流体加热道路融雪传热传质特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体加热道路融雪是近年来发展起来的一项交通养护技术,对于交通安全、节约能源和环境保护具有重要意义。本文以基于太阳能、地热能等可再生热源的流体加热道路融雪系统为研究对象,主要针对融雪过程中的有关传热传质过程展开了一系列基础理论与实验研究,为进一步优化设计与规模化应用提供了指导依据。概括起来,本文的主要研究工作如下:
     1)路面温度场特性研究
     建立了路面温度场的二维非稳态导热模型,并对“路面-雪层-环境”的复杂传热传质边界进行了处理。通过Brian ADI格式算法,对上述模型进行数值求解,并基于Visual Basic平台,开发了一个通用型的道路融雪模拟分析软件,可输出路面温度场、雪层厚度、液膜厚度以及路面待融特征曲线等重要结果。
     在太阳能辐射模型研究方面,对吴赣昌模型进行了修正,并基于Mallat算法和Daubechies系列小波,建立了连续太阳能辐射的小波变换模型。模拟结果表明,该模型在时域和频域都具有良好的分析能力,而且可以推广至其它有关的太阳能光热应用领域。
     2)道路融雪过程数值模拟
     在上述温度场分析软件基础上,分别对待融过程、融雪过程和融后过程进行了模拟研究。在待融过程中,定义了零度界线、零度时间等概念,提出了路面温度场波动模型,其中考虑了管内流体温度的衰减效应。给出了具有普遍意义的路面待融特征曲线,将待融负荷、待融时间、融雪等级与降雪速率紧密联系起来。在此基础上,提出了一种基于图解法的改进融雪热负荷模型。
     在融雪过程中,对雪层区域类型及其特性进行了分析,并建立了“路面-雪层-环境”的传热传质模型,其中考虑了雪层多孔结构引起的毛细作用。对各种气象条件下的动、静态融雪过程进行了数值模拟。结果表明,与加热温度相比,融雪管道布置对于融雪过程的影响更为明显。此外,合理的待融过程能够有效地缩短融雪时间。在融后过程中,建立了路面液膜蒸发过程的传热传质模型,并对各种气象条件下的液膜蒸发过程进行了数值模拟。结果表明,气象参数对融后工况的影响程度有所不同,基本顺序为:太阳辐射强度>环境温度>环境风速>相对湿度。在此基础上,提出了一种有利于系统节能的折中加热方案。
     3)道路融雪实验研究
     建立了一个小型道路融雪实验系统,采用基于径向热流的直接加热法获得了水泥混凝土路面的导热系数,并初步分析了含水率对路面传热过程的影响。
     通过冰雪物理特性、融化面积比、融化速率和融化时间等分析,获得了不同气象条件下路面的融雪化冰规律,并与理论模拟结果进行了对比。在融化面积比分析中,采用了基于数码成像和Photoshop软件的图像处理方法。实验表明,在0℃附近,碎冰密度为605~690kg/m3,人工雪密度为225 kg/m3,自然雪密度为125 kg/m3,而且冰雪的密度与环境温度有直接关系。
     融化面积比曲线可分为初始期、缓速期和加速期等三个阶段,且冰和雪的临界融化面积比有所不同。冰层融化过程中容易存在“翘层”现象,一定程度上会延缓融化时间,而融雪过程通常不会形成“翘层”现象。就融化速率而言,大小顺序为:碎冰>实冰>人工雪>自然雪。对于相同厚度的冰/雪层,融化时间顺序为:自然雪>人工雪>碎冰>实冰。
     4)雪的物理特性模型
     建立了一个计算雪层毛细平衡高度的简化数学模型,使用范围为100~400 kg/m3。基于分形理论,构建了一个描述新雪生长过程的随机模型。通过分形维数分析,初步揭示了运动随机性与多孔结构之间的联系。建立了新雪孔隙率、密度以及导热系数等参数的数学模型,给出了一个新的导热系数随密度变化的关联式,且在100~150kg/m3范围内具有较好的模拟精度。
Hydronic snow melting is a new type of road maintenance technology developed in recent years. It plays an important role in traffic safety, energy saving and environmental protection. Aiming at hydronic road snow-melting systems based on renewable energy including solar and geothermal energy, the behavior of heat and mass transfer during the snow-melting process is studied theoretically and experimentally in the present work, which can be taken as references for system design and large-scale applications in future. Main conclusions are summarized as follows:
     1) Characteristics of the pavement temperature field
     A two-dimensional transient heat conductive model is presented and boundary conditions among the pavement, snow layers and the ambient are considered. Using Brian ADI algorithm, the model is solved numerically and a snow-melting simulation program is developed based on the compiler of Visual Basic. This program can output some important results including the pavement temperature field, the height of snow layers, the height of liquid film and the idling characteristic curve.
     For the solar radiation model, the error of Wu-model during the expansion of Fourier series is modified. Based on Mallat algorithm and Daubechies-type wavelets, a new wavelet transform model is presented for continuous solar radiation. Simulated results show that the model has a better analysis capacity on both time domain and frequency domain, and can also be used in other solar photo-thermal applications.
     2) Numerical simulation of road snow-melting process
     The whole snow-melting process, including the idling process, the snow-melting process and the after-snow process, is simulated. For the idling process, some terms including the zero boundary and the zero time are defined, and a wave-shaped model of the pavement temperature field is presented, which takes the decaying effect of the fluid temperature into account. A general idling characteristic curve and an improved idling model, linking the idling load, the idling time, the snowfall velocity and snow-melting classes, are presented.
     For the snow-melting process, the types and characteristics of snow layers are analyzed, and the heat and mass transfer model among the pavement, snow layers and the ambient is established based on the capillary effect of porous media. Dynamic and static simulated results under different conditions show that, compared with the heating temperature, the layout of embedded pipes has more obvious effects on the snow-melting process. Besides, a proper idling period can effectively reduce the snow-melting time. For the after-snow process, a heat and mass transfer model for the evaporation of the liquid film on pavements is established. Simulated results show that the order of weather parameters affecting the evaporation is as follows: solar radiation > ambient temperature > wind speed > relative humidity. An improved heating mode is also presented, which is useful for energy saving.
     3) Experimental investigation of a snow-melting system
     A small-scale snow-melting experimental system is built successfully. Heat conductivity of concrete cement pavement is measured using the direct-heating method, and the effects of moisture content on the heat transfer are analyzed.
     Through the test on physical properties of snow and ice, the free-area ratio, the snow-melting velocity and the snow-melting time, the melting behavior of snow and ice under different weather conditions are obtained and compared with simulated results. For the free-area ratio curve, an image processing method based on the Photoshop software is used. Experimental results show that the density of crushed ice, artificial snow and natural snow at 0oC is about 605~690kg/m3, 225kg/m3, 125kg/m3, respectively.
     The free-area ratio curve can be divided into three stages: initial stage, slow stage and rapid stage. For ice and snow layer, the critical free-area ratio is different. During the ice-melting process, the air-layer phenomenon between the road surface and the bottom of ice layer may occur, which may prolong the melting time to some extent. In contrast, the above phenomenon usually doesn’t happen during the snow-melting process. With regard to the average melting velocity (g/min), the order is as follows: crushed ice > solid ice > artificial snow > natural snow. For the same thickness, however, the order of the melting time is as follows: natural snow > artificial snow > crushed ice > solid ice.
     4)Model of physical properties of snow
     A simplified model for the capillary height in snow is built and suitable within the range of 100~400kg/m3. A fractal model is presented to describe the random growth process of fresh snow. The intrinsic relationship between the movement randomness and porous structure is revealed. Besides, a new algorithm on the heat conductivity varying with the density is obtained, which has a good accuracy within the range of 100~150kg/m3.
引文
[1]国家发改委.中国交通年鉴2006[M].北京:中国交通运输协会,2006.
    [2]王杨,阎小勇,张天伟.我国近期道路交通事故发展趋势分析与预测[J].交通标准化,2006.1: 85-87.
    [3]杨忠敏.我国已进入道路交通事故的高发期[J].交通运输,2004.4: 49-52.
    [4]徐丽丽,张兴强.道路交通事故中道路条件因素影响分析[J].道路交通与安全,2005.1: 35-38.
    [5]交通部. 2005全国道路交通事故概况[J].道路交通管理, 2006.1: 4-5.
    [6]靳长征,白晨.浅谈道路结冰的清除[J].河南交通科技,1996.5: 45- 46.
    [7] Je?isejevs B.. Alternative methods of de-icing on highways[J]. Motorways, 2001.3: 31-34.
    [8] Salt Institute. The snowfighter’s handbook: a practical guide for snow and ice control[M]. Alexandria, VA , 1999.
    [9]黄淑琴.路面加盐除冰[J].公路,1996.8: 44-46.
    [10] Edwards, J.B. Weather-related road accidents in England and Wales: a Spatial Analysis[J], Transport Geography, 1996.4 (3) : 201-212.
    [11]王振.国内除雪除冰机械现状刍议[J].工程机械,2002.7: 46-47.
    [12]田晋跃.国外道路除雪机械技术发展概况[J].专用汽车,2001.4: 43-44.
    [13]姬光才.日本除雪机械的发展现状[J].建筑路机械与施工机械化,1996.13(1): 41-42.
    [14]赵莹莹,黄明月,肖光.融雪剂对环境的影响[J].吉林化工学院学报,2005.22(4): 25-28.
    [15]程钢.融雪剂概况及存在的问题[J].山西交通科技,2004.167(5): 45-46.
    [16]傅沛兴.北京道路冬季融雪问题研究[J].市政技术,2001(4): 54-59.
    [17]洪乃丰.浅议国外使用化冰盐的教训与经验[J] .城市减灾,2005.4: 19-21.
    [18]傅沛兴.北京地区融雪剂问题与防钢筋锈蚀措施[J].建筑技术开发,2003.30(2) :25-28.
    [19] Hutchinson, F. E. Environmental pollution from highway de-icing compounds [J]. Journal of Soil and Water Conservation, 1970. 25: 144–146.
    [20] Fischel M.. Evaluation of selected deicers based on a review of the literature[R]. The Sea Crest Group. Louisville, CO. Report Number CDOT-DTD-R-2001-15, 2001.
    [21] Mussato B.T. Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts [R]. Prepared for the NCHRP Project 6-16, 2003.
    [22] L.David. Minsk Snow and Ice Control Manual for Transportation Facilities[M]. Mcgraw-Hill,1998.
    [23] Wisconsin Transportation Center. Using salt and sand for winter road maintenance[R]. Wisconsin Transportation Bulletins No. 6, 1996.
    [24]黑龙江省技术监督局,黑龙江建设厅.城市道路清雪规范[S]. 2006.
    [25] Vitaliano D. Economic Assessment of the Social Costs of Highway Salting and the Efficiency of Substituting a New Deicing Material[J]. Journal of Policy Analysis and Management, 1992.11(3): 397-418.
    [26] Institute for Safety Analysis. Benefits and costs in the use of salt to deice highways[M]. U.S. Department of Transportation, Washington, D.C., 1976.
    [27] Transportation Research Board. Highway de-icing: comparing salt and calcium magnesium acetate[R]. National Research Council, Special Report 235, 1991.
    [28] Menzies T.R.. National cost of motor vehicle corrosion from deicing salts[C]. National Association of Corrosion Engineers Annual Meeting. 1991.
    [29] Thornes J.E. The cost-benefit of winter road maintenance in the UK [C], Proceedings of the 8th International Road Weather Conference, University of Birmingham, UK, 1996:1-10.
    [30] Yehia S., Y. Tuan. Bridge Deck Deicing[R], Crossroads 2000– 1998 Transportation Conference Proceedings, Iowa State University, 1998.
    [31]王超,郭荣泰,杨全兵.水泥混凝土路面现场撒盐试验研究[J].低温建筑技术, 1999 (3) : 14- 16.
    [32]洪乃丰.融雪剂及其对基础设施的腐蚀危害.建筑技术[J],2004.35(4): 256-259.
    [33]从日辰.融雪剂对城市园林植物伤害机理研究[J].中国园林,2005.12:60-63.
    [34] NL Lacasse, AE Rich. Maple decline in New Hampshire[M], Phytopath, 1964.
    [35] Gidley J. L.. The impact of deicing salts on roadside vegetation ontwo sites in California. Proceedings of Environmental Impact of Highway Deicing[C]. University of California at Davis, Davis, 1990: 20-48.
    [36] R Hall, GP Lumis, G Hofstra. Sensitivity of roadside trees and shrubs to aerial drift of deicing salt[M], HortScience, 1973
    [37] Nevada Department of Transportation. Roadside erosion control and revegetation needs associated with the use of deicing salt within the LakeTahoe Basin[C]. Carson City, Nev. Ontario Ministry of Highways. 1990.
    [38] Godwin, Hafner, Buff. Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application [J]. Environmental Pollution, 2003.124:273-281.
    [39] Lillie R. A., J. W. Mason.. Limnological characteristics of wisconsin lakes[C]. Technical Bulletin 138. Wisconsin Department of Natural Resources, Madison. 1983.
    [40] Schraufnagel F. H.. Pollution aspects associated with chemical deicing in Highway Research Record 193, HRB[R], National Research Council, Washington, D.C. 1973.
    [41] X.M.Shi. The use of road salts for highway winter maintenance: an asset management persperctive[C]. ITE District 6 Annual Meeting, Kalispell, MT, 2005.
    [42] ASHRAE. ASHRAE handbook-fundamentals[M]. Atlanta: Society of Heating, Refrigeration and Air-Conditioning Engineering, 1989.
    [43]武海琴.发热电缆用于路面融雪化冰的技术研究[D].北京工业大学,2005.
    [44]陈光.扫雪除冰车红外线加热系统设计及其数值模拟[D].大连理工大学,2003.
    [45]李丹,董发勤.钢纤维石墨导电混凝土在路面除冰雪中的应用研究[J].建筑门窗与金属建材.2004(11):61-64
    [46]唐祖全,李卓球.导电混凝土融雪化冰机理分析[J].混凝土.2001(7):8-11.
    [47]侯作富,李卓球.导电混凝土除冰化雪系统输入功率的有限元计算[J].华中科技大学学报(城市科学版).2002,19(1):82-85.
    [48]唐祖全,李卓球.导电混凝土电热除冰化雪的功率分析[J].重庆建筑大学学报.2002,24(3):102-105.
    [49] Richard E., White P.E. Hydronic snow/ice melting system[C]. ETI Interface, Newsletter, 1997.
    [50]王华军,赵军,宋著坤等.跨季节蓄热太阳能集中供热技术[J].太阳能,2005.4:27-31.
    [51] Shigeyuki Nagasaka, Kiyoshi Ochifuji, etal. Study on snow melting system utilizingnatural energy sources - part 3 experiment on collecting solar heat by using snow melting panels in summer [A]. Proceedings of Annual Conference of The Society of Heating [C],Japan,1996.
    [52] Chapman, W.P.. Design of snow melting systems[J]. Heating and Ventilating, 1952.49(4): 96-102.
    [53] ASHRAE Handbook-Fundamentals[M]. Atlanta, GA: American Society of Heating Refrigerating and Air-conditioning Engineers Inc,1993.
    [54] Schnurr N.M., D.B. Rogers. Transient Analysis of Snow Melting Systems[J]. ASHRAE Transactions, 1970. 77, Part 2: 159-166.
    [55] Kilkis I. B. Design of embedded snow-melting systems. Part 1, Heat requirements - an overall assessment and recommendations[J]. ASHRAE Transactions, 1994a.100, Part 1: 423-433.
    [56] Kilkis I. B. Design of embedded snow-melting systems. Part 2, Heat transfer in the slab - a simplified model[J]. ASHRAE Transactions, 1994b. 100, Part 1: 434-441.
    [57] Ramsey, J.W., M.J. Hewett, T.H. Kuen, et al. Development of snow melting load design algorithms and data for locations around the world (ASHRAE 926-RP), Final Report[R]. Atlanta: American Society of Heating Refrigerating and Air conditioning Engineers Inc,1999.
    [58] Leal M.V., P.L. Miller. An analysis of the transient temperature distribution in pavement heating installations[J]. ASHRAE Transactions, 1972.78, Part 2: 61-66.
    [59] Schnurr N.M., M.W. Falk. Heat transfer design data for optimization of snow melting systems[J]. ASHRAE Transactions, 1973. 76, Part 2: 257-263.
    [60] Chiasson, A. Advances in modeling of ground-source heat pump systems[D]. Oklahoma State University. Stillwater, OK, 2000.
    [61] Rees S.J., J.D. Spitler, X. Xiao. Transient analysis of snow-melting system performance[J]. ASHRAE Transactions, 2002. 108(2):406-423.
    [62] Spitler J. D., Hogue T. D. Prevention of bridge deck icing using geothermal heat[R]. Oklahoma State University, 1995.
    [63] Wadivkar Ojas. An experimental and numerical study of the thermal performance of a bridge deck de-icing system[D], Oklahoma State University, 1997.
    [64] S L Hockersmith. Experimental and computational investigation of snow melting on heated horizontal surfaces[D], Oklahoma State University, 1999.
    [65] J W Lund, T L Boyd. Geothermal direct-use in the united states update:1995-1999[C]. Proceedings of World Geothermal Congress, Kyushu-Tohoku, Japan, 2000.
    [66] J W Lund. Reconstruction of a pavement geothermal deicing system [J]. Geo-Heat Center Quarterly Bulletin, 1999. 20(1): 14-17.
    [67] Oregon Department of Transportation. Grading,structure and paving“a”canal bridges (klamathfalls) section, Wall Street and Eberlein Avenue,Klamath County[R]. Contract No.12745., 2003.
    [68] Federal Highway Administration. Heated bridge technology[R]. DOT, 1999.
    [69] Kinya Iwamoto, Shigeyuki Nagasaka. Prospects of snow melting systems using underground thermal energy storage in JAPAN[C]. Proceedings of Annual Conference of The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, 2000.
    [70] Morita K.,M. Tago. Development of the downhole coaxial heat exchanger system: potential for fully utilizing geothermal resources [J]. GRC Bulletin, 1995.24(3): 83-92.
    [71] Katarzyna Zwarycz. Snow melting and heating systems based on geothermal heat pumps at Goleniow airport, Porland[R]. Geothermal Training Programme, 2002.
    [72] Arni Ragnarsson. Geothermal development in Iceland 1995-1999[C]. Proceedings of World Geothermal Congress. Japan, 2000.
    [73] McAdams W.H. Heat Transmission 3rd Ed[M]. McGraw Hill, 1954.
    [74] N.S.Sturrock. Localised boundary layer heat transfer from external building surfaces[D], University of Liverpool, 1971.
    [75] CIBS. CIBS Guide Book A. Section A3[M]. London. 1973.
    [76] K.Nicol. The energy balance of an exterior windows surface[J]. Building and Environment. 1977.12:215-219.
    [77] Kimura K. Scientific basis of air conditioning[M]. London: Applied Science Publishers Ltd, 1977.
    [78] Clarke J A. Energy simulation in building design[D]. University of Strathclyde. Glasgow, Scotland: Adam Hilger Ltd, 1985.
    [79] S.Sharples. Full-scale measurements of convective energy losses from exterior building surfaces[J]. Building Environment, 1984.19:31-38.
    [80] Yazdania M,J Klems. Measurement of the exterior convective film coefficient for windows in low-rise buildings[J]. ASHRAE Transactions,1994.100(1):1087-1096.
    [81] J Klems. Measurement of fenestration net energy performance: condiseration leading to the development of Mobile Window Thermal Test(MOWITT) facility[C]. Proceedings of ASME Winter Meeting, New Orleans, Lawrence Berkeley Laboratory Report, 1984.
    [82] Loveday D.L., Taki A.H.. Convective heat transfer coefficients at a plane surface on a full-scale building facade[J]. Int. J. Heat Mass. Transfer, 1996.39:1729-1742.
    [83] Clear R.D., Gartland L., Winkelmann F.C.. An empirical correlation for the outside convective air-film coefficient for horizontal roofs[J], Energy and Buildings, 2003.35:797-811.
    [84] Sartori. Convection coefficient equations for forced air flow over flat surfaces[J]. Solar Energy, 2006. 80:1063-1071.
    [85] P I Copper. E.A.Christie, R.V.Dunkle. A model of measuring sky temperature[J]. Solar Energy, 1981.26(1):153-159.
    [86] P.Berdahl, M Martin. Emissivity of clear skies[J]. Solar Energy, 1984.32(5):663-664.
    [87] Bliss R.W. Atmospheric radiation near the surface the ground[J]. Solar Energy, 1961.5(3):103-120.
    [88] Swinbank W.C. Long-wave radiation from clear skies[J]. Quarterly Journal of Royal Meterological, 1963.89:339-348.
    [89] Ramsey J.,H. Chiang.A study of the incoming long-wave atmospheric radiation from a clear sky[J]. Journal of Applied Meteorology, 1982.21:566-578.
    [90] V.Melchior. New formulate for the equivalent night sky emissivity[J].Solar energy, 1982.28.489-503.
    [91]刘森元,黄远峰.天空有效温度的探讨[J].太阳能学报,1983.4(1):63-68.
    [92] Daguenet M. Les Schoirs solaries[M]. Theorie et Pratique, Unesco, 1985.
    [93] L.Adelard, H. Boyer. Sky temperature modelisation and applications in building simulation[J]. Renewable Energy,1998.15:418-430.
    [94] Roulet and Vandaele.Airflow pattern within buildings measurement techniques[R].The Air Infiltration and Ventilation Center Technical Note,1991.34.
    [95] Aubinet. Long wave sky radiation parameterization[J]. Solar energy, 1994.53(2): 147-154.
    [96] Liu Y H, Jordan R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960.3:471-492.
    [97]清华大学建筑技术科学系.中国建筑热环境分析专用气象数据库[M].北京:中国建筑工业出版社,2005.
    [98]王兴安,胡立刚.上海地区晴夜天空温度的测量[J].太阳能学报.1988.9(4):391-395.
    [99]陈则韶,葛新石.量热技术和热物性测定[M].合肥:中国科技大学出版社,1990.
    [100]国家技术监督局,建设部.民用建筑热工设计规范(GB50176)[R].北京:中国建筑工业出版社,1999.
    [101]赵军,王华军.密集型桩埋换热器管群周围土壤换热特性的数值模拟[J].暖通空调,2006.36(2):11-14.
    [102]林成森.数值计算方法[M].北京:科学出版社, 1998.
    [103] Clark, J.H. Evlauation of thermal stresses in a concrete box girder bridge[C]. Proc.Instn Civ.Engrs,Part 2. 1989.87(9):415-428.
    [104]国家技术监督局,建筑防腐蚀工程施工及验收规范(GB 50212)[R].北京:中国建筑工业出版社,1999.
    [105] Akita H, Fujiwara T, Ozaka Y. A practical procedure for the analysis of moisture transfer within concrete due to drying[J]. Magazine of Concrete Research, 1997.49(179) :129-137.
    [106] Andrade C, SarriaJ , Alonso C. Relative humidity in the interior of concrete exposed to natural and artificial weathering[J]. CCR, 1999.29:1249-1259.
    [107]王新友,蒋正武,高相东等,混凝土中水分迁移机理与模型研究评述[J].建筑材料学报,2002.5(1):66-72.
    [108]邓学均,陈荣生.刚性路面设计[M],北京:人民交通出版社,1992.
    [109]何仲明.普通混凝土传热性质的研究[D],台湾:中原大学,2003.
    [110] H. W. Brewer. Moisture migration—concrete slab-on-ground construc-tion[C], Bulletin D89, Portland CementAssociation, Skokie, Ill., 1965.
    [111] Zdenek P, Bazant. Finite element program for moisture and heat transfer in heat concrete[J]. Nuclear Engineering and Design, 1981.68:61-70.
    [112] Sriravindrarajah, R.N. Swamy. Development of a conductivity probe to monitor setting time and moisture movement in concrete[J]. ASTM, Cem., Concr. Aggregates ,1982.42:73–80.
    [113] C. Hall and M.H.R. Yau , Water movement in porous building materials– IX: the water absorption and sorptivity of concretes[J]. Build. Environ. 22 (1987), pp. 77–82.
    [114] B Suprenant. Moisture Movement through concrete slabs[J]. Concrete Construction, 1997.11:1-6.
    [115] P. Kumar Mehta. Advancements in Concrete Technology[J]. Concrete International, 1999.21(6):125-133.
    [116] Martín-Pérez, B., Pantazopoulou, SJ, Thomas MDA, Numerical solution of mass transport equations in concrete structures[J], Computers & Structures, 2001.79(13):1251- 1264.
    [117] Janoo V, Korhonen C, Hovan M. Measurement of water content in Portland cement concrete[J]. Journal of Transportation Engineering, 1999.125(3):245-249.
    [118] Wong SF, Wee T H, Lee S L. Study of water movement in concrete [J]. Magazine of Concrete Research, 2001.53(3):205- 220.
    [119] T. M. Chrisp, W. J. McCarter, G. Starrs.Depth-related variation in conductivity to study cover-zone concrete during wetting and drying[J]. Cement and Concrete Composites, 2002.24(5): 415-426.
    [120]蒋正武,王培铭.等温干燥条件下混凝土内部相对湿度的分布[J].武汉理工大学学报,2003.25(7):18-24.
    [121] Chapman W P, S. Katunich. Heat requirements of snow melting systems[J]. ASHAE Transactions,1956.62:359-372.
    [122] Adlam, T N. snow melting[M]. New York: The Industrial Press,1950.
    [123] Williams,G P. Design heat requirements for embedded snow melting systems in cold climates[R]. National Res. Rrecord No.576. Washington DC: Transportation Resear Board, 1976.
    [124] Bowen, I S. The ratio of heat losses by conduction and by evaporation from any water surface[J]. Physical Review, 1926.27:779-787.
    [125] Ramsey, Martha and Thomas. Updated design guideline for snow melting systems[J]. ASHRAE Transactions,1999: 1055-1065.
    [126] Incropera, F P and Dewitt, D P. Introduction to heat transfer, Third Edition[M], John Wiley and Sons, New York, 1996.
    [127]陈惠泉,毛世民.水面蒸发与散热系数研究——全国通用公式(B)[R].北京:水面蒸发与散热系数研究协作组,1991.
    [128]陈惠泉,毛世民.水面蒸发系数全国通用公式的验证[J].水科学进展,1995 ,6(2) :116 - 120.
    [129] Adams E E , Cosler D J , Helfrich K R. Evaporation from heated water bodies : predicting combined forced plus free convection [J]. Water Resources Research. 1990, 26(3) :425 - 435.
    [130]交通部.公路水泥混凝土路面设计规范(JTJ012-94)[S],北京:人民交通出版社,1997.
    [131]交通部.公路沥青路面设计规范(JTJ014-97)[S],北京:人民交通出版社,1997.
    [132]刘伯莹.姚祖康.公路设计工程师手册[M],北京:人民交通出版社,2002.
    [133]林瑞泰.热传导理论与方法[M],北京:科学出版社,1994.
    [134]杨世铭.传热学(第3版) [M],北京:高等教育出版社,1998.
    [135]凯尔别克.太阳能辐射对桥梁结构的影响[M],北京:中国铁道出版社,1981.
    [136]严作人.层状路面体系温度场分析[J],同济大学学报,1984.3:76-85.
    [137]吴赣昌.半刚性路面温度应力分析[M],北京:科学出版社,1995.
    [138]韩子东.道路结构温度场研究[D],西安:长安大学,2001.
    [139] Liu, B. Y. H., Jordan, R.C.. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960.4:1-19.
    [140] J.K.Page.The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surfaces from 40oN~40oS[J].Proceedings of U.N. Conference on New Sources of Energy,1961.4:378-390.
    [122] Adlam, T N. snow melting[M]. New York: The Industrial Press,1950.
    [123] Williams,G P. Design heat requirements for embedded snow melting systems in cold climates[R]. National Res. Rrecord No.576. Washington DC: Transportation Resear Board, 1976.
    [124] Bowen, I S. The ratio of heat losses by conduction and by evaporation from any water surface[J]. Physical Review, 1926.27:779-787.
    [125] Ramsey, Martha and Thomas. Updated design guideline for snow melting systems[J]. ASHRAE Transactions,1999: 1055-1065.
    [126] Incropera, F P and Dewitt, D P. Introduction to heat transfer, Third Edition[M], John Wiley and Sons, New York, 1996.
    [127]陈惠泉,毛世民.水面蒸发与散热系数研究——全国通用公式(B)[R].北京:水面蒸发与散热系数研究协作组,1991.
    [128]陈惠泉,毛世民.水面蒸发系数全国通用公式的验证[J].水科学进展,1995 ,6(2) :116 - 120.
    [129] Adams E E , Cosler D J , Helfrich K R. Evaporation from heated water bodies : predicting combined forced plus free convection [J]. Water Resources Research. 1990, 26(3) :425 - 435.
    [130]交通部.公路水泥混凝土路面设计规范(JTJ012-94)[S],北京:人民交通出版社,1997.
    [131]交通部.公路沥青路面设计规范(JTJ014-97)[S],北京:人民交通出版社,1997.
    [132]刘伯莹.姚祖康.公路设计工程师手册[M],北京:人民交通出版社,2002.
    [133]林瑞泰.热传导理论与方法[M],北京:科学出版社,1994.
    [134]杨世铭.传热学(第3版) [M],北京:高等教育出版社,1998.
    [135]凯尔别克.太阳能辐射对桥梁结构的影响[M],北京:中国铁道出版社,1981.
    [136]严作人.层状路面体系温度场分析[J],同济大学学报,1984.3:76-85.
    [137]吴赣昌.半刚性路面温度应力分析[M],北京:科学出版社,1995.
    [138]韩子东.道路结构温度场研究[D],西安:长安大学,2001.
    [139] Liu, B. Y. H., Jordan, R.C.. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960.4:1-19.
    [140] J.K.Page.The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surfaces from 40oN~40oS[J].Proceedings of U.N. Conference on New Sources of Energy,1961.4:378-390.
    [159] Fluent Inc., Fluent User’s Guide[M], Fluent Inc., 2003.
    [160] Fluent Inc., Fluent User’s Defined Function Manual[M], Fluent Inc., 2003.
    [161] Zhao Jun, Wang Huajun, Chen Zhihao, et al. Seasonal behavior of pavement in geothermal snow-melting system with solar energy storage [J], Transactions of Tianjin University, 2006.12(5):319-324.
    [162] Dempsey, B.J, H. Hill. Characterizing temperature effects for pavement analysis and design[J]. Transportation Research Record, 1987.549:39-46.
    [163] Hermansson, Ake. Simulation model for calculating pavement temperature including maximum temperature[J]. Transportation Research Record, 2000.1699:134-141.
    [164]王华军,赵军,陈志豪等.太阳能-地热道路融雪系统路面传热特性的数值研究[J],太阳能学报,2007.
    [165] Colbeck S. Theory of metamorphism of wet snow[R]. U.S. Army Cold Regions Research & Engineering Laboratory Report. 1973.
    [166] Colbeck S.. An overview of seasonal snow metamorphism[J]. Reviews of Geophysics and Space Physics, 1982.20(1):45-61.
    [167] Colbeck S.. Theory of metamorphism of dry snow[J]. Journal of Geophysical Research, 1983.88:5475-5482.
    [168] Colbeck S.. Classification of seasonal snow cover crystals[J]. Water Resources Research, 1986.22(9):59-70.
    [169] Colbeck S.. Akitaya, E., Armstrong, R., etal. International classification for seasonal snow on the ground[S]. Int. Comm. Snow and Ice (IAHS), World Data Center A for Glaciology, U. of Colorado, Boulder, CO.1990.
    [170] Abels H. Observations on the daily course of snow temperatures and the determination of the thermalconductivity of snow as a function of its density[J]. Report. Meteorol., 1982.16:1-53. [171 Yen, Y. Review of intrinsic thermophysical properties of snow, ice and sea ice[J]. Northern Engineer, 1991.23(1):187-218.
    [172] Matthew Sturm. Snow and climate[C]. Annual meeting of OLCG. Fairbanks, Nov. 2003.
    [173] Thomas D., G. S. Dieckmann. Sea ice - an introduction to itsphysics, biology, chemistry and geology[M], Blackwell Science, London, 2003.
    [174] Boone AA. Modelisation des processus hydrologiques dans le schema de surface ISBA: Inclusion d’un reservoir hydrologique, du gel et modelisation de laneige[D]. Ph.D. thesis, 2000.
    [175] Molders N, Walsh J E. Atmospheric response to soil-frost and snow in Alaska in March[J]. Theor. Appl. Climatol., 2004.77: 77-105.
    [176] Fukusako S, Inaba H. Heat transfer phenomena in low temperature environment and their applications[R]. Yijendo Ltd,. Tokyo, 1996.
    [177] Kuroiwa Daisuke. The kinetic friction on snow and ice[J]. Journal of Glaciology, 1978.81(19):141-152.
    [178] Fuzhong Weng. Radiative transfer modeling supports advanced satellite data assimilation[C]. NOAA/NESDIS/Office of Research and Applications, 2004.
    [179] Jennifer E. Kaya, Alan R. Gillespiea, Gary B. Hansenb. Spatial relationships between snow contaminant content, grain size, and surface temperature from multispectral images of Mt. Rainier, Washington (USA)[J]. Remote Sensingof Environment.2003.86: 216–231
    [180] Warren S G. Optical properties of snow[J]. Reviews of Geophysics and Space Physics,1982. 20(2):67-89.
    [181] Marshall, S, Warren, S G. Parameterization of snow albedo for climate models[R]. Snow Watch ' 85. Glaciological Data Report GD-18, 1986: 215-223.
    [182] Andrew G. Klein; Julienne Stroeve. Development and validation of a snow albedo algorithm for the MODIS instrument[J]. Annals of Glaciology, 2002. 34(1): 45-52.
    [183] A. Roesch, H. Gilgen, M. Wild, A. Ohmura. Assessment of GCM simulated snow albedo using direct observations[J]. Journal Climate Dynamics, 1999.15(6):405-418.
    [184] Curry J. A., J. L. Schramm, D. Perovich, et al. Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations[J]. J. Geophys. Res., 2001.15:345-355.
    [185] Tarboton D. G., C. H. Luce.. Utah energy balance snow accumulation and melt model (UEB)[R]. Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station, 1996.
    [186] Morten Koltzow, Jan Erik Haugen. Validation of HIRHAM and HIRHAMs sensitivity to different snow albedo schemes for a Scandinavian area[R], Norwegian Meteorological Institute, 2003.
    [187] Robert M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976.261:459-467.
    [188] Paul Meakin. Fractal, scaling and growth far from equilibrium[M], UK: Cambridge University Press, 2000.
    [189]曾文曲,王向阳.分形理论与分形的计算机模拟[M],沈阳:东北大学出版社,2001.
    [190]裴鹿成.计算机随机模拟[M],长沙:湖南科学技术出版社,1989.
    [191] Kozak, John J. Random walks on the Menger sponge[J]. Chemical Physics Letters, 1997.275(34):199-202.
    [192] Plaug Helle. Microsensor studies ofo mass transfer to sinking aggregates[C]. Int.Workshop on Marine Aggregates, 2006:8-9.
    [193] Jordan R.E., J.P. Hardy, F.E. Perron, D.J. Fisk.. Air permeability and capillary rise as measures of the pore structure in snow: an experimental and theoretical study[J]. Hydrological Processes, 1999.17: 1733-1753.
    [194] Hockersmith. Experimental and computational investigation of snow melting on heated horizontal surfaces[D]. Oklahoma State University,1999.
    [195] X.B.Liu. Development and experimental validation of simulation of hydronic snow melting systems for bridges[D]. Okalahoma: Okalahama State University, 2005.
    [196] Japanese Society of Mechanical Engineers. Measurement of Humidity and Water Content as well as Monitor of Environment[M]. Gihodo Press Ltd., Tokyo, 1992.
    [197] Bach P. Billadsen J. Simulation of the vertical flow of a thin wavy film using a finite-element method[J], J. Heat and Mass Transfer, 1984.27:815-827.
    [198] Yih S.M., Liu J.L. Prediction of heat transfer in turbulent falling lifuid films with or without interfacial shear[J]. AIChE J. 1983.29:903-909.
    [200] Adlam, T.N. Snow Melting[M]. New York: The Industrtial Press, 1950.
    [199] Song B. Inaba H. Heat and mass transfer of a water film falling down a tilted plate with radiant heating and evaporation[J]. J. Heat and Mass Transfer, 1999.34:387-393.
    [201] Lunardini V. J. Heat transfer in cold climates[M]. Van Nostrand Reinhold Company, New York, 1981.
    [202]于石真. Photoshop数码照片处理从入门到精通[M].北京:中国青年出版社,2005.
    [203]张子建. Photoshop数码照片终极金典[M].北京:电子工业出版社,2006.