农业,1999,238:20-21.
    [26]Doyle J J, Doyle J L, Rauscher J T, et al. Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans(Glycine subgenus Glycine). New Phytol,2004,161:121-132.
    [27]Skvortzow B W. The soybean wild and cultivated in Eastern Asia Manchurina. ResSoci Pub SerANatHist Sec,1927,22:18.
    [28]庄炳昌.中国野生大豆生物学研究,科学出版社,北京,1999.
    [29]Singh R J, and Hymowitz T. Soybean genetic resources and crop improvement. Genome,1999, 605-616.
    [30]Singh R J, Kollipara K P, and Hymowitz T. Backcross-derived progeny from soybean and Glycine tomentella Hayata intersubgeneric hybrids. Crop Sci,1990,30:871-874.
    [31]Singh R J, Kollipara K P, and Hymowitz T. Monosomic alien addition lines derived from Glycine max (L.) Merr., and G. tomentella Hayata:production, characterization, and breeding behavior Crop Sci,1998,38:1483-1489.
    [32]Riggs R, Wang S, singh R J, et al. Possible transfer of resistance to Heterodera glycines from Glycine tomentella to Glycine max.. J. Nematol.,1998,30:547-552.
    [33]赵团结,盖钧镒.栽培大豆起源与演化研究进展.中国农业科学,2004,37:954-962.
    [34]常汝镇,孙建英,邱丽娟.中国大豆种质资源研究进展.作物杂志,1998,7-9.
    [35]盖钧镒.植物育种各论(第二版),中国农业出版社,北京,2006.
    [36]盖钧镒,赵团结,崔章林等.中国1923-1995年育成的651个大豆品种的遗传基础.中国油料作物学报,1998,20:17-23.
    [37]崔章林,盖钧镒,Thomas E Carter Jr等.中国大豆育成品种及其系谱分析(1923-1995)中国农业出版社,北京,1998.
    [38]盖钧镒,赵团结.中国大豆遗传育种研究进展.in:刘后利,(Ed.),作物育种学论丛,中国农业大学出版社,北京,2002,pp.161-191.
    [39]Carter T E, Jr., Nelson R L, Sneller C H, et al. Genetic Diversity in Soybean, in:H.Roger Boerma, and Specht J E, (Eds.), Soybean:Improvement, Production and Uses.(3nd ed), ASA and CSSA,, Madison, WI, USA,2004, pp.303-416.
    [40]廖林,刘玉芝.多抗性大豆育种现状及对策分析.大豆通报,1996,:7-8.
    [41]Riggs R, M.L.Hamblen, and Rake L. Resistance in commercial soybean cuitivars to six races of Heterodera glycines and to Meloidogyne incognita. Annals of Applied Nematology,1988,:70-76.
    [42]常汝镇.美国大豆遗传育种研究新进展.大豆通报,1995,:16-17.
    [43]赵团结,王明军,邱家驯.美国近期注册登记的公共大豆品种的特点分析.大豆通报,1999,27-28.
    [44]刘忠堂.巴西、阿根廷大豆的生产与科研.大豆科学,1999,18:176-180.
    [45]郭娟娟,常汝镇,章建新等.日本大豆种质十胜长叶对我国大豆育成品种的遗传贡献分析.大豆科学,2007,26:807-819.
    [46]宋启建.韩国大豆的生产、利用及品质改良育种.大豆科学,1999,18:89-93.
    [47]陈应志,关荣霞,郭顺堂等.世界大豆生产和科研的进展(续二).大豆通报,2005,30-34.
    [48]常汝镇,孙建英,邱丽娟.大豆品种的分化、发展与资源研究规划.大豆通报,1993,2:35-36.
    [49]郝欣先,蒋惠兰.抗孢囊线虫大豆新品种一齐黄25和齐茶豆1号.山东农业科学,1996.
    [50]郝欣先,蒋惠兰,吴建军,高建伟,李之琛.抗大豆孢囊线虫病新品种齐黄25的选育.大豆通报,1996.
    [51]徐冉,郝欣先,蒋惠兰等.高油抗孢囊线虫大豆新品种齐黄28号.山东农业科学,2002.
    [52]郝欣先,蒋惠兰,徐冉等.高油抗孢囊线虫大豆齐黄28.大豆通报,2003.
    [53]郭泰,刘忠堂,王志新等.抗灰斑病大豆新品种合丰49号.种子,2007.
    [54]彭宝,赵丽梅,王曙明等.杂交豆2号选育及高产制种技术研究.吉林农业科学,2008.
    [55]赵丽梅,孙寰,王曙明等.大豆杂交种杂交豆1号选育报告.中国油料作物学报,2004,26:15-17.
    [56]Bai Y N, and J. Y. Gai. Development of a new cytoplasmic-nuclear male-sterility line of soybean and inheritance of its male-fertility restorability. Plant Breeding,2006,125:85-88.
    [57]朱成松,盖钧镒,宋启建.4个大豆雄性核不育互交群体遗传变异特点.中国油料作物学报,1997.
    [58]赵团结,杨守萍,盖钧镒.大豆显性核雄性不育突变体n7241s的发现与遗传分析.中国农业科学,2005,38:22-26.
    [59]赵团结,盖钧镒.大豆不育性自然变异的发现与鉴定.中国农业科学,2006,39:1756-1764.
    [60]赵团结,盖钧镒.大豆2个雌雄不育突变体的发现与鉴定.大豆科学,2006,25:]09-112.
    [61]张磊,戴瓯和,黄志平等.杂交大豆杂优豆1号选育.大豆通报,2007,87:14-16.
    [62]邱丽娟,常汝镇,孙建英等.中国大豆品种资源的评价与利用前景.中国农业科技导报,2000,2:58-61.
    [63]常汝镇.中国大豆品种资源目录(续编一),农业出版社,北京,1991.
    [64]中国农业科学院作物品种资源研究所主编.中国大豆品种资源目录(续编一、二),中国农业出版社,北京,1990,1996.
    [65]王国勋.中国大豆品种资源目录,农业出版社,北京,1982.
    [66]Perry M C, and Mclntosh M S. Geographical Patterns of Variation in the USDA Soybean Germplasm Collection:I. Morphological Traits. Crop Sci,1991,31:1350-1355.
    [67]李向华,常汝镇.中国春大豆品种聚类分析及主成分分析.作物学报,1998.
    [68]张礼凤,李伟,王彩洁等.山东大豆种质资源形态多样性分析.植物遗传资源学报,2006.
    [69]张小明,刘丽君,唐晓飞等.中俄大豆种质遗传多样性分析.大豆科学,2008.
    [70]盖钧镒.美国大豆育种的进展和动向.大豆科学,1983,2:225-231.
    [71]Sneller C H. Pedigree Analysis of Elite Soybean Lines. Crop Sci,1994,34:1515-1522.
    [72]Sneller C H. Impact of Transgenic Genotypes and Subdivision on Diversity within Elite North American Soybean Germplasm. Crop Sci,2003,43:409-414.
    [73]Sneller C H, Miles J W, and Hoyt J M. Agronomic Performance of Soybean Plant Introductions and Their Genetic Similarity to Elite Lines. Crop Sci,1997,37:1595-1600.
    [74]Thompson J A, Nelson R L, and Vodkin L O. Identification of Diverse Soybean Germplasm Using RAPD Markers. Crop Sci,1998,38:1348-1355.
    [75]Narvel J M, Fehr W R, Chu W-C, et al. Simple Sequence Repeat Diversity among Soybean Plant Introductions and Elite Genotypes. Crop Sci,2000,40:1452-1458.
    [76]Nelson D R, Bellville R J, and Porter C A. Role of Nitrogen Assimilation in Seed Development of Soybean. Plant Physiol,1984,74:128-133.
    [77]盖钧镒,胡蕴珠,崔章林等.大豆资源对SMV株系抗性的鉴定.大豆科学,1989.
    [78]郭泰,魏淑红,于勇.利用国外大豆资源选育高油种质研究初报.中国农学通报,2005.
    [79]郭泰,刘忠堂,齐宁.大豆灰斑病新抗源的选育及利用.作物品种资源,1996:9-10.
    [80]赵团结,盖钧镒.大豆不育细胞质资源的发掘与鉴定.作物学报,2006.
    [81]Zhao T, and Gai J. Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line NJCMS3A in soybean. Euphytica,2006,152:387-396.
    [82]施立明,贾旭,,胡志昂.遗传多样性.in:陈灵芝,(Ed.),中国的生物多样性,科学出版社,北京,1993.
    [83]盖钧镒.植物种质群体遗传结构改变的测度.植物遗传资源学报,2005,6:1-8.
    [84]季维智,宿兵.遗传多样性研究的原理与方法,浙江科学技术出版社,杭州,1999.
    [85]张天真.作物育种学,中国农业出版社,北京,2003.
    [86]盖钧镒,赵团结,崔章林等.中国1923-1995年育成的651个大豆品种的遗传基础.中国农业科技导报,1999,:26-31.
    [87]盖钧镒,崔章林.中国大豆育成品种的亲本分析.南京农业大学学报,1994,17:19-23.
    [88]Burton J W. Soybean (Glycine max (L) Merr.) Field Crops Res.,1997,53:171-186.
    [89]Gai J Y, and Cui Z L. Ancestral analysis of soybean cultivars released in China. J. Nanjing Agri. Univ., 1994,17:19-23.
    [90]Gai J Y. The progress of soybean improvement and its potential direction in the United States. Soybean Science,1984,2:225-231.
    [91]Specht J, and Williams J H. Contribution of genetic technology to soybean production and retrospect and prospect. in:Fehr W R, (Ed.), Genetic contribution to grain yields of five major crop plants, CASS Spec. Publ.7. CASS and ASA Madison, WI.,1984.
    [92]Thorne J C, and Fehr W R. Exotic Germplasm for Yield Improvement in 2-way and 3-way Soybean Crosses. Crop Sci,1970,10:677-678.
    [93]熊冬金,赵团结,盖钧镒.中国大豆育成品种亲本分析.中国农业科学,2008,41:2589-2598.
    [94]彭宝,付艳华,孟庆福,王维田.大豆高产育种杂交亲本的遗传基础分析.大豆通报,1996,:24-25.
    [95]盖钧镒,崔章林.中国大豆育成品种的亲本分析.南京农业大学学报,1994,17:19-23.
    [96]彭玉华.大豆杂交组合类型的研究一我国大豆品种亲本组合类型的演变.中国油料作物学报,1988,:19-21.
    [97]彭宝,崔秀红,王大秋等.从大豆育成品种的血缘组成谈骨干亲本的筛选与利用.大豆通报,1996,:12-13.
    [98]邱丽娟,常汝镇.有效利用国外资源丰富我国大豆的遗传基础.中国油料作物学报,1993:76-78.
    [99]薛庆喜.美国伊利诺、依阿华、印第安纳州大豆品种系谱分析.大豆科学,1989,:214-219.
    [100]Fulton T M, Beck-Bunn T, Emmatty D, et al. QTL analysis of an advanced backcross of Lycopersicon peruviannum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet,1997,95::881-894.
    [101]Fulton T M, Nelson J C, and Tanksley S D. Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet,1997,95:895-902.
    [102]Bernard R L, Juvik G A, Hartwig E E, et al., Origins and Pedigrees of Public Soybean Varieties in the United States and Canada, USDA-ARS Technical Bull 1764,U.S.Gov. Print. Office, Washington, DC, 1988.
    [103]Allen F L, and Bhardwaj H L. Genetic relationship and selected pedigree diagrams of North America soybean cultivars., University of Tennessee, Agricultural Experiment Station, Bulletin, No.652, Knoxville,1987.
    [104]Cox T S, Lookhart G L, Walker D E, et al. Genetic Relationships Among Hard Red Winter Wheat Cultivars as Evaluated by Pedigree Analysis and Gliadin Polyacrylamide Gel Electrophoretic Patterns. CropSci,1985,25:1058-1063.
    [105]Delannay X, Rodgers D M, and Palmer R G. Relative Genetic Contributions Among Ancestral Lines to North American Soybean Cultivars. Crop Sci,1983,23:944-949.
    [106]赵丽梅,孙寰,黄梅.中国大豆染色体结构变异的研究.大豆科学,1998,17:191-195.
    [107]王中仁.植物等位酶分析,科学出版社,北京,1996.
    [108]Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean. Theor Appl Genet,2004,109:122-128.
    [109]Griffin J D, and Palmer R G. Variability of Thirteen Isozyme Loci in the USDA Soybean Germplasm Collections. Crop Sci,1995,35:897-904.
    [110]Tanksley S D, Young N D, Paterson A H, et al. RFLP mapping in plant breeding new tools for an old science. Biotechnology Techniques,1989,7:257-264.
    [111]Tanksley S D, and Nelson A I. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeaiing lines. Theor Appl Genet,1996,92:213-224.
    [112]Palmer R G, Zhang L, Huang Z, et al. Allelism and molecular mapping of soybean necrotic root mutants. Genome,2008,51:243-250.
    [113]Palmer R G, Sandhu D, Curran K, et al. Molecular mapping of 36 soybean male-sterile, female-sterile mutants. Theoretical and Applied Genetics,2008.
    [114]Xu M, and Palmer R G. Molecular mapping of k2 Mdhl-n y20, an unstable chromosomal region in soybean [Glycine max (L.) Merr.]. Theor Appl Genet,2005,111:1457-65.
    [115]Smalley M D, Fehr W R, Cianzio S R,etal. Quantitative Trait Loci for Soybean Seed Yield in Elite and Plant Introduction Germplasm. Crop Sci,2004,44:436-442.
    [116]宋启建.大豆SSR分子标记的创制及其应用.大豆科学,1999,18:248-254.
    [117]Staub J E, Serquen F C, and Gupta M. Genetic markers map construction and their application in plant breeding. Hortscience,1996,31:729-740.
    [118]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种,科学出版社,北京,2000.
    [119]Jaccoud D, Peng K, Feinstein D, et al. Diversity Arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids Res,2001,29:e25.
    [120]洪义欢,肖宁,张超等DArT技术的原理及其在植物遗传研究中的应用.遗传,2009,31:359-364
    [121]Mace E S, Xia L, Jordan D R, et al. DArT markers:diversity analyses and mapping in Sorghum bicolor. BMC Genomics,2008,9:26.
    [122]Grewal T S, Rossnagel B G, Pozniak C J, et al. Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet,2008,116:529-39.
    [123]Cui Z, Carter T E, Gai J Y, et al., Origin, description, and pedigree of Chinese soybean cultivars released from 1923 to 1995, USDA-ARS Technical Bull 1871,U.S.Gov. Print. Office, Washington. DC, 1999.
    [124]Gizlice Z, Carter T E, Jr., and Burton J W. Genetic Base for North American Public Soybean Cultivars Released between 1947 and 1988. Crop Sci,1994,34:1143-1151.
    [125]Martin J M, Blake T K, and Hockett E A. Diversity among North American Spring Barley Cultivars Based on Coefficients of Parentage. Crop Sci,1991,31:1131-1137.
    [126]Dice L. Measures of the amount of ecological association between species. Ecology,1945,26: 297-302.
    [127]Nei M, and Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci.,1979,76:5269-5273.
    [128]Jaccard P. Nouvelles rescherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat.,1908,44: 223-270.
    [129]Sokal R R, and Michener C D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull,1958,38:1409-1438.
    [130]Cregan P B. Soybean Molecular Genetic Diversity, Genetics and Genomics of Soybean,2008, pp. 17-34.
    [131]Suman Sud, Navtej Singh Bains, and Nanda G S. Genetic relationships among wheat genotypes, as revealed by microsatellite markers and pedigree analysis. J Appl Genet,2005,46:375-379.
    [132]Krishna G K, Zhang J, Burow M, et al. Genetic diversity analysis in valencia peanut (Arachis hypogaea L.) using microsatellite markers. Cell Mol Biol Lett,2004,9:685-97.
    [133]Pollefeys P, and Bousquet J. Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America. Genome,2003,46:1037-48.
    [134]Rongwen J, Akkaya M S, Bhagwat A A, et al. The use of microsatellite DNA markers for soybean genotype identification. Theoretical and Applied Genetics,1995,90:43-48.
    [135]Goodnight K F, and Queller D C. Computer software for performing likelihood tests of pedigree relationship using genetic markers. Molecular Ecology,1999,8:1231-1234.
    [136]Laurent Excoffier, and Heckel G. Computer programs for population genetics data analysis:a survival guide. NATURE REVIEWS,2006,7:745-758.
    [137]裴鑫德.多元统计分析及其应用,北京农业大学出版社,北京,1991.
    [138]高惠漩.实用统计方法与系统,北京大学出版社,北京,2001.
    [139]Mantel N A. The detection of disease clustering and a generalized regression approach. Cancer Res., 1967,27:209-220.
    [140]Hadley H H, and Hymowitz T. Speciation and cytogenetics. in:Caldwell B E, (Ed.), Soybean. Improvement, Production and Uses, Soc. Agron. WI. USA., Madison,1973.
    [141]Murphy J P, Cox T S, and Rodgers D M. Cluster Analysis of Red Winter Wheat Cultivars Based upon Coefficients of Parentage. Crop Sci,1986,26:672-676.
    [142]Autrique E, Nachit M, Monneveux P, et al. Genetic Diversity in Durum Wheat Based on RFLPs, Morphophysiological Traits, and Coefficient of Parentage. Crop Sci,1996,36:735-742.
    [143]Souza E, Fox P N, and Skovmand B. Parentage Analysis of International Spring Wheat Yield Nurseries 17 to 27. Crop Sci,1998,38:337-341.
    [144]Mercado L A, Souza E, and Kephart K D. Origin and diversity of North American hard spring wheats. Theoretical and Applied Genetics,1996,93:593-599.
    [145]van Beuningen L T, and Busch R H. Genetic Diversity among North American Spring Wheat Cultivars: Ⅱ. Ancestors Contributions to Gene Pools of Different Eras and Region. Crop Sci,1997,37:580-585.
    [146]Bohn M, Utz H F, and Melchinger A E. Genetic Similarities among Winter Wheat Cultivars Determined on the Basis of RFLPs, AFLPs, and SSRs and Their Use for Predicting Progeny Variance. Crop Sci,1999,39:228-237.
    [147]Tinker N A, Fortin M G, and Mather D E. Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet,1993,85:976-984.
    [148]Rodgers D M, Murphy J P, and Frey K J. Impact of Plant Breeding on the Grain Yield and Genetic Diversity of Spring Oats. Crop Sci,1983,23:737-740.
    [149]Souza E, and Sorrells M E. Pedigree Analysis of North American Oat Cultivars Released from 1951 to 1985. Crop Sci,1989,29:595-601.
    [150]Bowman D T, May O L, and Calhoun D S. Genetic Base of Upland Cotton Cultivars Released between 1970 and 1990. Crop Sci,1996,36:577-581.
    [151]Dilday R H. Contribution of Ancestral Lines in the Development of New Cultivars of Rice. Crop Sci, 1990,30:905-911.
    [152]Knauft D A, and Gorbet D W. Genetic Diversity among Peanut Cultivars. Crop Sci,1989,29: 1417-1422.
    [153]Cheres M T, and Knapp S J. Ancestral Origins and Genetic Diversity of Cultivated Sunflower: Coancestry Analysis of Public Germplasm. Crop Sci,1998,38:1476-1482.
    [154]Van Esbroeck G A, Bowman D T, Calhoun D S, et al. Changes in teh Genetic Diversity of Cotton in the USA from 1970 to 1995. Crop Sci,1998,38:33-37.
    [155]Lima M L, Garcia A A, Oliveira K M, et al. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet,2002, 104:30-8.
    [156]金善宝.中国小麦品种及其系谱,中国农业出版社,北京,1986.
    [157]庄巧生.中国小麦品种改良及系谱分析,中国农业出版社,北京,2003.
    [158]王娟玲,乔蕊清,许钢垣.黄淮麦区小麦品种演变的辈序分析.华北农学报,1997,12:23-28.
    [159]张清海,王志和,刘华山.河南主要推广小麦品种系谱追溯及其亲本组配技术分析.中国农学通报,2000,16:3-6.
    [160]王翠玲,张灿军,王书子等.河南省优质小麦系谱追溯及遗传改良分析.中国农学通报,2002,18:80-82.
    [161]陈玉清,郑有良,周永红.应用亲缘系数分析四川小麦种质资源的遗传多样性.南京师大学报,2002,25:22-27.
    [162]黄滋康.中国棉花品种及系谱,中国农业出版社,北京,1996.
    [163]Heffner E L, Sorrells M E, and Jannink J-L. Genomic Selection for Crop Improvement. Crop Sci,2009, 49:1-12.
    [164]Donini P, Law J R, Koebner R M D 等. Temporal trends in the diversity of UK wheat. Theoretical and Applied Genetics,2000,100:912-917.
    [165]Paull J G, Chalmers K J, Karakousis A, et al. Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theoretical and Applied Genetics,1998,96:435-446.
    [166]Manifesto M M, Schlatter A R, Hopp H E, et al. Quantitative Evaluation of Genetic Diversity in Wheat Germplasm Using Molecular Markers. Crop Sci,2001,41:682-690.
    [167]Siedler H, Messmer M M, Schachermayr G M, et al. Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theoretical and Applied Genetics,1994,88:994-1003.
    [168]Melchinger A E, Lee M, Lamkey K R, et al. Genetic Diversity for Restriction Fragment Length Polymorphisms:Relation to Estimated Genetic Effects in Maize Inbreds. Crop Sci,1990,30: 1033-1040.
    [169]Tao Y, Manners J M, Ludlow M M, et al. DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics,1993,86:679-688.
    [170]Lombard V, Baril C P, Dubreuil P, et al. Genetic Relationships and Fingerprinting of Rapeseed Cultivars by AFLP:Consequences for Varietal Registration. Crop Sci,2000,40:1417-1425.
    [171]Prabhu R R, Webb D, Jessen H, et al. Genetic Relatedness among Soybean Genotypes Using DNA Amplification Fingerprinting (DAF), RFLP, and Pedigree. Crop Sci,1997,37:1590-1595.
    [172]Smith J S C, Chin E C L, Shu H, et al. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.):comparisons with data from RFLPS and pedigree. Theoretical and Applied Genetics,1997,95:163-173.
    [173]Bernardo B, Romero-Severson J, Ziegle J, et al. Parental contribution and coefficient of coancestry among maize inbreds:pedigree, RFLP, and SSR data. Theor Appl Genet,2000,100.
    [174]Dubreuil P, Dufour P, Krejci E, et al. Organization of RFLP Diversity among Inbred Lines of Maize Representing the Most Significant Heterotic Groups. Crop Sci,1996,36:790-799.
    [175]Kim H S, and Ward R W. Genetic diversity in Eastern U.S. soft winter wheat (Triticum aestivum L. em. Thell.) based on RFLPs and coefficients of parentage. Theoretical and Applied Genetics,1997,94: 472-479.
    [176]Plaschke J, Ganal M W, and Roder M S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics,1995,91:1001-1007.
    [177]Barrett B A, Kidwell K K, and Fox P N. Comparison of AFLP and Pedigree-Based Genetic Diversity Assessment Methods Using Wheat Cultivars from the Pacific Northwest. Crop Sci,1998,38: 1271-1278.
    [178]Almanza-Pinzon M, Khairallah M, Fox P, et al. Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica,2003, 130:77-86.
    [179]Dreisigacker S, Zhang P, Warburton M L, et al. Genetic Diversity among and within CIMMYT Wheat Landrace Accessions Investigated with SSRs and Implications for Plant Genetic Resources Management. Crop Sci,2005,45:653-661.
    [180]Dreisigacker S, Zhang P, Warburton M L, et al. SSR and Pedigree Analyses of Genetic Diversity among CIMMYT Wheat Lines Targeted to Different Megaenvironments. Crop Sci,2004,44:381-388.
    [181]Parker G D, Langridge P, Whang B, et al. Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica,2002,124:293-306.
    [182]Moser H, and Lee M. RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variance in oats. Theoretical and Applied Genetics,1994,87:947-956.
    [183]Soleimani V D, Baum B R, and Johnson D A. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor Appl Genet,2002,104:350-357.
    [184]Mackill D J. Classifying Japonica Rice Cultivars with RAPD Markers. Crop Sci,1995,35:889-894.
    [185]Tams S H, Bauer E, Oettler G, et al. Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor Appl Genet,2004,108:1385-1391.
    [186]Maccaferri M, Sanguineti M C, Xie C, et al. Relationships among durum wheat accessions. Ⅱ. A comparison of molecular and pedigree information. Genome,2007,50:385-99.
    [187]H. Fufa, P. S. Baenziger, B.S. Beecher, et al. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica,2005,:133-146.
    [188]Van Becelaere G, Lubbers E L, Paterson A H, et al. Pedigree-vs. DNA Marker-Based Genetic Similarity Estimates in Cotton. Crop Sci,2005,45:2281-2287.
    [189]Graner A, Ludwig W F, and Melchinger A E. Relationships among European Barley Germplasm:Ⅱ. Comparison of RFLP and Pedigree Data. Crop Sci,1994,34:1199-1205.
    [190]Messmer M M, Melchinger A E, Herrmann R G, et al. Relationships among Early European Maize Inbreds:Ⅱ. Comparison of Pedigree and RFLP Data. Crop Sci,1993,33:944-950.
    [191]Soleimani V D, Baum B R, and Johnson D A. Analysis of Genetic Diversity in Barley Cultivars Reveals Incongruence Between S-SAP, SNP and Pedigree Data. Genetic Resources and Crop Evolution,2007,:83-97.
    [192]Schut J W, Qi X, and Stam P. Association between relationship measure base on AFLP markers, pedigree data and morphological traits in barley. Theor Appl Genet,1997,95:1161-1168.
    [193]Paczos-Grzeda E. Pedigree, RAPD and simplified AFLP-based assessment of genetic relationships among Avena sativa L. cultivars. Euphytica,2004,138:13-22.
    [194]Sun G, Wang-Pruski G, Mayich M, et al. RAPD and pedigree-based genetic diversity estimates in cultivated diploid potato hybrids. Theor Appl Genet,2003,107:110-115.
    [195]Chemda D, Lisa J R, James A S, et al. A comparison of genetic relationship measures in strawberry (Fragaria ananassa Duch.) based on AFLPs, RAPDs, and pedigree data. Euphytica,2001,117:1-12.
    [196]Eric T S, and John R C. Genetic relatedness among eastern North American blackberry cultivars based on pedigree analysis. Euphytica,2004,139:95-94.
    [197]Xu D H, Wahyuni S, Sato Y, et al. Genetic diversity and relationships of Japanese peach (Prunus persica L.)cultivars revealed by AFLP and pedigree tracing. Genetic Resources and Crop Evolution, 2006,53.
    [198]Seefelder S, Ermaier H, Schweizer G, et al. Genetic diversity and phylogenetic relationships among accessions of hop, Humulus lupulus, as determined by amplified fragment length polymorphism fingerprinting compared with pedigree data. Plant Breeding,2000,119:257-263.
    [199]Bernardo R. Molecular Markers and Selection for Complex Traits in Plants:Learning from the Last 20 Years. Crop Sci,2008,48:1649-1664.
    [200]Zhao X Q, and Wu W R. Construction of a genetic map based on ILP markers in rice. Yi Chuan,2008, 30:225-30.
    [201]Peleg Z, Saranga Y, Suprunova T, et al. High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. Theor Appl Genet,2008,117:103-15.
    [202]Cregan P B, Jarvik T, Bush A L, et al. An Integrated Genetic Linkage Map of the Soybean Genome. Crop Sci,1999,39:1464-1490.
    [203]Yang K, Moon J K, Jeong N, et al. Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics,2008,15:236-241
    [204]Salas P, Oyarzo-Llaipen J C, Wang D, et al. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet,2006,113:1459-66.
    [205]Shoemaker R C, Guffy R D, Lorenzen L L, et al. Molecular Genetic Mapping of Soybean:Map Utilization. Crop Sci,1992,32:1091-1098.
    [206]Shoemaker R C, Grant D, Olson T, et al. Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome,2008,51:294-302.
    [207]Morgante M, Rafalski A, Biddle P, et al. Genetic mapping and variability of seven soybean simple sequence repeat loci. Genome,1994,37:763-9.
    [208]Liu F, Zhuang B C, Zhang J S, et al. Construction and analysis of soybean genetic map. Yi Chuan Xue Bao,2000,27:1018-1026.
    [209]Hearnden P R, Eckermann P J, McMichael G L, et al. A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet,2007,115:383-391.
    [210]Wu Y Q, and Huang Y. An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Genome,2007,50:84-89.
    [211]Werner S, Diederichsen E, Frauen M, et al. Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet,2008,116:363-372.
    [212]Rafalski A J. Novel genetic mapping tools in plants:SNPs and LD-based approaches. Plant Sci,2002, 162:329-333.
    [213]Sneller C H. Pedigree Analysis of Elite Soybean Lines. Crop Sci,1994,34:1515-1522.
    [214]Thompson J A, and Nelson R L. Utilization of Diverse Germplasm for Soybean Yield Improvement. Crop Sci,1998,38:1362-1368.
    [215]Carter T E, Jr., Gizlice Z, and Burton J W, Coefficient-of-parentage and genetic-similarity estimates for 258 North American soybean cultivars released by public agencies during 1945-88, USDA-ARS Technical Bull 1814,U.S.Gov. Print. Office,1993.
    [216]Boerma H R, and Cooper R L. Comparison of Three Selection Procedures for Yield in Soybeans. Crop Sci,1975,15:225-229.
    [217]Boerma H R, and Cooper R L. Effectiveness of Early-generation Yield Selection of Heterogeneous Lines in Soybeans. Crop Sci,1975,15:313-315.
    [218]Schoener C S, and Fehr W R. Utilization of Plant Introductions in Soybean Breeding Populations. Crop Sci,1979,19:185-188.
    [219]Fehr W R. Breeding methods for cultivar development. in:Wilcox J R, (Ed.), Soybean:Improvement, Production and Uses.(2nd ed), ASA and CSSA, Madison, WI, USA,1987, pp.249-293.
    [220]田佩占.大豆杂种一代优势及其与亲本关系的研究.作物学报,1981.
    [221]De Bruin J L, and Pedersen P. Growth, Yield, and Yield Component Changes among Old and New Soybean Cultivars. Agronomy Journal,2009,101:124-130.
    [222]黄忠祥.植物遗传资源对提高作物生产力的重要性.安徽农业科学,2000,28:551-553.
    [223]彭玉华.大豆遗传多样性对产量改良的重要性及其展望.中国农业科学,1999,(增刊):49-58.
    [224]Xiao J, Grandillo S, Ahn S N, et al. Genes from wild rice improve yield. Nature,1996,384:223-224.
    [225]Morgante M, and Salamini F. From plant genomics to breeding practice. Current Opinion in Biotechnology,2003,14:214-219.
    [226]Avramova Z, Tikhonov A, SanMiguel P, et al. Gene identification in a complex chromosomal continuum by local genomic cross-referencing.The Plant Journal,1996,10:1163-1168. The Plant Journal,1996,10:1163-1168.
    [227]Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the USA,2003,100:263—268.
    [228]Yan L, Loukoianov A, Blechl A, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science,2004,303:1640-1644.
    [229]Peng J, Richard D E, Hartley N M, et al.'Green revolution'genes encode mutant gibberellin response modulators. Nature,1999,400:256-261.
    [230]Paterson A H, Bowers J E, Burow M D, et al. Comparative genomics of plant chromosomes. Plant Cell, 2000,12:1523-1539.
    [231]Frary A, Nesbitt T C, Grandillo S, et al. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    [232]游光霞,张学勇.基于选择牵连效应的标记/性状关联分析方法简介.遗传,2007,29:881-888.
    [233]Hagenblad J, and Nordborg M. Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics,2002,161:289-298.
    [234]Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences of the USA,2001,98:11479-11484.
    [235]Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics,2001,28:286-289.
    [236]Graves D J. Powerful tools for genetic analysis come of age. Trends in Biotechnology,1999,17: 127-134.
    [237]Ohlrogge J B, and Benning C. Unraveling plant metabolism by EST analysis. Current Opinion in Plant Biology,2000,3:224-228.
    [238]盖钧镒,赵团结,崔章林等.中国大豆育成品种中不同地理来源种质的遗传贡献.中国农业科学,1998.31:35-43.
    [239]Committee on Genetic Vulnerability of Major Crops. Genetic Vulnerability of Major Crops National Academy of Science, Washington, DC,1972.
    [240]Gizlice Z, Carter T E, Jr., and Burton J W. Genetic Base for North American Public Soybean Cultivars Released between 1947 and 1988. Crop Sci,1994,34:1143-1151.
    [241]Zhou X, Carter T E, Jr., Cui Z, et al. Genetic Base of Japanese Soybean Cultivars Released during 1950 to 1988. Crop Sci,2000,40:1794-1802.
    [242]Hiromoto D M, and Vello. N. A. The genetic base of Brazilian soybean (Glycine max (L.) Merrill) cultivars. Brazil. J. Genet.,1986,:295-306.
    [243]Bharadwaj C, Satyavathi C, Tiwari A, et al. Genetic base of soybean (Glycine max) varieties released in India as revealed by coefficient of parentage. Indian Journal of Agricultural Science,2002,72: 467-469.
    [244]张国栋.黑龙江省大豆品种系谱分析.大豆科学,1983,2:184-193.
    [245]张国栋.黑龙江省大豆推广品种的细胞质来源初步研究.大豆科学,1987.
    [246]张桂茹.黑农号大豆品种的基因源及农艺性状的遗传改进.大豆科学,1998,17:347-352.
    [247]牛若超.丰收号大豆品种的亲本分析.大豆通报,1995,4:10-12.
    [248]付亚书,陈维元,姜成喜等.绥农号大豆品种的应用及选育体会.黑龙江农业科学,2002,549-51.
    [249]陈维元,吕德昌,姜成喜等.绥农号大豆血缘关系分析.黑龙江农业科学,2004,:9-12.
    [250]胡喜平.合丰号大豆品种系谱分析.大豆科学,2002,21:131-137.
    [251]孙志强,田佩占,王继安.东北地区大豆品种血缘组成分析.大豆科学,1990,9:112-120.
    [252]杨琪.大豆遗传基础拓宽问题.大豆科学,1993,12:75-80.
    [253]陈艳秋,孙贵荒.辽宁省大豆杂交育成品种的亲本分析.辽宁农业科学,2000,:16-18.
    [254]顾德军,付连舜,杨德忠.铁丰系列大豆品种选育与应用概况.杂粮作物,2007,27:98-100.
    [255]廖林,刘玉芝,卢亦军等.吉林省大豆新品种(系)血缘组成分析.吉林农业科学,1997,:1-6.
    [256]崔永实,安仁善,曲刚等.吉林省大豆品种系谱分析.农业与技术,2004,24:101-107.
    [257]崔永实,李光发,张健等.高蛋白大豆品种系谱分析.中国农学通报,1999,15:43-45.
    [258]叶兴国,王连铮.黄淮海地区大豆品种亲缘关系概势分析.大豆科学,1995,14:214-220.
    [259]张磊,戴瓯和,朱国富等.皖豆系列大豆品种系谱分析.安徽农业科学,2000,28:139-142.
    [260]王金龙,徐冉.山东省大豆杂交育成品种(系)遗传基础分析.山东农业科学,2000,:38-39.
    [261]范彦英.河南省主要大豆品种来源分析.大豆通报,2000,:21.
    [262]杨加银,冯其虎,张复宁.江苏省主要大豆品种系谱分析.中国种业,1993,:17-18.
    [263]谢培庚.湖南春大豆育成品种系谱分析及其在育种中的应用.湖南农业科学,1997,:15-17.
    [264]梁江,冯兰舒,陈渊等.广西主要杂交大豆育成品种系谱分析.中国农学通报,2006,22:139-143.
    [265]Cui Z, Carter T E, Jr., and Burton J W. Genetic Base of 651 Chinese Soybean Cultivars Released during 1923 to 1995. Crop Sci,2000,40:1470-1481.
    [266]Wilcox J R, Schapaugh W T, Jr., Bernard R L, et al. Genetic Improvement of Soybeans in the Midwest. Crop Sci,1979,19:803-805.
    [267]徐冉,时传娥,张礼凤等.黄淮海大豆优异种质齐黄1号的育种应用.植物遗传资源学报,2004,5:170-175.
    [268]盖钧镒,邱家驯,赵团结.大豆品种南农493-1和南农1138-2与其衍生新品种的亲缘关系及其育种价值分析.南京农业大学学报,1997,20:1-8.
    [269]邱家驯,赵团结,盖钧镒.中国大豆育成品种中苏沪地区种质的遗传贡献.南京农业大学学报,1997,20:1-8.
    [270]杨兴勇,刘广阳,董全中等.大豆“克4430-20”的品种特性及育种利用.大豆通报,2001:49-50.
    [271]刘广阳.优异种质资源克4430-20在黑龙江省大豆育种中的应用.植物遗传资源学报,2005,6:326-329.
    [272]刘永涛,何波,贾淑村等.优异种质资源“凤交66-12”,长花序大豆及利用.杂粮作物,2001,21:24-25.
    [273]杨伯玉,张仁双.大豆的优良中间材料“5621”的创造与应用.辽宁农业科学,1989.
    [274]孙贵荒,宋书宏,孙恩玉等.大豆种质5621对所衍生品种的遗传贡献.中国油料作物学报,2002,24:38-41.
    [275]刘长海,于晓春,邱长久等.合丰25做为亲本材料的利用.大豆通报,2001,:22.
    [276]崔润芝,田保明.大豆特异种质系——郑77249.河南农业科学,1992.
    [277]梁慧珍,李卫东,卢卫国等.黄淮夏大豆优异种质郑77249的育种价值分析.中国油料作物学报,2000,22:10-13.
    [278]赵团结,崔章林,盖钧镒.中国大豆育成品种中江苏种质58-161的遗传贡献.大豆科学,1998.
    [279]叶兴国,王连铮.黄淮海地区大豆品种亲缘关系概势分析.大豆科学,1995.
    [280]盖钧镒,赵团结.中国大豆育种的核心祖先亲本分析.南京农业大学学报,2001,24:20-23.
    [281]Specht J E, Hume D J, and Kumudini S V. Soybean Yield Potential--A Genetic and Physiological Perspective. Crop Sci,1999,39:1560-1570.
    [282]Wilcox J R. Sixty Years of Improvement in Publicly Developed Elite Soybean Lines. Crop Sci,2001, 41:1711-1716.
    [283]Voldeng H D, Cober E R, Hume D J, et al. Fifty-Eight Years of Genetic Improvement of Short-Season Soybean Cultivars in Canada. Crop Sci,1997,37:428-431.
    [284]Smith J S C. Diversity of United States Hybrid Maize Germplasm; Isozymic and Chromatographic Evidence. Crop Sci,1988,28:63-69.
    [285]Smith J S C, Smith O S, Wright S, et al. Diversity of U.S. Hybrid Maize Germplasm as Revealed by Restriction Fragment Length Polymorphisms. Crop Sci,1992,32:598-604.
    [286]Lu H, and Bernardo R. Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet,2001:613-617.
    [287]Ustun A, Allen F L, and English B C. Genetic Progress in Soybean of the U.S. Midsouth. Crop Sci, 2001,41:993-998.
    [288]邱丽娟,常汝镇,袁翠平等.国外大豆种质资源的基因挖掘利用现状与展望.植物遗传资源学报,2006,7:1-6.
    [289]Khalaf A G M, Brossman G D, and Wilcox J R. Use of Diverse Populations in Soybean Breeding. Crop Sci,1984,24:358-360.
    [290]Wilcox J R, Khalaf A G M, and Brossman G D. Variability Within and Among F1 Families from Diverse Three-Parent Soybean Crosses. Crop Sci,1984,24:1055-1058.
    [291]Hartwig E E. Utilization of Soybean Germplasm Strains in a Soybean Improvement Program. Crop Sci, 1972,12:856-859.
    [292]Fehr W R, and Clark R C. Registration of Five Soybean Germplasm Populations (Reg. No. GP 13 to GP 17). Crop Sci,1973,13:778-a-779.
    [293]Vello N A, Fehr W R, and Bahrenfus J B. Genetic Variability and Agronomic Performance of Soybean Populations Developed from Plant Introductions. Crop Sci,1984,24:511-514.
    [294]Fehr W R, and Rodriguez de Cianzio S. Registration of Soybean Germplasm Populations AP10 to AP14 (Reg. No. GP35 to GP39). Crop Sci,1981,21:477-a-478.
    [295]Thompson J A, Amdor P J, and Nelson R L. Registration of LG90-2550 and LG91-7350R Soybean Germplasm. Crop Sci,1999,39:302-303.
    [296]Brown-Guedira G L, Warburton M L, and Nelson R L. Registration of LG92-1255, LG93-7054, LG93-7654, and LG93-7792 Soybean Germplasm. Crop Sci,2004,44:356-357.
    [297]Nelson R L, Evaluation of the USDA Soybean Germplasm Collection:maturity groups 000 to iv (pi 273.483 To pi 427.107), USDA-ARS Technical Bull 1718,U.S.Gov. Print. Office, Washington, DC, 1987.
    [298]徐冉,王彩洁,王金龙等.国外种质在山东大豆育种中的遗传贡献分析.山东农业科学,2003:10-12.
    [299]胡喜平,许勇,于萍等.美国优异大豆种质Hobbit的利用.黑龙江农业科学,2008,:25-27.
    [300]Falconer D S. Introduction to quantitaive genetics 2nd ed, Longman Lnc., New York,1981.
    [301]Cox T S, Kiang Y T, Gorman M B, et al. Relationship Between Coefficient of Parentage and Genetic Similarity Indices in the Soybean. Crop Sci,1985,25:529-532.
    [302]Gizlice Z, Carter T E, Jr., and Burton J W. Genetic Diversity in North American Soybean:I. Multivariate Analysis of Founding Stock and Relation to Coefficient of Parentage. Crop Sci,1993,33: 614-620.
    [303]Gizlice Z, Carter T E, Jr., Gerig T M, et al. Genetic Diversity Patterns in North American Public Soybean Cultivars based on Coefficient of Parentage. Crop Sci,1996,36:753-765.
    [304]Cui Z, Carter T E, Jr., and Burton J W. Genetic Diversity Patterns in Chinese Soybean Cultivars Based on Coefficient of Parentage. Crop Sci,2000,40:1780-1793.
    [305]Kisha T J, Diers B W, Hoyt J M, et al. Genetic Diversity among Soybean Plant Introductions and North American Germplasm. Crop Sci,1998,38:1669-1680.
    [306]Cui Z, Carter T E, Jr., Burton J W, et al. Phenotypic Diversity of Modern Chinese and North American Soybean Cultivars. Crop Sci,2001,41:1954-1967.
    [307]Li Z, Qiu L, Thompson J A, et al. Molecular Genetic Analysis of U.S. and Chinese Soybean Ancestral Lines. Crop Sci,2001,41:1330-1336.
    [308]Zhou X, Carter T E, Jr., Cui Z, et al. Genetic Diversity Patterns in Japanese Soybean Cultivars Based on Coefficient of Parentage. Crop Sci,2002,42:1331-1342.
    [309]Vello. N. A, Hiromoto D M, and AJBV A-F. Coefficient of parentage and breeding of Brazilian soybean germplasm. Brazil. J. Genet.,1988,11:679-697.
    [310]Bonatol A L V, Calvoll E S, Geraldilll l O, et al. Genetic similarity among soybean (Glycine max (L) Merrill) cultivars released in Brazil using AFLP markers. Genetics and Molecular Biology,2006,29: 692-704.
    [311]胡瑞法,黄季焜,Scott R遗传单一性及其对中国小麦产量的影响.中国农业科学,2002,35:1442-1449.
    [312]王莉,胡瑞法,黄季焜等.大豆遗传多样性及其经济影响研究.中国农业科学,2001,34:604-609.
    [313]Apuya N R, Frazieer P, and Keim K R. Restriction fragment length polymorphisms as genetic markers in soybean Glycine max (L.) Merri. Theoretical and Applied Genetics,1988,75:889-901.
    [314]Lorenzen L L, Boutin S, Young N, et al. Soybean Pedigree Analysis Using Map-Based Molecular Markers:I. Tracking RFLP Markers in Cultivars. Crop Sci,1995,35:1326-1336.
    [315]Clikeman A D, Palmer G R, and Shoemaker C. The effect of pre-selection on diversity detection in exotic germplasm. Soybean genetics newsletter (USA),1998,25:149.
    [316]Keim P, Shoemaker R C, and Palmer R G. Restriction fragment length polymorphism diversity in soybean. Theoretical and Applied Genetics,1989,77:786-792.
    [317]Skorupska H T, Shoemaker R C, Warner A, et al. Restriction Fragment Length Polymorphism in Soybean Germplasm of the Southern USA. Crop Sci,1993,33:1169-1176.
    [318]Kisha T J, Sneller C H, and Diers B W. Relationship between Genetic Distance among Parents and Genetic Variance in Populations of Soybean. Crop Sci,1997,37:1317-1325.
    [319]Grabau E A, Davis W H, and Gengenbach B G. Restriction Fragment Length Polymorphism in a Subclass of the'Mandarin'Soybean Cytoplasm. Crop Sci,1989,29:1554-1559.
    [320]Grabau E A, Davis W H, Phelps N D, et al. Classification of Soybean Cultivars Based on Mitochondrial DNA Restriction Fragment Length Polymorphisms. Crop Sci,1992,32:271-274.
    [321]Zhang J, Arelli P R, Sleper D A, et al. Genetic diversity of soybean germplasm resistant to Heterodera glycines. Euphytica,1999,107:205-216.
    [322]Manjarrez-Sandoval P, Carter T E, Jr., Webb D M, et al. Heterosis in Soybean and Its Prediction by Genetic Similarity Measures. Crop Sci,1997,37:1443-1452.
    [323]Lark K G, Evans J F, Basha F, et al. Molecular Phylogeny as a tool for soybean breeding. Soybean genetics newsletter (USA),1992,19:174-181.
    [324]Lark K G, Evans J F, Wilhelm P, et al. Molecular Phylogeny as a tool for soybean breeding Ⅱ. Soybean genetics newsletter (USA),1993,20:197-201.
    [325]邱丽娟,RandallL.Nelson, and LilaO.Vodkin利用RAPD标记鉴定大豆种质.作物学报,1997,4:408-417.
    [326]Brown-Guedira G L, Thompson J A, Nelson R L, et al. Evaluation of Genetic Diversity of Soybean Introductions and North American Ancestors Using RAPD and SSR Markers. Crop Sci,2000,40: 815-823.
    [327]Li Z, and Nelson R L. Genetic Diversity among Soybean Accessions from Three Countries Measured by RAPDs. Crop Sci,2001,41:1337-1347.
    [328]Chen Y, and Nelson R L. Genetic Variation and Relationships among Cultivated, Wild, and Semiwild Soybean. Crop Sci,2004,44:316-325.
    [329]张志永,盖钧镒RAPD在大豆种质资源及遗传连锁研究中的应用.大豆科学,1997.16:60-65
    [330]Akkaya M S, Bhagwat A A, and Cregan P B. Length Polymorphisms of Simple Sequence Repeat DNA in Soybean. Genetics,1992,132:1131-1139.
    [331]Maughan P J, Saghi Maroof M A, and Buss G R. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome,1995,38:715-23.
    [332]Diwan N, Bhagwat A A, Bauchan G B, et al. Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome,1997,40:887-95.
    [333]Choi I-Y, Kang J-H, Song H-S, et al. Genetic diversity measured by simple sequence repeat variations among the wild soybean, Glycine soja, collected along the riverside of five major rivers in Korea. Genes & Genetic Systems,1999,74:169-177.
    [334]Abe J, Xu D H, Suzuki Y, et al. Soybean germplasm pools in Asia revealed by nuclear SSRs. Theor Appl Genet,2003,106:445-53.
    [335]Mimura M, Coyne C, Bambuck M, et al. SSR Diversity of Vegetable Soybean [Glycine max (L.) Merr.]. Genetic Resources and Crop Evolution,2007,54:497-508.
    [336]Wang L X, Guan R X, Li Y H, et al. Genetic diversity of Chinese Spring Soybean Germplasm Revealed by SSR Markers. Plant Breeding,2008,127:56-61.
    [337]George N. Ude, William J. Kenworthy, Jose M. Costa, et al. Genetic Diversity of Soybean Cultivars from China, Japan, North America, and North American Ancestral Lines Determined by Amplified Fragment Length Polymorphism. Crop Sci,2003,43:1858-1867.
    [338]Fu Y-B, Peterson G W, and Morrison M J. Genetic Diversity of Canadian Soybean Cultivars and Exotic Germplasm Revealed by Simple Sequence Repeat Markers. Crop Sci,2007,47:1947-1954.
    [339]Yamanaka N, Sato H, Yang Z, et al. Genetic relationships between Chinese, Japanese, and Brazilian soybean gene pools revealed by simple sequence repeat (SSR) markers. Genetics and Molecular Biology,2007,30:85-88.
    [340]Priolli R H G, Mendes-Junior C T, Sousa S M B, et al. Soybean genetic diversity in time and among breeding programs in Brazil. Pesq. agropec. bras., Brasilia,2004,39:967-975
    [341]Priolli R H G, Mendes-Junior C T, Arantes N E, et al. Characterization of Brazilian soybean cultivars using microsatellite markers. Genetic and Molecular Biology,2002,25:185-193.
    [342]Nichols D M, Lianzheng W, Pei Y, et al. Variability among Chinese Glycine soja and Chinese and North American Soybean Genotypes. Crop Sci,2007,47:1289-1298.
    [343]Peakall R, Gilmore S, Keys W, et al. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera:implications for the transferability of SSRs in plants. Mol Biol Evol,1998,15:1275-87.
    [344]Kuroda Y, Kaga A, Tomooka N, et al. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation. Mol Ecol,2006,15:959-74.
    [345]赵洪锟,王玉民,李启云等.中国不同纬度野生大豆和栽培大豆SSR分析.大豆科学,2001,20:172-176.
    [346]Wang K J, and Takahata Y. A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Genetic Resources and Crop Evolution,2006,:157-165.
    [347]丁艳来,赵团结,盖钧镒.中国野生大豆的遗传多样性和生态特异性分析.生物多样性,2008,16:133-142.
    [348]崔艳华,邱丽娟,常汝镇等.黄淮夏大豆遗传多样性分析.中国农业科学,2004,37:15-22.
    [349]李英慧,刘燕,关荣霞等.“十五”大豆创新种质和1963—1995年间育成品种的SSR遗传结构及遗传多样性分析.作物学报,2007,33:1630-1636.
    [350]谢华,常汝镇,曹永生等.利用中国秋大豆(Glycine max(L.) Merr)筛选SSR核心位点的研究.中国农业科学,2003,36:360-366.
    [351]谢华,关荣霞,常汝镇等.利用SSR标记揭示我国夏大豆(Glycine max(L.)Merr)种质遗传多样性.科学通报,2005,50:434-443.
    [352]关荣霞,郭娟娟,常汝镇等.国外种质对中国大豆育成品种遗传贡献的分子证据.作物学报,2007,33:1393-1398.
    [353]Burnham K D, Francis D M, Dorrance A E, et al. Genetic Diversity Patterns among Phytophthora Resistant Soybean Plant Introductions Based on SSR Markers. Crop Sci,2002,42:338-343.
    [354]Lorenzen L L, Lin S F, and Shoemaker R C. Soybean pedigree analysis using map-based molecular markers:recombination during cultivar development. Theoretical and Applied Genetics,1996,93: 1251-1260.
    [355]Xia Z, Tsubokura Y, Hoshi M, et al. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using A single F2 population. DNA Res,2007,14:257-69.
    [356]Orf J H, Chase K, Jarvik T, et al. Genetics of Soybean Agronomic Traits:I. Comparison of Three Related Recombinant Inbred Populations. Crop Sci,1999,39:1642-1651.
    [357]Kassem M A, Shultz J, Meksem K, et al. An updated'Essex'by'Forrest'linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet,2006,113:1015-26.
    [358]Missaoui A M, Phillips D V, and Boerma H R. DNA Marker Analysis of'Davis'Soybean and Its Descendants for the Rcs3 Gene Conferring Resistance to Cercospora sojina. Crop Sci,2007,47: 1263-1270.
    [359]Ha B-K, Bennett J B, Hussey R S, et al. Pedigree Analysis of a Major QTL Conditioning Soybean Resistance to Southern Root-Knot Nematode. Crop Sci,2004,44:758-763.
    [360]Narvel J M, Walker D R, Rector B G, et al. A Retrospective DNA Marker Assessment of the Development of Insect Resistant Soybean. Crop Sci,2001,41:1931-1939.
    [361]Narvel J M, Jakkula L R, Phillips D V, et al. Molecular mapping of Rxp conditioning reaction to bacterial pustule in soybean. J Hered,2001,92:267-70.
    [362]Lee G J, Carter T E, Jr., Villagarcia M R, et al. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet,2004,109:1610-1619.
    [363]秦君,姜成喜,刘章雄等.绥农14及其系谱亲本的遗传多样性及重组分析.遗传,2006,28:1421-1427.
    [364]秦君,李英慧,刘章雄等.用SSR分子标记解析大豆品种绥农14与系谱亲本间的遗传关系.中国农业科学,2008,41:3999-4007.
    [365]Pestsova E, and Roder M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theoretical and Applied Genetics, 2002,106:84-91.
    [366]Mahmood A, Baenziger P S, Budak H, et al. The use of microsatellite markers for the detection of genetic similarity among winter bread wheat lines for chromosome 3A. Theoretical and Applied Genetics,2004,109:1494-1503.
    [367]Russell J R, Ellis R P, Thomas W T B, et al. A retrospective analysis of spring barley germplasm development from 'foundation genotypes'to currently successful cultivars. Molecular Breeding,2000, 6:553-568.
    [368]Sjakste T G, Rashal I, and Roder M S. Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theor Appl Genet,2003,106:539-49.
    [369]Keim P, Diers B W, Olson T C, et al. RFLP mapping in soybean:association between marker loci and variation in quantitative traits. Genetics,1990,126:735-42.
    [370]Lark K G, Weisemann J M, Matthews B F, et al. genetic map of soybean(Clycine max L.)using intra specific cross of two cultivars:"Minsoy"and"Noir 1". Theor Appl Genet,1993,86.
    [371]Mansur L M, Orf J H, Chase K, et al. Genetic Mapping of Agronomic Traits Using Recombinant Inbred Lines of Soybean. Crop Sci,1996,36:1327-1336.
    [372]Shoemaker R C, Polzin K, Labate J, et al. Genome Duplication in Soybean (Glycine subgenus soja). Genetics,1996,144:329-338.
    [373]shoemaker R C, and Olson T C. Molecular linkage map of soybean(Glyxine max L.Merr.). in:O'Brien S, (Ed.), Genetic Maps:Locus maps of complex genomes, Cold Spring Harbor Laboratory Press, New York,1993.
    [374]张德水,董伟,惠东威等.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图.科学通报,1997,42:1326-1330.
    [375]刘峰,陈受宜,庄炳昌.大豆基因组F连锁群较高密度图谱的构建和基因定位.白然科学进展,2000.10:1012-1017.
    [376]宛煜嵩,王珍,肖英华等.一张含有227个SSR标记的大豆遗传连锁图.分子植物育种,2005,3:15-20.
    [377]吕蓓,张丽霞,宛煜嵩等.用AFLP标记饱和大豆SSR遗传连锁图.分子植物育种,2005,3:163-172.
    [378]巩鹏涛,木金贵,赵金荣等.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合.分子植物育种,2006.
    [379]杨喆,关荣霞,王跃强等.大豆遗传图谱的构建和若干农艺性状的QTL定位分析.植物遗传资源学报,2004,5:309-314.
    [380]陈庆山,张忠臣,刘春燕等.应用Charleston x东农594重组自交系群体构建SSR大豆遗传图谱.中国农业科学,2005,38:1312-1316.
    [381]Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet,2004,108: 1131-9.
    [382]王永军,吴晓雷,贺超英等.大豆作图群体检验与调整后构建的遗传图谱.中国农业科学,2003,36:1254-1260.
    [383]贺超英,张志永,王永军等.利用微卫星标记评估大豆重组近交系NJRIKY.遗传学报,2001,28:171-181.
    [384]吴晓雷,贺超英,王永军等.大豆遗传图谱的构建和分析.遗传学报,2001,28:1051-1061.
    [385]A Genome Strategic Planning Workshop. SOYBEAN GENOMICS RESEARCH A STRATEGIC PLAN FOR 2008-2012, Documents a 5-Year Strategic Plan for Soybean Genomics Research., St. Louis, Missouri,2007.
    [386]盖钧镒,汪越胜,张孟臣等.中国大豆品种熟期组划分的研究.作物学报,2001,27:286-292.
    [387]Aljanabi S M, Forget L, and Dookun A. An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA. Plant Biol Rep,1999,17:1-8.
    [388]Cregan P B, Jarvik T, Bush A L, et al. An Integrated Genetic Linkage Map of the Soybean Genome. Crop Sci,1999,39:1464-1490.
    [389]Cui Z, Carter T E, Jr., and Burton J W. Genetic Diversity Patterns in Chinese Soybean Cultivars Based on Coefficient of Parentage. Crop Sci,2000,40:1780-1793.
    [390]Liu K, and Muse S V. PowerMarker:An integrated analysis environment for genetic marker analysis. Bioinformatics,2005,21:2128-2129.
    [391]Pritchard J K, Stephens M, and Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959.
    [392]Falush D, Stephans M, and Pritchard J K. Inference of population structure usingmultilocus genotype data:linked loci and correlated allele frequencies. Genetics,2003,164:1567-1587.
    [393]Falush D, Stephens M, and Pritchard J K. Inference of population structure using multilocus genotype data:dominant markers and null alleles. Mol Ecol, Notes (2007). Mol Ecol,2007.
    [394]Rohlf F J, NTSYSpc:Numerical taxonomy and multivariate analysis system, version 2.10, Exeter Software, New York,2000.
    [395]Excoffier L, Laval G, and Schneider S. Arlequin ver.3.0:An integrated software package for population genetics data analysis. Evolutionary Bioinformatics,2005,1:47-50.
    [396]Johan D. Peleman, and Voort J R v d. Breeding by Design. Trends in Plant Science,2003,18:330-334.
    [397]Gepts P, and Hancock J. The Future of Plant Breeding. Crop Sci,2006,46:1630-1634.
    [398]Wollenweber B, Porter J R, and Lubberstedt T. Need for multidisciplinary research towards a second green revolution. Curr Opin Plant Biol,2005,8:337-41.
    [399]Bernard R L, Juvik G A, Hartwig E E, et al., Origins and Pedigrees of Public Soybean Varieties in the United States and Canada, USDA-ARS Technical Bull 1764,U.S.Gov. Print. Office, Washington, DC, 1988.
    [400]钱虎君,盖钧镒,喻德跃.大豆豆奶产量、品质及加工性状的遗传变异和遗传规律研究.作物学报,2001,27:880-885.
    [401]Bai Y, and Gai J. Inheritance of male fertility restoration of the cytoplasmic-nuclear male-sterile line NJCMSlA of soybean [Glycine max (L) Merr.]. Euphytica,2005,145:25-32.
    [402]Smith O S, Smith C S C, Bowen R A, et al. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor Appl Genet,1990,80: 833-840.
    [403]Lubberstedt T, Melchinger A E, and Dussle C. Relationships among early European maize inbreds: Ⅳ Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci,2000,40:783-791.
    [404]张博,邱丽娟,常汝镇.中国大豆部分获奖品种与其祖先亲本间SSR标记的多态性比较和遗传关系分析.农业生物技术学报,2003,11:351-358.
    [405]Abdelnoor R V, Barros E G, and Moreira M A. Determination of genetic diversity within Brazilian soybean germplasm using random amplified polymorphic DNA techniques and comparative analysis with pedigree data. Braz J Genet,1995,18:265-273.
    [406]Pejic I, Ajmone-Marsan P, Morgante M, et al. Comparative analysis of genetic similarity among inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet,1998,97:1248-1255.
    [407]Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding,1996,2:225-228.