分布式视频编码率失真特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着网络技术、无线技术以及计算机硬件技术的飞速发展,数字电视、手机电视、网络电视、视频会议等各项多媒体技术在人们的工作和生活中得到越来越广泛的应用。MPEG-1/2/4以及H.261/3/4等传统视频编解码标准普遍采用基于运动补偿/块变换的混合结构,以致编码器与解码器相比,前者往往具有后者5-10倍的复杂度。这在视频广播、视频点播等一次编码、多次解码的多媒体应用中适用且必要。最近涌现出许多具有崭新特点的多媒体应用,如无线视频传感器监控网络、无线PC摄像机、移动摄像手机、一次性摄像机和便携式摄像机等。它们在存储容量、计算能力和功率资源等方面都受到很大的限制,有些由电池供给能量,有些则是即用即抛。因此这些新兴的多媒体技术需要简单的编码器以节省资源。分布式视频编码将耗时的运动估计/补偿从编码端移到解码端,从而得到简单的编码器,因此这使简单的视频编码在技术上成为可能。本文主要针对分布式编码技术手段比较研究、精细化虚拟信道模型、S帧的高效生成算法以及分布式视频编码中不同区域的码率分配等一些关键问题进行研究,得出以下创新之处:
     伴随式法和奇偶校验法是Slepian-Wolf编码中两种常用的技术手段。从采用线性分组码编解码时纠错能力以及采用LDPC码编解码时译码性能等两方面对它们进行比较,我们得出以下结论:从纠错性能的角度观察,如果二者都采用线性分组码,它们可以等价转换;另外,如果奇偶校验法中校验矩阵具有嵌套特性,则它也可以实现最优Slepian-Wolf编码。
     给出平方高斯条件下多变量Wyner-Ziv编码的率失真可达区域,并指出该编码范例中,编码端即使不参考边信息也不会损失编码性能,并且很容易将该结论拓展到只有信源和边信息之差为多高斯变量的情况。同时,利用逆注水法对各个变量进行失真分配可以达到该可达区域的边界。这为分布式视频编码中码率分配问题奠定了理论基础。
     考虑到运动矢量场和邻域像素点平滑性条件限制,本文提出了一种新型、高效的S帧生成方法,该算法将S帧的生成分为三个步骤:首先是进行基于块的运动补偿插值以生成初步的运动矢量场;其次,运动矢量的方向角被均匀量化后,利用平滑滤波器对相邻块运动矢量的量化方向值进行滤波;最后,考虑到邻域像素点的光滑性约束,在像素域进行逐点平滑滤波以进一步去除块错位效应。无论从率失真表现还是主观质量表现角度进行比较,实验结果都显示出该算法明显优于基于运动的外推法MC-E,并在诸如近似平动的运动场景、对话场景以及视频监控场景中,我们提出的S帧生成算法可以和IPME预测算法相比拟,甚至可以得到更优的率失真性能。
     利用边缘检测算法,将S帧分成不同特性的区域,从而将虚拟信道精细化为多高斯变量Wyner-Ziv编码模型。在不同区域,使用不同的量化、打孔等编码策略。实验证明,区域划分的思想和精细化的理论模型可以带来1.0-2.0dB的率失真增益。同时分布式视频编码器的复杂度略有下降。
With the rapid development of the network technology, the wireless technology and thecomputer hardware technology, various multimedia technologies are pushed into human’swork life and family life, such as DTV, mobile TV, IPTV, teleconference, etc. Conventionalvideo standards, such as MPEG-x and H.26x, adopt the MC/DCT based hybrid structure.Henceforth, the complexity of the encoder is 5-10 times as that of the decoder, which isappropriate and necessary in multimedia applications which encode once and decode manytimes such as video broadcasting and VOD applications. However, various kinds of new mul-timedia applications emerge, such as wireless VSN, wireless PC cameras, mobile camera-phones, disposable video cameras and camcorders, etc. Some use the battery to provide theenergy, while some are disposable. So they are all constrained largely in the power, memoryand computing capacity. And henceforth the simpler encoder is needed in the aforemen-tioned multimedia scenarios to save resources. The time-consuming ME/MC procedure isshifted from the encoder to the decoder in the DVC, and the simpler encoder is obtained. Thethesis researches on several key problems in the DVC, such as the compare analysis of twoSlepian-Wolf coding techniques, the refinement of the virtual channel, the efficient S framegenerating method and the rate allocation in different regions of the D frame. The noveltiesof the thesis are as followings:
     The syndrome approach and the parity check approach emerge as two practical Slepian-Wolf coding techniques. In the thesis, performances of these two approaches are comparedfrom two viewpoints. One is the comparison of their error correction capabilities usinglinear block codes; While the other is the comparison of their decodings using LDPC codesspecifically. Moreover, we prove that if the parity check matrix has the nested property, theparity check approach will achieve the optimality.
     We extend the Wyner-Ziv problem to the coding of multivariate Gaussian source withmultiple Gaussian side information at the decoder. The achievable region is obtained, and itis easily extended to the case that the difference between the source and the side information is multivariate Gaussian, no matter what distributions the source and the side informationare. This introduces the rate allocation problem into the DVC, which can be solved by areverse water-filling method. The multivariate Gaussian Wyner-Ziv coding prototype is thethesis’s important theoretical foundation.
     A novel and efficient Side-Information Frame Generator (SIFG) is proposed, whichconsiders smoothness constraints of both the motion vector field and spatial adjacent pixels.First, two adjacent decoded Intra frames at the decoder are used to perform the block basedMC-I, so as to obtain the motion vector field of the current S frame. In the second step, thedirection angle of the motion vector is uniformly quantized, and then the smoothing filter isused to smooth quantized direction levels among motion vectors of adjacent blocks. In thefinal step, the pixel-wise smoothing operation is used to mitigate block artifacts furthermore.Simulation results show that the proposed techniques provide potential rate-distortion per-formance advantages to the MC-E method. Besides, the fine visual quality of the S frame isobtained. Especially, the proposed SIFG method can be compared with the IPME algorithm,and even performs better in following video scenarios such as approximately linear motionscenario, dialogue scenario and video monitoring scenario.
     Adopting the edge detection algorithm, the S frame is divided into regions with differentcharacteristics, and hence the virtual channel is refined into the multivariate Gaussian Wyner-Ziv coding model. In different regions, different quantizing and puncturing strategies areapplied accordingly. Simulation results show that around 1.5-2 dB coding gain is benefitedfrom the refinement of the correlation model. Meanwhile, the simpler encoding character isremained.
引文
[1] T. M. Cover and J. A. Thomas, Elements of Information Theory. Beijing: Tsinghua Univ. Press,,2003.
    [2] L. L. Xie and P. Kumar,“A network information theory for wireless communication: scaling lawsand optimal operation,”IEEE Trans. Inform. Theory, vol. 50, no. 5, 2004.
    [3] S. Pradhan, J. Kusuma, and K. Ramchandran,“Distributed compression in a dense microsensornetwork,”IEEE Signal Processing Magzine, vol. 19, no. 3, pp. 51–60, 2002.
    [4] Z. Xiong, A. Liveris, and S. Cheng,“Distributed source coding for sensor networks,”IEEE SignalProcessing Magzine, vol. 21, no. 9, pp. 80–94, 2004.
    [5] C. E. Shannon,“A mathematical theory of communication,”Bell Syst. Tech. Journal, vol. 27, pp.379–423–623–656, 1948.
    [6] J. D. Slepian and J. K. Wolf,“Noiseless coding of correlated information sources,”IEEE Trans.Inform. Theory, vol. IT-19, p. 471–480, 1973.
    [7] A. Wyner and J. Ziv,“The rate-distortion function for source coding with side information at thedecoder,”IEEE Trans. Inform. Theory, vol. 22, no. 1, pp. 1–10, 1976.
    [8] ISO/IEC,“Coding of moving pictures and associated audio for digital storage media at up to about1.5 mbits/sec,”ISO 2-11172 rev, 1991.
    [9] ITU-T and ISO/IEC,“Generic coding of moving pictures and associated audio information- part 2:Video,”ITU-T Recommendation H.262 and ISO/IEC 13 818-2 (MPEG-2), 1994.
    [10] ISO/IEC,“Coding of audio-visual objects―part 2: Visual,”ISO/IEC 14 496-2 (MPEG-4 VisualVersion 1), 1999.
    [11] ITU-T,“Video codec for audiovisual services at 64 kbits: Itu-t recommendation h.261, version 1,”ITU-T Recommendation H.261 Version 1, 1990.
    [12]——,“Video coding for low bit rate communication,”ITU-T Recommendation H.263 version 1,1995.
    [13] ITU-T and ISO/IEC,“Draft itu-t recommendation and final draft international standard of jointvideo specification (itu-t rec. h.264/iso/iec 14496-10 avc),”Joint Video Team (JVT) of ISO/IECMPEG and ITU-T VCEG, JVTG050, 2003.
    [14] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero,“Distributed video coding,”Proc. IEEE,vol. 93, no. 1, pp. 71–83, 2005.
    [15] R. Puri, A. Majumdar, P. Ishwar, and K. Ramchandran,“Distributed video coding in wireless sensornetworks,”IEEE Signal Process. Mag., pp. 94–106, 2006.
    [16] X. Wang and M. Orchard,“Design of trellis codes for source coding with side information at thedecoder,”in IEEE Data Compression Conference, Snowbird, UT, 2001, pp. 361–370.
    [17] C. Berrou, A. Glavieux, and P. Thitimajshima,“Near shannon limit error-correcting coding anddecoding: turbo codes,”in IEEE Int. Conf. Communication, Geneva, Switzerland, 1993, pp. 1064–1070.
    [18] C. Berrou and A. Glavieux,“Near optimum error correcting coding and decoding: Turbo codes,”IEEE Transactions on Communications, vol. 44, pp. 1261–1271, 1996.
    [19] R. Gallager,“Low-density parity-check codes,”IRE Trans. Information Theory, pp. 21–28, 1962.
    [20] D. MacKay,“Good error correcting codes based on very sparse matrices,”IEEE Trans. InformationTheory, pp. 399–431, 1999.
    [21] A. Wyner,“The rate-distortion function for source coding with side information at the decoder-Ⅱ:General sources,”Information and Control, vol. 38, no. 1, pp. 60–80, 1978.
    [22] Y. Steinberg and N. Merhav,“On successive refinement for the wyner-ziv problem,”IEEE Trans.Inform. Theory, vol. 50, p. 1636–1654, 2004.
    [23] J. Wang, X. Wu, S. Yu, and J. Sun,“On multiple descriptions in the wyner-ziv setting,”in IEEESymposium Inform. Theory, Seattle, 2006, pp. 1584–1588.
    [24]——,“Multiple descriptions with side information also known at the encoder,”in IEEE SymposiumInform. Theory, Nice, France, 2007.
    [25] E. Perron, S. N. Diggavi, and I. E. Telatar,“On the role of encoder side-information in sourcecoding for multiple decoders,”in IEEE Symposium Inform. Theory, Seattle, 2006.
    [26] C. Heegard and T. Berger,“Rate distortion when side information may be absent,”IEEE Trans.Inform. Theory, vol. 31, p. 727–734, 1985.
    [27] A. H. Kaspi,“Rate-distortion function when side-information may be present at the decoder,”IEEETrans. Inform. Theory, vol. 40, p. 2031–2034, 1994.
    [28] R. Zamir,“The rate loss in the wyner-ziv problem,”IEEE Trans. Inform. Theory, vol. 42, p.2073–2084, 1996.
    [29] M. Gastpar,“The wyner-ziv problem with multiple sources,”IEEE Trans. Inform. Theory, vol. 50,no. 11, p. 2762–2768, 2004.
    [30] P. Wang, J. Wang, S. Yu, E. Chen, X. Yang, and X. Wang,“The wyner-ziv rate-distortion functionof multivariate gaussian sources and its application in distributed video coding,”in IEEE DataComp. Conf., Snowbird, UT, 2007, p. 405.
    [31] S. Pradhan, J. Chou, and K.Ramchandran,“Duality between source coding and channel coding andits extension to the side information case,”IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1181–1203, 2003.
    [32] A. D. Wyner,“Recent results in the shannon theory,”IEEE Trans. Inform. Theory, vol. IT-20, no.1, pp. 2–10, 1974.
    [33] S. S. Pradhan and K. Ramchandran,“Distributed source coding using syndromes (discus): designand construction,”IEEE Trans. Inform. Theory, vol. 49, pp. 626–643, 2003.
    [34] D. Rowitch and L. Milstein,“On the performance of hybrid fec/arq systems using rate compatiblepunctured turbo codes,”IEEE Trans. Comm., vol. 48, no. 6, p. 948–959, 2000.
    [35] J. Garcia-Frias and Y. Zhao,“Compression of correlated binary sources using turbo codes,”IEEECommunication Letters, vol. 5, no. 10, pp. 417–419, 2001.
    [36] A. Aaron and B. Girod,“Compression with side information using turbo codes,”in IEEE DataComp. Conf, Snowbird, UT, 2002.
    [37] A. D. Liveris, Z. Xiong, and C. Georghiades,“Compression of binary sources with side informationat the decoder using ldpc codes,”IEEE Communication Letters, vol. 6, no. 10, 2002.
    [38] T. Tian, J. Garcia-Frias, and W. Zhong,“Compression of correlated sources using ldpc codes,”inIEEE Data Comp. Conf., Snowbird, UT., 2003.
    [39] S. S. Pradhan and K. Ramchandran,“Distributed source coding: symmetric rates and applicationsto sensor networks,”in IEEE Data Compression Conference, 2000, pp. 363–372.
    [40] M. Sartipi and F. Fekri,“Distributed source coding in wireless sensor networks using ldpc coding:The entire splepian-wolf rate region,”in IEEE Wireless Communications and Networking Confer-ence, New Orleans, 2005.
    [41] S. S. Pradhan and K. Ramchandran,“Distributed source coding using syndromes(discus): designand construction,”in IEEE Data Compression Conference, Snowbird,UT, 1999, pp. 158–167.
    [42] S. Cheng and Z. Xiong,“Successive refinement for the wyner-ziv problem and layered code de-sign,”IEEE Trans. Signal Process., vol. 53, pp. 3269–3281, 2005.
    [43] S. S. Pradhan and K. Ramchandran,“Group-theoretic construction and analysis of generalizedcoset codes for symmetric/asymmetric distributed source coding,”in Conf.Information Sciencesand Systems, Princeton, 2000, pp. 363–372.
    [44]——,“Geometric proof of rate-distortion function of gaussian sources with side information at thedecoder,”in IEEE Int. Symp. Information Theory(ISIT), 2000, p. 351.
    [45] J. Garcia-Frias and Y. Zhao,“Data compression of unknown single and correlated binary sourcesusing punctured turbo codes,”in Allerton Conf. Communication , Control, and Computing, Monti-cello, IL, 2001.
    [46] J. Bajcsy and P. Mitran,“Coding for the slepian-wolf problem with turbo codes,”in IEEE GlobalCommunications Conf., vol. 2, 2001, pp. 1400–1404.
    [47] P. Mitran and J. Bajcsy,“Near shannon limit coding for the slepian-wolf problem,”in BiennialSymp. Communications, Kingston, ON, Canada, 2002.
    [48] Y. Zhao and J. Garcia-Frias,“Joint estimation and data compression of correlated nonbinarysources using punctured turbo codes,”in Conf. Information sciences and Systems, Princeton, NJ,2002.
    [49]——,“Data compression of correlated nonbinary sources using punctured turbo codes,”in IEEEData Compression Conf., 2002, pp. 242–251.
    [50] P. Mitran and J. Bajcsy,“Coding for the wyner-ziv problem with turbo-like codes,”in IEEE Int.Symp. Information Theory, 2002, p. 91.
    [51]——,“Turbo source coding: a noise-robust approach to data compression,”in IEEE Data Com-pression Conf., 2002, p. 465.
    [52] G. Zhu and F. Alajaji,“Turbo codes for non-uniform memoryless sources over noisy channels,”IEEE Commun. Lett., vol. 6, no. 2, pp. 64–66, 2002.
    [53] J. Garcia-Frias and Y. Zhao,“Compression of binary memoryless sources using punctured turbocodes,”IEEE Commun. Lett., vol. 6, no. 9, pp. 394–396, 2002.
    [54] K. Lajnef, C. Guillemot, and P. Siohan,“Wyner-ziv coding of three correlated gaussian sourcesusing punctured turbo codes,”in IEEE Int. Symp. Signal Processing and Information Processing,2005, pp. 352–357.
    [55] J. Garcia-Frias,“Joint source-channel decoding of correlated sources over noisy channels,”in IEEEData Compression Conference, 2001, pp. 283–292.
    [56] A. Liveris, Z. Xiong, and C. Georghiades,“Joint source-channel coding of binary sources withside information at the decoder using ira codes,”in Multimedia Signal Processing Workshop, St.Thomas, U.S. Virgin Islands, 2002.
    [57] A. D. Liveris, Z. Xiong, and C. Georghiades,“Compression of binary sources with side informationat the decoder using ldpc codes,”in IEEE Global Communications symp., Taipei, Taiwan, ROC,2002.
    [58] D. Schonberg, S. S. Pradhan, and K. Ramchandran,“Ldpc codes can approach the slepian-wolfbound for general binary sources,”in Allerton Conf. Communications, Control, and Computing,Champaign, IL, 2002.
    [59]——,“Distributed code constructions for the entire slepian-wolf rate region for arbitrarily corre-lated sources,”in Asilomar Conf. Signals and Systems, 2003, pp. 853–859.
    [60]——,“Distributed code constructions for the entire slepian-wolf rate region for arbitrarily corre-lated sources,”in IEEE Data Compression Conf., 2004, pp. 292–301.
    [61] R. Zamir and S. Shamai,“Nested linear/lattice codes for wyner-ziv encoding,”in Information The-ory Workshop, 1998, pp. 92–93.
    [62] R. Zamir, S. Shamai, and U. Erez,“Nested linear/lattice codes for structured multiterminal bining,”IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1250–1276, 2002.
    [63] S. D. Servetto,“Lattice quantization with side information,”in IEEE Data Compression Conf.,2000, pp. 510–519.
    [64] Z. Xiong, A. Liveris, S. Cheng, and Z. Liu,“Nested quantization and slepian-wolf coding: a wyner-ziv coding paradigm for i.i.d. sources,”in IEEE Workshop Statistical Signal Processing (SSP),, St.Louis, MO, 2003.
    [65] Z. Liu, S. Cheng, A. Liveris, and Z. Xiong,“Slepian-wolf coded nested quantizaiton (swc-nq) forwyner-ziv coding: performance analysis and code design,”in IEEE Data Compression Conf., 2004,pp. 322–331.
    [66] Y. Yang, S. Cheng, Z. Xiong, and W. Zhao,“Wyner-ziv coding based on tcq and ldpc codes,”inAsilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, 2003.
    [67] M. Fleming, Q. Zhao, and M. Effros,“Network vector quantization,”IEEE Trans. Inform. Theory,vol. 50, no. 8, pp. 1584–1604, 2004.
    [68] S. P. Lloyd,“Least squares quantization in pcm,”IEEE Trans. Inform. Theory, vol. IT-28, no. 2,pp. 129–137, 1982.
    [69] M. Fleming and M. Effros,“Network vector quantization,”in IEEE Data Compression Conf., 2001,pp. 13–22.
    [70] A. Aaron, S. Rane, E. Setton, and B. Girod,“Transform-domain wyner-ziv codec for video,”inSPIE Visual Communications and Image Processing, San Jose, CA, 2004.
    [71] K. X. Peiyu Tan and J. Li,“Slepian-wolf coding using parity approach and syndrome approach,”in CISS.
    [72] I. Csiszar,“Linear codes for sources and source networks: Error exponents,universal coding,”IEEETrans. Inform. Theory, vol. 28, pp. 585–592, 1982.
    [73] T. J. Richardson and R. L. Urbanke,“The capacity of low-density parity-check codes under mes-sage passing algorithm,”IEEE Trans. Inform. Theory, vol. 47, pp. 599–618, 2001.
    [74] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke,“Design of capacity-approaching irregularlow-density parity-check codes,”IEEE Trans. Inform. Theory, vol. 47, pp. 619–637, 2001.
    [75] H. Pishro-Nik, N. Rahnavard, and F. Fekri,“Nonuniform error correction using low-density parity-check codes,”IEEE Trans. Inform. Theory, vol. 51, no. 7, pp. 2702–2714, 2005.
    [76] R. Westerlaken, R. Gunnewiek, and R. Lagendijk,“The role of the virtual channel in distributedsource coding of video,”in IEEE Int. Conf. Image Process., 2005.
    [77] R. Westerlaken, S. Borchert, R. Gunnewiek, and R. Lagendijk,“Dependency channel modeling fora ldpc-based wyner-ziv video compression scheme,”in IEEE International Conference on ImageProcessing, 2006.
    [78] J. Ascenso, C. Brites, and F. Pereira,“Improving frame interpolation with spatial motion smoothingfor pixel domain distributed video coding,”in 5th EURASIP Conf. on Speech and Image Process-ing, Multimedia Communications and Services, 2005.
    [79] A. B. B. Adikari, W. A. C. Fernando, H. K. Arachchi, and W. A. R. J. Weerakkody,“Sequentialmotion estimation using luminance and chrominance information for distributed video coding ofwyner-ziv frames,”Electron Lett., vol. 42, no. 7, 2006.
    [80] X. Artigas and L. Torres,“Iterative generation of motion-compensated side information for dis-tributed video coding,”in IEEE International Conference on Image Processing, Genoa, Italy, 2005.
    [81] A. B. B. Adikari, W. A. C. Fernando, W. A. R. J. Weerakkody, and H. K. Arachchi,“A sequentialmotion compensation refinement technique for distributed video coding of wyner-ziv frames,”inProc. IEEE International Conference on image processing, Atlanta, USA, 2006.
    [82] I. H. Tseng and A. Ortega,“Motion estimation at the decoder using maximum likelihood techniquesfor distributed video coding,”in IEEE Int. Conf. Image Process., 2005.
    [83] P. Wang, J. Wang, S. Yu, and Y. Pang,“A novel local smoothness constrained side-informationframe generator,”IEICE trans. fundam. electron. commun. comput., 2007.
    [84] Z. Li, L. Liu, and E. J. Delp,“Wyner-ziv video coding with universal prediction,”IEEE Trans.Circuit Syst. for Video Tech., vol. 16, no. 11, pp. 1430–1436, 2006.
    [85] X. Artigas and L. Torres,“An approach to distributed video coding using 3d face models,”in IEEEInternational Conference on image processing, Atlanta, USA, 2006.
    [86] A. Aaron, S. Rane, and B. Girod,“Wyner-ziv video coding with hash-based motion compensationat the receiver,”in IEEE Int. Conf. Image Process., 2004.
    [87] R. Puri and K. Ramchandran,“Prism: A‘reversed’multimedia coding paradigm,”in IEEE In-ternational Conference on Image Processing, Barcelona, Spain, 2003.
    [88] M. Tagliasacchi and S. Tubaro,“Hash-based motion modeling in wyner-ziv video coding,”in IEEEInt. Conf. Image Process., 2007.
    [89] M. Tagliasacchi, L. Frigerio, and S. Tubaro,“Rate-distortion analysis of motion-compensated in-terpolation at the decoder in distributed video coding,”IEEE Signal Process. Letter, vol. 14, no. 9,pp. 625–628, 2007.
    [90] T. Berger, Rate Distrotion Theory. Upper Saddle River,NJ: Prentice Hall, 1971.
    [91] B. Girod,“The efficiency of motion-compensated prediction for hybrid coding of video sequences,”IEEE J. Sel. Areas Commun., vol. SAC-5, no. 7, pp. 1140–1154, 1987.
    [92] A. Aaron and B. Girod,“Wyner-ziv video coding with low-encoder complexity,”in Picture CodingSymposium, San Francisco, CA, 2004.
    [93] P. Ishwar, V.M.Prabhakaran, and K. Ramchandran,“Towards a theory for video coding using dis-tributed compression principles,”in IEEE Int. Conf. Image Process., Barcelona, Spain, 2003.
    [94] D. Kubasov and C. Guillemot,“Mesh-based motion-compensated interpolation for side informa-tion extraction in distributed video coding,”in IEEE Int. Conf. Image Process., 2006, pp. 261–264.
    [95] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger,“Universal discretedenoising: Known channel,”IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 5–28, 2005.
    [96] O. A. Ojo and G. d. Haan,“Robust motion-compensated video up-conversion,”IEEE Trans. onConsumer Electronics, Vol. 43, vol. 43, no. 4, pp. 1045–1056, 1997.
    [97] JM7.6,“http://iphome.hhi.de/suehring/tml/download/,”2002.
    [98] S. Srinivasan, P. J. Hsu, T. Holcomb, K. Mukerjee, S. L. Regunathan, B. Lin, J. Liang, M.-C. Lee,and J. Ribas-Corbera,“Windows media video 9: overview and applications,”Signal Processing:Image Communication, vol. 19, no. 9, pp. 851–875, 2004.
    [99] L. Yu, F. Yi, J. Dong, and C. Zhang,“Overview of avs-video: tools, performance and complexity,”in SPIE Visual Communications and Image Processing, Beijing, China, 2005, pp. 679–690.
    [100] R. Puri and K. Ramchandran,“Prism: A new robust video coding architecture based on distributedcompression principles,”in Allerton Conference on Communication, Control, and Computing,Allerton, IL, 2002.
    [101]——,“Prism: An uplink-friendly multimedia coding paradigm,”in International Conference onAcoustics, Speech, and Signal Processing, Hong Kong, 2003.
    [102] P. Wang, J. Wang, S. Yu, and X. Yang,“Distributed video coding based on regional-differencemodel,”in Picture Coding Symposium, Beijing,China, 2006.
    [103] Q. Xu and Z. Xiong,“Layered wyner-ziv video coding,”IEEE Trans. Image Processing, vol. 15,pp. 3791–3803, 2006.
    [104] A. Sehgal, A. Jagmohan, and N. Ahuja,“Scalable video coding using wyner-ziv codes,”in PictureCoding Symposium, San Francisco, Calif, USA, 2004.
    [105] H. Wang, N. Cheung, and A. Ortega,“A framework for adaptive scalable video coding using wyner-ziv techniques,”EURASIP J. Applied Signal Proc., pp. 1–18, 2006.
    [106] G. Ding, Q. Dai, Y. Yin, and F.Yang,“Scalable video coding based on wyner-ziv framework,”inVisual Comm. and Image Processing, Beijing,China, 2005.
    [107] G. D. Forney,“Coset codes-part 1: Introduction and geometrical classification,”IEEE Trans. In-form. Theory, vol. 34, no. 5, pp. 1123–1151, 1988.
    [108] A. Sehgal and N. Ahuja,“Robust predictive coding and the wyner-ziv problem,”in IEEE DataCompression Conf., Snowbird, UT, 2003, pp. 103–112.
    [109] A. Sehgal, A. Jagmohan, and N. Ahuja,“A causal state-free video encoding paradigm,”in IEEEInt. Conf. Image Processing, Barcelona, Spain, 2003.
    [110] S. Rane, A. Aaron, and B. Girod,“Error-resilient video transmission using multiple embeddedwyner-ziv descriptions,”in IEEE International Conference on Image Processing, Genoa, Italy,2005.
    [111] J. Sun and H. Li,“A wyner-ziv coding approach to transmission of interactive video over wirelesschannels,”in IEEE International Conference on Image Processing, Genoa, Italy, 2005.
    [112] Q. Xu, V. Stankovic, A. Liveris, and Z. Xiong,“Distributed joint source-channel coding of video,”in IEEE International Conference on Image Processing, Genoa, Italy, 2005.
    [113] S. Shamai, S. Verdu, and R. Zamir,“Systematic lossy source/channel coding,”IEEE Trans. Inform.Theory, vol. 44, no. 2, pp. 564–579, 1998.
    [114] A. S. Barbulescu and S. S. Pietrobon,“Rate compatible turbo codes,”Electron. Lett., vol. 31, pp.535–536, 1995.
    [115] K. R. Narayanan and G. L. Stuber,“A novel arq technique using the turbo coding principle,”IEEECommun. Lett., vol. 1, pp. 49–51, 1997.
    [116] J. Hamorsky, U. Wachsmann, J. B. Huber, and A. Cizmar,“Hybrid automatic repeat request schemewith turbo codes,”in 1997 Int. Symp. on Turbo Codes, Brest, France, 1997, pp. 247–250.
    [117] D. Divsalar and F. Pollara,“Turbo codes for pcs applications,”in ICC, Seattle, WA, 1995, pp.54–59.
    [118]余松煜,周源华,张瑞,数字图像处理.上海:上海交通大学出版社, 2007.
    [119] J. Canny,“A computational approach to edge detection,”IEEE Trans. Pattern Analysis and Ma-chine Intelligence, vol. 8, no. 6, pp. 679–698, 1986.