申请上海交通大学工学博士学位论文基于无线传感器网络的行为识别与目标定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感器技术、无线通讯技术、嵌入式计算技术、分布式信息处理技术、微电子技术等领域的进步及相互结合,推动了无线传感器网络的快速发展。无线传感器网络将逻辑上的信息世界与客观上的物理世界连接起来,改变了人类与环境的交互方式,提供了利用逻辑信息来表述客观世界的一种有效的、便捷的方法。目前,无线传感器网络已经广泛地应用于环境智能、环境监控、工业制造、交通运输、军事工程等众多领域。
     作为无线传感器网络的一个重要应用领域,环境智能泛指能感知到用户的存在并为其提供智能化服务的电子环境和系统。环境智能的实现依赖于与用户行为密切相关的环境信息的采集和处理,依赖于对用户行为的分析、判断和推理,如:判断用户的位置、识别用户的行为、检测用户与环境的交互等,并在此基础上为用户提供智能化的服务。
     本文的研究主要针对环境智能中的两个研究重点:行为识别和目标定位。对于行为识别,介绍了基于环境变量的行为识别、人物交互式行为识别和穿戴式行为识别三种方法,并着重分析了穿戴式行为识别方法。穿戴式行为识别方法常采用监督学习方法,但该方法不具有异常检测能力和扩展学习能力。本文引入一类分类算法,利用组合高斯一类分类模型来判断行为是否是已知的。对于已知行为,采用加权支持向量机分类算法来识别其行为类别;对于未知行为,在分段算法的基础上,提取新行为的样本加入到识别系统中,扩展系统的识别能力。
     为了实现识别算法在传感器网络内的分布式实施,本文提出了一种基于移动代理的分布式分类方法,并将此方法运用到两种典型分类算法中。首先通过分解分类模型,将模型参数存放到对应的各个传感器节点上,实现分类模型的离散化;其次,在分类时,通过每个传感器节点计算自己的特征值和分类数据,实现分类操作的离散化;最后,利用移动代理串行访问各个节点,累积计算结果。与集中式分类算法相比较,基于移动代理的分布式分类算法可以减小带宽需求,平衡各个节点之间的计算、存储和能量消耗。
     对于目标定位,本文介绍人员定位和声音源定位。在人员定位中,常采用的方法往往需要用户穿戴传感器节点或在传感器节点上安装附加设备,本文提出了一种基于无线电波的非穿戴式定位方法,利用接收信号强度的变化来判断是否有人出现在一对无线电收发机之间,进而判断其位置。
     对于声音源定位,本文提出了一种源能量未知情况下的分布式声音源定位方法。文章结合增量梯度算法和基于能量比的声音源定位方法,通过分解和重组能量比定位方法的代价函数,得到适合分布式实施的迭代公式。采用合适的能量比个数以及迭代起始点位置,该方法可以获得与穷尽搜索方法近似的准确率,但只需要非常小的计算消耗。
Recent advances in sensor technology, wireless communications, embedded computing, distributed information processing and micro electrical mechanical systems (MEMS) have enabled the development of wireless sensor network (WSN). WSN bridges the physical world and the logical world, provides a new interaction method between human and environment, and enables us to express the physical world by logical symbols in an efficient and convenient way. Nowadays, the WSN is widely used in ambient intelligence (AmI), environmental surveillance, manufacture, transportation and military engineering.
     As one important application area of WSN, AmI refers to the electronic environments that are sensitive and responsive to the presence of people. The realization of AmI systems relies on the collection of human information and environmental conditions, and, of course, on the analysis, judgement and inference of these information. With the context information such as positions, activities and the interaction between human and environment, the AmI system can provide intelligent services to the users.
     This thesis is focused on the activity recognition and object localization, which are two important research topics in AmI. As to activity recognition, three methods are introduced, which are environment variable based method, human-object interaction based method and wearable activity recognition method. For the wearable accelerometer based activity recognition, the supervised learning method is often used to recognize the human’s activities. However, this method cannot detect and recognize the unknown activities, and cannot extend the system’s recognition capability. In this thesis, the one-class classification algorithm is introduced and the combined Gauss one-class classification models are used to judge whether one activity is known. For the known activities, the weighted support vector machine (WSVM) is used to recognize their types. For the continuous unknown activities, based on the segmentation algorithm, training samples of new activities are selected and added into the existed recognition system to extend its recognition capability.
     In order to implement the recognition algorithms in the WSN in a distributed way, a mobile agent based distributed classification method is proposed and applied to two typical classification algorithms. The classification model is firstly decomposed and the model parameters are stored at related sensor nodes. During distributed classification, each sensor node calculates its own feature and classification result. A mobile agent is dispatched to visit all the sensor nodes serially and aggregate the results on them. Compared with the centralized classification algorithm, the proposed algorithm can reduce the bandwidth requirement, and balance the computation, storage and power consumption among sensor nodes.
     As to the object localization, the human localization and the acoustic source localization are introduced in this thesis. For human localization, the usual methods often needs wearing the sensors on or needs some additional devices. This thesis proposes a radio based human localization method without on-body sensor. The attenuation of received signal strength indicator (RSSI) is used to detect whether there is a person is standing between a pair of transceivers and determine his position accordingly.
     For the acoustic source localization, a distributed localization method with unknown source energy is proposed. With the combination of the incremental gradient algorithm and the energy ratios based acoustic source localization method, the cost function of the energy ratios based localization method is decomposed and reformulated to adapt to the distributed computation. Based on appropriate number of iteration and initial search locations, the proposed method can obtain approximate accuracy as that of the exhaustive search (ES) method with much less computation cost.
引文
[1] Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E., A survey on sensor networks, IEEE Communications Magazine, 2002, 40(8), pp.102-114.
    [2] 21 Ideas for the 21st Century, Business Week, 1999, 30(08), pp.78-167.
    [3] Koller D., 10 Emerging Technologies that Will Change the World, MIT Technology Review, 2003, 106(01), pp.33-49.
    [4] Wang X., High accuracy distributed target detection and classification in sensor networks based on mobile agent framework, [Dissertation], University of Tennessee, 2004.
    [5] Crossbow: smarter sensors in silicon. http://www.xbow.com/Products/Wireless\_Sensor\_Net works.htm.
    [6] Sensoria Corporation. sGate developer's platform. http://www.sensoria.com/sgate.html.
    [7] WINS (Rockwell) Wireless Integrated Network Sensors. http://wins.rsc.rockwell.com.
    [8]李建中,李金宝,石胜飞,传感器网络及其数据管理的概念、问题与进展,软件学报,2003, 14(10),pp.1717-1727.
    [9] The Aware Home Research Initiative (AHRI). http://www-static.cc.gatech.edu/fce/ahri/
    [10] Human Activity Recognition, Intel Research Seattle. http://www.intel.com/research/net work/seattle_human_activity_recognition.htm.
    [11] Alan M., Joseph P., Robert S. and David C., Wireless sensor networks for habitat monitoring, In ACM Workshop on Sensor networks and Applications, Atlanta, ACM Press, 2002, pp.88-97.
    [12] http://www.research.philips.com/technologies/syst_softw/ami/index.html.
    [13] Ambient Intelligence Lab., Carnegie Mellon University. http://www.cmu.edu/vis/.
    [14] Mobility Research Lab., University of Deusto. http://www.morelab.deusto.es/.
    [15] Ambient Assisted Living, Fraunhofer Institute. http://www.iese.fraunhofer.de/fhg/iese/resear ch/ami/ami.jsp.
    [16] Ambient Intelligence Research Group, Kingston University, London. http://www.ambient intelligence.net/.
    [17] New AMbient Multimedia Research group, Tampeere University of Technology. http://www.cs.tut.fi/sgn/namu.
    [18] http://en.wikipedia.org/wiki/Ubiquitous_computing.
    [19] Bill S., Norman A. and Roy W., Context-aware computing applications, In proceedings of IEEE Workshop on Mobile Computing System and Applications, Santa Cruz, California, IEEE Computer Society Press, 1994, pp.85-990.
    [20] Chen G. L., Kotz D., A survey of context-aware mobile computing research, Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College, 2000.
    [21] Dey A. K., Understanding and using context, Personal and Ubiquitous Computing, 2001, 5(1), pp.4-7.
    [22] Dey A. K., Masayasu F., Daniel S. and Gregory D. A., The Conference Assistant: Combining Context-Awareness with Wearable Computing, In proceedings of the 3rd International Symposium on Wearable Computers (ISWC'99), San Francisco, California, IEEE Computer Society Press, 1999, pp.21-28.
    [23] Albrecht S., Kofi A. A., Antti T., Urpo T., Kristof V. L. and Walter V. V., Advanced interaction in context, In proceedings of 1st International Symposium on Handheld and Ubiquitous Computing (HUC'99), Karlsruhe, Germany, Springer Verlag, 1999, pp.89-101.
    [24] Abhaya A., Mark C. and Paul K., An indoor wireless system for perfonalized shopping assistance, In proceedings of IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, California, IEEE Computer Society Press, 1994, pp.69-74.
    [25] Chen N., Fontijn W., Chen X. and Zhang Q., A framework for ambient applications, In International Conference on Sensor Networks (SENET'05), Montreal, Canada, IEEE Computer Society Press, 2005, pp.348-354.
    [26] Fontijn W. and Boncz P., AmbientDB: P2P data management middleware for Ambient Intelligence, In proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, Washington, DC, IEEE Computer Society Press, 2004, pp.149-153.
    [27] Wang S., Yang J., Chen N., Chen X. and Zhang Q., Human activity recognition with user-free accelerometers in the sensor networks, In International Conference on Neural Networks and Brain (ICNN&B'05), Beijing, China, IEEE Press, 2005, pp.1212-1217.
    [28] Mantyla J., Himberg J. and Seppanen T., Recognizing human motion with multiple acceleration sensors, In IEEE International Conference on Systems, Man and Cybernetics, Tucson, USA, IEEE Press, 2001, pp.747-752.
    [29] Ravi N., Dandekar N., Mysore P. and Littman M., Activity recognition from accelerometer data, In proceedings of the 17th Annual Conference on Innovative Applications of Artificial Intelligence, Pittsburgh, USA, AAAI Press, 2005, pp.141-1546.
    [30] Lukowica P., Ward J. A. et al., Recognizing workshop activity using body worn microphones and accelerometers, In 2nd International Conference on Pervasive Computing, Vienna, Austria, Springer, 2004, pp.18-22.
    [31] Ohgi Y., Yasumura M., Ichikawa H. and Miyaji C., Analysis of stroke technique using acceleration sensor IC in freestyle swimming, The Engineering of SPORT, Blackwell Publishing, 2000, pp.503-511.
    [32] Tu J. W. and Liu F., A motion-sensor-based interactive system, Global Signal Processing Expo and Conference, Santa Clara, USA, 2004.
    [33] Brown G., An Accelerometer based Fall Detector: Development, Experimentation, and Analysis, SUPERB Final Report, 2005. www.eecs.berkeley.edu/~eklund/projects/Reports/GarrettFinalPaper.pdf.
    [34] Devaul R. W. and Dumm S., Real-time motion classification for wearable computing applications, Techinical report, MIT Media Laboratory, 2001.
    [35] Bao L. and Intille S. S., Activity recognition from user-annotated acceleration data, In 2nd International Conference on Pervasive Computing, Vienna, Austria, Springer, 2004, pp.1-17.
    [36] Han J. and Kamber M. (范明,孟小峰译),数据挖掘:概念与技术,机械工业出版社, 2001, pp.76-77, 185-194.
    [37]朱明,数据挖掘,中国科学技术大学出版社,2002,pp.64-74,87-89.
    [38] Wang M., Yang J., Liu G. P., Xu Z. J., Chou K. C., Weighted SVM for predicting membrane protein types based on pseudo amino acid composition, Protein Engineering, Desigan & Selection, 2004, 17(4), pp.1-8.
    [39] Richard O. D., Peter E. H., David G. S. (李宏东,姚天翔译),模式分类,机械工业出版社,2003,pp.143-153.
    [40] Ripley B., Pattern Recognition and Neural Networks, Cambridge University Press, 1996.
    [41] Grunwald P., A tutorial introduction to the minimum description length principle, in Advances in Mimimum Description Length: Theory and Applications, MIT Press, 2004.
    [42]边肇祺,张学工,模式识别,清华大学出版社,第二版,2000,pp.295-300.
    [43]邓乃扬,田英杰,数据挖掘中的新方法——支持向量机,科学出版社,2004,pp.49-89,214-219.
    [44] Aha D. W., Kibler D. and Albert M. K., Instance-based learning algorithms, Machine Learning, Kluwer Academic Publishers, 1991.
    [45] Huang C. C. and Lee H. M., An instance-based learning approach based on grey relational structure, Applied Intelligence, 25(3), 2006, pp.243-251.
    [46] Hullermeier E., Possibilistic instance-based learning, Artificial Intelligence, 148(1-2), 2003, pp.335-383.
    [47] Cleary J. G. and Trigg L. E., K*: An Instance- based Learner Using an Entropic Distance Measure, In Proceedings of the 12th International Conference on Machine learning, Tahoe City, California, 1995, pp.108-114.
    [48] Frank E., Hall M. and Pfahringer B., Locally weighted naive Bayes, In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, Acapulco, Mexico, Morgan Kaufmann, 2003, pp.249-256.
    [49] Zheng Z. and Webb G. I., Lazy learning of Bayesian rules, Machine Learning, 41(1), 2000, pp.53-84.
    [50] Ting K. M., Discretization in lazy learning algorithms, Artificial Intelligence Review, 11(1-5), 1997, pp.157-174.
    [51] Kohavi R., The power of decision tables, In Proceedings of the 8th European Conference on Machine Learning, Heraklion, Crete, Greece, Springer, 1995, pp.174-89.
    [52] Burges C.J.C., A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2(2), 1998, pp.1-47.
    [53] Akaike H., A new look at statistical model identification, IEEE Transactions on Automatic Control, 19(6), 1974, pp.716-723.
    [54] Devijver P.A. and Kittler J., Pattern Recognition: A Statistical Approach, Prentice Hall, 1982.
    [55] KXP74 Series datasheet. www.kionix.com/Product%20Sheets/KXP74%20Series.pdf.
    [56] Jain A. K., Duin R. P. W. and Mao J., Statistical pattern recognition: a review, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1), pp.4-37.
    [57] Tax D. M. J., One-class classification, [Dissertation], Delft University of Technology, 1999.
    [58] Tax D. M. J., Data descroption toolbox, 2005. http://www-ict.ewi.tudelft.nl/~davidt/dd_tools.html.
    [59]林健,彭敏品,基于支持向量数据描述的预警技术及其应用,计算机工程,2006,32(20),pp.7-9.
    [60] Abonyi J., Feil B., Nemeth S. and Arva P., Modified gath-geva clustering for fuzzy segmentation of multivariate time-series, Fuzzy Sets and Systems, Data Mining special issue, 2005, 149(1), pp.39-56.
    [61] Keogh E., Chu S., Hart D. and Pazzani M., An online algorithm for segmenting time series, In proceedings of IEEE International Conference on Data Mining, Los Alamitos, IEEE Computer Society Press, 2001, pp.289-296.
    [62] Keogh E. and Pazzani M., An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback, In proceedings of the 4th International Conference of Knowledge Discovery and Data Mining, New York, 1998, pp.239-241.
    [63] Tipping M. and Biship C., Probabilistic principal component analysis, Journal of the Royal Statistical Society, series B, 1997, 61, pp.611-622.
    [64] Qi H., Xu Y. and Wang X., Mobile-agent-based collaborative signal and information processing in sensor networks, Proceeding of the IEEE, 2003, 91(8), pp.1172-1183.
    [65] Xu Y., Energy efficient designs for collaborative signal and information processing in wireless sensor networks, [Dissertation], University of Tennessee, 2005.
    [66] Fuggetta A., Picco G. P. and Vigna G., Understanding code mobility, IEEE Transaction on Software Engineering, 1998, 24(5), pp.342-361.
    [67] Johnson D. B. and Maltz D. A., Mobile Computing, Kluwer Academic Publishers, 1996.
    [68] Helal A., Haskell B., Carter J. L., Brice R., Woelk D. and Rusinkiweicz M., Any Time, Anywhere Computing, Kluwer Academic Publishers, 1999.
    [69] Qi H., Iyengar S. S. and Chakrabarty K., Multi-resolution data integration using mobile agents in distributed sensor networks, IEEE Transaction on System, Man, and Cybernetics, Part C: Applications and Reviews, 2001, 31(3), pp.383-391.
    [70] Sundsted T., An introduction to agents, Java World, 1998.
    [71] Milojicic D., Trend wars - mobile agent applications, IEEE Concurrency, 1999, 7(3), pp.80-90.
    [72] Moizumi K. and Cybenko G., The traveling agent problem, Technical report, Dartmouth College, 1998.
    [73] Wong J. S. and Mikler A. R., Intelligent mobile agents in large distributed autonomous cooperative systems, Journal of Systems and Software, 1999, 47(2), pp.75-87.
    [74] Harrison C. G., Chess D. M. and Kershenbaum A., Mobile agent: are they a good idea? Technical report, IBM Thomas J. Watson Research Center, 1995.
    [75] Lange D. B. and Oshima M., Seven good reasons for mobile agents, Communications of the ACM, 1998, 42(3), pp.88-89.
    [76] Picco G. P., Mobile agents: an introduction, Microprocessors and Microsystems, 2001, 25, pp.65-74.
    [77] Blake C., Keogh E. and Merz C. J, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.htm.
    [78] Crossbow Technology Inc., MPR/MIB User's Manual, Document 7430-0021-06, 2004. http://www.xbow.com/.
    [79] ATMEGA128L datasheet. http://www.atmel.com/.
    [80] Vapnik V., Statistical Learning Theory, John Wiley & sons, 1998.
    [81] Heinzelman W. R., Chandrakasan A. P. and Balakrishnan H., An application-specific protocol architecture for wireless microsensor networks, IEEE Transaction on Wireless Communications, 2002, 1(4), pp.660-670.
    [82] Traveling Salesman Problem (TSP) using Simulated Annealing. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9612&objectType=File.
    [83] http://groups.csail.mit.edu/drl/journal_club/papers/nana.dankwa.ee.pdf.
    [84] He T., Huang C., Blum B. M., Stankovic J. A. and Abdelzaher T., Range-Free Localization Schemes in Large-Scale Sensor Networks, In Proceedings of the International Conference on Mobile Computing and Networking (MOBICOM), San Diego, USA, ACM Press, 2003, pp.81-95.
    [85] Girod L. and Estrin D., Robust Range Estimation Using Acoustic and Multimodal Sensing, In Proceedings of IEEE/RSJ International Conference Intelligent Robots and System (IROS’01), Maui, Hawaii, USA, IEEE Computer Society, 2001, pp.1312-1320.
    [86] Priyantha N., Chakraborthy A. and Balakrishnan H., The Cricket Location-Support System, In Proceedings of International Conference on Mobile Computing and Networking, Boston, MA, USA, ACM Press, 2000, pp.32-43.
    [87] Savvides A., Han C. C. and Srivastava B. M., Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors, In Proceedings of 7th Annual International Conference on Mobile Computing and Networking (MobiCom), Rome, Italy, ACM Press, 2001, pp.166-179.
    [88] Niculescu D. and Nath B., Ad Hoc Positioning System (APS) using AoA, In Proceedings of The 22ed Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'03), San Francisco, CA, USA, IEEE Computer and Communications Societies, 2003, pp.1734-1743.
    [89] Bahl P. and Padmanabhan V. N., RADAR: An In-Buliding RF-based User Location and Tracking System, In Proceedings of the IEEE Infocom 2000, Tel-Aviv, Israel, IEEE Computer and Communications Societies, 2000.
    [90] Chen J. N. J., Chen M. and Zhang Q., Human Localization in Wireless Sensor Networks using the Radio Signal Strength Interference, Technical Note PR-TN 2005/00519, Philips Research East Asia, 2005.
    [91] Bulusu N., Heidemann J. and Estrin D., GPS-less Low Cost Outdoor Localization for Very Small Devices, IEEE Personal Communications Magazine, 2000, 7(5), pp.28-34.
    [92] Niculescu D. and Nath B., DV Based Positioning in Ad-Hoc Networks, Journal of Telecommunication Systems, 2003, 22(1/4), pp.267-280.
    [93] Nagpal R., Organizing a Global Coordinate System from Local Information on an Amorphous Computer, Technical Report Memo 1666, MIT Artificial Intelligence Laboratory, 1999.
    [94]于宁,万江文,吴银锋,无线传感器网络定位算法研究,传感技术学报,2007,20(1),pp.187-192.
    [95] http://www.antennex.com/preview/Folder03/Jul3/mwabsor.htm.
    [96] Lymberopoulos D., Lindsey Q. and Savvides A., An Empirical Analysis of Radio Signal Strength Variability in IEEE 802.15.4 Networks using Monopole Antennas. ENALAB Technical Report 050501, Embedded Neteworks and Applications Lab, 2005.
    [97] Reijers N., Halkes G. and Langendoen K., Link Layer Measurements in Sensor Networks, In Proceedings of the First IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS'2004), Fort Lauderdale, FL, USA, IEEE Computer Society Press, 2004, pp.24-27.
    [98] Zhou G., He T., Krishnamurthy S. and Stankovic J. A., Impact of Radio Irregularity on Wireless Sensor Networks, In Proceedings of the Second International Conference on Mobile Systems, Applications, and Services (MobiSys'2004), Boston, Massachusetts, USA, ACM Press, 2004, pp.125-138.
    [99] Gaertner G. and Cahill V., Understanding Link Quality in 802.11 Mobile Ad Hoc Networks, IEEE Internet Computing, 2004, 8(1), pp.55-60.
    [100] Lymberopoulos D. and Savvides A., Xyz: A Motion-Enabled, Power Aware Sensor Node Platform for Distributed Sensor Network Applications, In Proceedings of InformationProcessing in Sensor Networks (IPSN'2005), Los Angeles, CA, USA, IEEE Press, 2005, pp.449-454.
    [101] http://www.chipcon.com.
    [102] Brandstein M. and Silverman H., A localization-error-based method for microphone-array design, In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), Atlanta, GA, USA, IEEE Press, 1996, pp.901-904.
    [103] Brandstein M. S., Adcock J. E. and Silverman H. F., A closed form location estimator for use with room environment microphone arrays, IEEE Transaction on Speech and Audio Processing, 5(1), 1997, pp.45-50.
    [104] Yao K., Hudson R. E., Reed C. W., Chen D. and Lorenzelli F., Blind beamforming on a randomly distributed sensor array system, IEEE Journal on Selected Areas in Communications, 16(8), 1998, pp.1555-1567.
    [105] Reed C. W., Hudson R. and Yao K., Direct joint source localization and propagation speed estimation, In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'99), Phoenix, USA, IEEE Press, 1999, pp.1169-1172.
    [106] Taff L. G., Target localization from bearings-only observations, IEEE Transactions on Aerospace and Electronic Systems, 33(1), 1997, pp.2-10.
    [107] Oshman Y. and Davidson P., Optimization of observer trajectories for bearings-only target localization, IEEE Transactions on Aerospace and Electronic Systems, 35(3), 1999, pp.892-902.
    [108] Kaplan K. M., Le Q. and Molnar P., Maximum likelihood methods for bearings-only target localization, In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'01), New York, USA, IEEE Press, 2001, pp.3001-3004.
    [109] Carter G. C., Coherence and Time Delay Estimation: An Applied Tutorial for Research, Development, Test, and Evaluation Engineers, IEEE Press, New York, 1993.
    [110] Sheng X. and Hu Y. H., Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks, IEEE Transactions on Signal Processing, 11(53), 2005, pp.44-53.
    [111] Rabbat M. G. and Nowak R. D., Decentralized source localization and tracking, In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'04), Montreal, QC, Canada, IEEE Press, 2004, pp.921-924.
    [112] Li D. and Hu Y. H., Energy-Based Collaborative Source Localization Using Acoustic Microsensor Array, EURASIP Journal on Applied Signal Processing, 2003(4), 2003, pp.321-337.
    [113] Blatt D. and Hero A., Energy-based sensor network source localization via projection onto convex sets, IEEE Transactions on Signal Processing, 54(9), 2006, pp.3614-3619.
    [114] Lee J., Cho K., Lee S., Kwon T. and Choi Y., Distributed and energy-efficient target localization and tracking in wireless sensor networks, Computer Communications, 29(13-14), 2006, pp.2494-2505.
    [115] Duarte M. and Hu Y. H., Vehicle classification in distributed sensor networks, Journal of Parallel and Distributed Computing, 64(7), 2004, pp.826-838.
    [116] Sheng X. and Hu Y. H., Energy based acoustic source localization, In Proceedings of the 2nd International Workshop on Information Processing in Sensor Networks, Palo Alto, CA, Springer-Verlag, 2003, pp.285-300.
    [117] Ramanathan P., Location-centric approach for collaborative target detection, classification, and tracking in sensor networks, In Proceedings of IEEE CAS Workshop on Wireless Communication and Networking, Pasadena, California, IEEE Press, 2002.
    [118] www.ece.wisc.edu/~sensit/publications/globecom03.pdf.
    [119] www.ece.wisc.edu/~sensit/publications/sensys150.pdf.
    [120] Duarte M., Hu Y. H., Optimal Decision Fusion With Applications to Target. Detection in Wireless Ad Hoc Sensor Networks, In Proceedings of The IEEE International Workshop on Multimedia Signal Processing, Siena, Italy, IEEE Press, 2004, pp.319-322.
    [121] Ramanathan P., Saluja K. K. and Hu Y. H., Collaborative Sensor Signal Processing for Target Detection, Localization, and Tracking, In Proceedings of 23rd Army Science Conference, Orlando, Florida, 2002.
    [122] Brooks R. R., Ramanathan P. and Sayeed A. M., Distributed Target Classification and Tracking in Sensor Networks, Proceedings of the IEEE, 91(8), 2003, pp.1163-1171.
    [123] Gandhi P. P. and Kassam S. A., An Adaptive Order Statistic Constant False Alarm Rate Detector, In Proceedings of IEEE International conference on Systems Engineering, Fairborn, OH, USA, IEEE Press, 1989, pp.85-88.