曲梁和板壳结构多体系统刚—柔耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航空航天领域,随着多体系统柔性附件尺寸的弹性变形的增大,转速的加快,运行精度要求的提高,系统的动力学性态越来越复杂,系统的刚—柔耦合效应也越来越显著,需要引起工程界的重视。如卫星天线、太阳帆板、风力发电机的桨叶等,在太阳辐射、风力和构件本身的惯性力等外界环境因素的综合作用下,这些复杂构型柔性构件的弹性变形对大范围运动的影响更为显著。曲梁和板壳结构作为这些复杂结构多体系统中的常用部件,建立其多体系统的动力学模型对于准确预测现代工程中多体系统的力学行为有重要的工程价值。
     为了解决曲梁和板壳结构多体系统的计算精度和计算效率问题,本文提出了一种基于弧坐标的刚—柔耦合动力学建模方法,采用三类坐标系:惯性坐标系、浮动坐标系和曲线坐标系对柔性体上任意点的位形进行描述,用弧坐标取代笛卡尔坐标,描述了曲梁上任意点的弹性变形,建立了曲梁上任意点的运动学关系。在此基础上考虑几何非线性,从曲梁的格林应变关系式出发推导了变曲率曲梁的应变和位移关系式,用曲梁单元取代直梁单元,建立了适用于变曲率曲梁的有限元离散的刚-柔耦合动力学模型。首次开展了柔性曲梁的刚—柔耦合动力学实验,将曲梁重力摆的刚—柔耦合动力学仿真结果与实验结果进行对比验证了本文几何非线性建模理论的正确性,并通过仿真算例研究了几何非线性项对刚—柔耦合动力学特性的影响。将本文曲梁单元的仿真计算结果与直梁逼近单元的仿真计算结果进行比较,验证了本文曲梁单元模型的快速收敛性和有效性。
     在曲梁多体系统动力学建模理论研究的基础上进一步研究柱状壳结构多体系统的几何非线性动力学建模方法。引入曲线坐标系描述柱状壳结构的弹性变形,采用二维的壳单元进行离散,创新性地推导了适用于任意形状柱状壳的具有程式化特征的广义弹性力阵,缩减了计算规模,避免了大型非线性刚度阵的计算,有利于广义弹性力阵关于广义坐标的导数阵的高效计算。通过对重力作用下气浮台-柱状壳和气浮台-矩形板的刚—柔耦合动力学实验验证了几何非线性建模理论的正确性,指出了传统的基于线弹性理论的建模方法处理大变形刚—柔耦合动力学问题的不足,并对壳单元应变计算的收敛性进行分析。
     进一步考虑了材料的各向异性,建立给定热载荷作用下复合材料壳结构多体系统的几何非线性动力学模型。研究了热变形和几何非线性效应对板壳结构多体系统刚—柔耦合动力学特性的影响。为了能更有效地将本文的热载荷作用下刚—柔耦合动力学建模理论研究与工程实际结合,考虑刚体姿态运动、弹性变形和温度变化的相互耦合,首次建立了热流密度与刚体姿态坐标和弹性坐标的精确关系式,提出了刚-柔-热三者耦合的动力学建模方法。通过仿真算例对刚—柔-热耦合的动力学机理进行分析,成功地解释了刚—柔-热耦合引起的热振动现象。
     为了解决长期存在的几何非线性刚—柔耦合多体系统动力学方程数值计算效率低的问题,基于本文弹性力阵的程式化的推导方式,提出了增量法,创新性地推导非线性广义弹性力阵关于多体系统广义坐标导数阵,实现了柔性多体系统刚—柔耦合动力学方程的高效、精确的数值仿真。
     最后对全文研究工作进行总结,指出了本文的主要创新点。
In the research field of aerocraft and spacecraft, with the increase of the elasticdeformation, the rotating speed and the operational accuracy of the flexible appendage,the system dynamic behavior becomes more and more complicated, and the rigid-flexiblecoupling effect becomes more and more significant, which should be paid attention in theengineering application. Influenced by the combined action of environmental factorssuch as solar radiation, wind force and body inertial force, the large overall motion ofsatellite antenna, the solar panel and wind turbine blade are more easily affected by theelastic deformation of flexible appendage. It has important value to establish themultibody system dynamic equations for curved beam and plate shell structures whichare basic components of those complicated mechanical systems in order to accuratelypredict the dynamic behavior of the system.
     In order to improve the computational accuracy and efficiency for dynamics ofcurved beam and shell flexible multi-body system, the dynamic modeling method ofrigid-flexible coupling system based on arc coordinates is proposed, in which threereference frames (global frame, floating frame, and curvilinear frame) are used todescribe the configure of arbitrary point in the flexible body. Arc coordinate areintroduced instead of previous Cartesian coordinates for describing the elasticdeformation, and the kinematics relationship of an arbitrary point of the curved beam isestablished. Based on Green strain of spatially varying curvature beam, the nonlinearstrain-displacement relationship for plane beam with varying curvature is derived. Finite element method is used for discretization. Instead of using the previous straight beamelements, curved beam elements are proposed to approximate the curved beam withvarying curvature. Rigid-flexible coupling dynamic equations are obtained, which aresuitable for the curved beam undergoing large overall motion. For validation the presentmodeling theory, the experimental tests for curved beam pendulum are carried out for thefirst time. By comparing the experiments results and those of present linear and nonlinearmodel, the correctness and accuracy of present nonlinear model are verified. Comparisonof the simulation results obtained by linear and nonlinear models show the geometricnonlinear effect. Furthermore, comparison of the simulation results obtained by thecurved beam elements and straight beam elements verifies the quick convergence andhigh efficiency of the curved beam element.
     Based on the research of the curved beam, the rigid-flexible coupling dynamicequations of the cylindrical shell are established. Arc coordinates are employed todescribe the deformations, and2-D shell element is adopted for finite elementdiscretization, and then a new method for evaluating the generalized elastic forces, whichis more formalized and more easily used than the previous method, therefore, the largecalculation quantity of nonlinear stiffness matrix is avoided, and the simulation cost isreduced obviously. Great advantages can be also achieved from the present evaluation ofthe elastic forces when calculating the jacobian of the elastic forces. By the experimentof the single axis air-bearing test bed and plate structure rigid-flexible system, thecorrectness and accuracy of present nonlinear model are verified and the shortcoming oftraditional linear model is pointed out for dealing with large deformation rigid-flexibleproblem.
     Considering the anisotropic material and thermal effect, rigid-flexible couplingdynamic equation is build for composite shell considering thermal shock. The thermaldeformation and geometrical nonlinear effect on the rigid-flexible coupling dynamics are studied. In order to further apply the present rigid-flexible coupling dynamics modelingtheory in the engineering field, the relationship among the heat flux density and theattitude motion coordinates as well as the elastic coordinates is firstly established.Considering the coupling among the attitude motion, structural deformations andtemperature change, rigid-flexible-thermal coupling dynamic modeling method isproposed. The rigid-flexible-thermal coupling dynamic performance is analyzed bymumerical simulation, which can be used for explanation of the thermally inducedfluttering phenomena.
     Based on the formulation of evaluating the generalized elastic forces, a newincremental method is proposed, and jacobian of the elastic forces are derivedinnovatively. Efficient and accurate simulations of rigid-flexible coupling dynamicsystem are achieved by the present incremental method.
     Finally, the research work is summarized and the contributions of the presentinvestigation are concluded.
引文
[1]洪嘉振.计算多体系统动力学.北京:高等教育出版社,2003.
    [2] Likins P W, Finite element appendage equations for hybrid coordinate dynamic analysis. Journalof Solids and Structures,1972,8,790-831.
    [3] Wu S C, Haug E. Geometric Non-linear sub structuring for dynamics of flexible mechanicalsystems. International Journal for Numerical Methods in Engineering,1988,26:2211-2226.
    [4] Wallrapp O, Schwertassek R. Representation of geometric stiffening in multibody systemsimulation. International Journal for Numerical Methods in Engineering,1991,32:1833-1850.
    [5]蒋丽忠,洪嘉振.作大范围运动弹性薄板中的几何非线性与耦合变形.力学学报,1999,31(2):243-249.
    [6]刘锦阳.刚-柔耦合动力学系统的建模理论研究[D].上海:上海交通大学,2000.
    [7]杨辉,洪嘉振,余征跃.两种刚柔耦合动力学模型的对比研究.上海交通大学学报,2002,36(1):1591-1595.
    [8] Shabana A A. An absolute nodal coordinates formulation for the large rotation and deformationanalysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois atChicago,1996.
    [9] Shabana A A. Computational continuum mechanics. New York: Cambridge University Press,2008.
    [10] Bonet J, Wood R D. Nonlinear continuum mechanics for finite element analysis. Cambridge:Cambridge University Press,1997.
    [11] Shabana A A. Definition of the slopes and absolute nodal coordinate formulation. MultibodySystem Dynamics,1997,1:339-348.
    [12] Wittenburg J. Dynamics of systems of rigid bodies. Stuttgart: Teubner,1977.
    [13] Kane T R, Levinson D A. Dynamics theory and applications. New York: McGraw-Hill,1985.
    [14] Haug E J. Computer-aided kinematics and dynamics of mechanical systems. Boston: Allyn andBacon,1989.
    [15] García D, Jalón J, Bayo E. Kinematic and dynamic simulation of multibody systems thereal-time challenge. New York: Springer,1994.
    [16] Shabana A A. Computational dynamics. New York: Wiley,1994.
    [17] Roberson R E, Schwertassek R. Dynamics of multibody system. Berlin: Springer,1988.
    [18] Nikravesh P E. Computer-aided analysis of mechanical systems. New Jersey: Englewood Cliffs,1988.
    [19] Schiehlen W. Technishce Dynamik. Stuttgrt: Teubner,1986.
    [20] Shabana A A. Flexible multi-body dynamics review of past and recent developments. MultibodySystem Dynamics,1997,1:189-222.
    [21] Berzeri M, Shabana A A. Development of simple models for the elastic forces in absolute nodalco-ordinate formulation. Journal of Sound and Vibration,2000,235(4):539-565.
    [22] Omar M A, Shabana A A. A Two-dimensional shear deformation beam for large rotation anddeformation problems. Journal of Sound and vibration,2001,243(3):565-576.
    [23] Dombrowski S V, Analysis of large flexible body deformation in multibody systems usingabsolute coordinates. Multibody System Dynamics,2002,8:409-432.
    [24] Dmitrochenko O N, Yu D. Generalization of plate finite elements for absolute nodal coordinateformulation, Multibody System Dynamics,2003,10:17-43.
    [25]邹凡,刘锦阳,大变形薄板多体系统的动力学建模.应用力学学报,2010,27(4):740-745.
    [26] Eberhard P, Schiehlen W. Computational dynamics of multibody systems history, formalisms,and applications. Journal of Computational and Nonlinear Dynamics,2006,1:3-12.
    [27] Saffari H, Tabatabaei R., Mansouri S H. Vibration analysis of circular arch element usingcurvature. Shock and Vibration,2008,15:481–492.
    [28] z H R, Das M T. In-plane vibarations of circular curved beams with a transverse open crack.Mathematical and Computational Applications,2006,11(1):1-10.
    [29] Zhang C, Di S. New accurate two-noded shear-flexible curved beam elements. ComputationalMechanics,2003,30:81-87.
    [30] Raveendranath P, Singh G, Pradhan B. A two-noded locking free shear flexible curved beamelement. Internationaal Journal For Numerical Methods In Engineering,1999,44:265-280.
    [31] Raveendranath P, Singh G, Rao G V. A three-noded shear-flexible curved beam element based oncoupled displacement field interpolations. International Journal for Numerical Methods inEngineering,2001,51:85-101.
    [32] Kim J G, Lee J K. Free-vibration analysis of arches based on the hybrid-mixed formulation withconsistent quadratic stress functions. Computers and Structures,2008,86:1672-1681.
    [33] Kim J G, Park Y K. Hybrid-mixed curved beam elements with increased degrees of freedom forstatic and vibration analyses. International Journal for Numerical Methods in Engineering,2006,68(6):690-706.
    [34] Ribeiroa P, Manoach E. The effect of temperature on the large amplitude vibrations of curvedbeams. Journal of Sound and Vibration,2005,285:1093-1107.
    [35] Park J H, Kim J H. Dynamic analysis of rotating curved beam with tip mass. Journal of Soundand Vibration,1999,228(5):1017-1034.
    [36] Djoudi M S, Bahai H. A shallow shell finite element for the linear and non-linear analysis ofcylindrical shells. Engineering Structures,2003,25:769-778.
    [37] Oguamanam D C D, Hansen J S, Heppler G R. Nonlinear transient response of thermally loadedlaminated panels. Journal of Applied Mechanics,2004,71:49-56.
    [38]印朝富.平面曲梁单元有限元分析模型.河海大学学学报.1997,25(1):37-42.
    [39] Krishnan A, Suresh Y J. A simple cubic linear element for static and free vibration analyses ofcurved beams. Computers and structures,1998,68:473-489.
    [40] Bathe J, Bolourchi S. Large displacement analysis of three-dimensional beam structures.International Journal for Numerical Methods in Engineering,1979,14:961-986.
    [41] Kouhia R. On kinematical relations of spatial framed structure. Computer and structures,1991,40(5):1185-1191.
    [42] Pai P F, Nayfeh A H. A fully nonlinear theory of curved and twisted composite rotor bladesaccounting for warping and three-dimensional stress. International Journal of Solids andStructures,1994,31(9):1309-1340.
    [43] Rosen A, Rand O. Numerical model of the nonlinear behavior of curved rods. Computer&Structures,1986,22(5):785-799.
    [44]周文伟,曾庆元,贺国京.空间曲梁单元应变-位移关系.长沙铁道学院院报,1997,15(4):1-7.
    [45]周文伟,曾元庆.空间曲梁几何非线性有限元法分析.长沙铁道学院学报,1998,16(3):1-5.
    [46]陈大鹏,周文伟.空间弹性曲杆在三维变形中的曲率-位移关系.西南交通大学学报,1997,32(2):123-129.
    [47]赵跃宇,冯锐,劳文全等.空间曲梁非线性动力学方程.动力学与控制学报,2005,3(4):34-38.
    [48] Bauchau O A, Hong C H. Large displacement analysis of naturally curved and twisted compositebeams. AIAA Journal,1987,25(11):1469-1475.
    [49] Tang S G, Yu A. Generalized variational principle on nonlinear theory of naturally curved andtwisted beams. Applied Mathematics and Computation,2004,153:275-288.
    [50]陈至达.杆、板、壳大变形理论.北京:科学出版社,1994.
    [51]曲婷.用于主缆计算的曲梁单元基本力学研究:[硕士论文].哈尔滨:哈尔滨工业大学,2009.
    [52]刘延柱.弹性细杆的非线性力学.北京:清华大学出版社,2006.
    [53] Bauchau O A, Hong C H. Nonlinear composite theory. Journal of Applied Mechanics,1988,55:156-163.
    [54] Yu A M, Yang C J, Nie G H. Analytical formulation and evaluation for free vibration of naturallycurved and twisted beams. Journal of Sound and Vibration,2010,329(9):1376-1389.
    [55] Ganapathi M, Patel B P, Saravanan J, etal. Shear flexible curved spline beam element for staticanalysis. Finite Elements in Analysis and Design,1999,32:181-202.
    [56] Ganapathi M, Patel B P, Saravanan J, etal. Application of spline element for large amplitude freevibrations of laminated orthotropic straight/curved beams. Composites Part B: Engineering,1998,29(1):1-8.
    [57] Krishnan A, Dharmaraj S, Suresh Y J. Free vibration studies of arches. Journal of Sound andVibration,1995,186(5):856-863.
    [58] To W S. A linearly tapered beam finite element incorporating shear deformation and rotaryinertia for vibration analysis. Journal of Sound and Vibration,1981,78(4):475-484.
    [59] Raveendranath P, Singh G, Pradhan B. Free vibration of arches using a curved beam elementbased on a coupled polynomial displacement field. Computers and Structures,2000,78:583-590.
    [60] Wu J. S, Chiang L K. Free vibration analysis of arches using curved beam elements.International Journal for Numerical Methods in Engineering,2003,58:1907-1936.
    [61] Friedman Z, Kosmatka J B. An accurate two-node finite element for shear deformable curvedbeams. International Journal for Numerical Methods in Engineering,1998,41:473-498.
    [62] Litewka P, Rakowski J. Free vibrations of shear-flexible and compressible arches by FEM.International Journal for Numerical Methods in Engineering,2001,52:273-286.
    [63] Wu J S, Chiang L K. Free vibration of a circularly curved Timoshenko beam normal to its initialplane using finite curved beam elements. Computers and Structures,2004,82:2525-2540.
    [64] Leung A Y T, Zhu B. Fourier p-elements for curved beam vibrations. Thin-Walled Structures,2004,42:39-57.
    [65] Martini L, Vitaliani R. On the polynomial convergent formulation of a C0isoparameteric skewbeam element. Computers and Structures,1988,29:437-49.
    [66] Zienkiewicz O C, Taylor R L. The finite element method. New York: McGraw-Hill,1989.
    [67] Leung A Y T, Chan J K W. Fourier p-element for the analysis of beams and plates. Journal ofSound and Vibration,1998,212:179-85.
    [68]王勖成.有限单元法.北京:清华大学出版社,2003.
    [69] Houmat A. An alternative hierarchical finite element formulation applied to plate vibrations.Journal of Sound and Vibration,1997,206:201-15.
    [70]高轩能,万志英,邹银生等.杆系结构稳定分析的泡函数有限元法.南昌大学学报.1998,20(2):1-5.
    [71] Ribeiro P, Petyt M. Non-linear vibration of beams with internal resonance by the hierarchicalfinite element method. Journal of Sound and Vibration,1999,224:591-624.
    [72] Yang F, Sedaghati R, Esmailzadeh E. Free in-plane vibration of general curved beams usingfinite element method. Journal of Sound and Vibration,2008,318:850-867.
    [73] Yang S Y, Sin H C. Curved-based beam elements for the analysis of Timoshenko andshear-deformation curved beams. Journal of Sound and Vibration,1995,187(4):569-584.
    [74] Saffari H, Fadaee M J, Tabatabaei R. Developing a formulation based upon curvature foranalysis of nonprismatic curved beams. Mathematical Problems in Engineering,2007, Article ID46215:19.
    [75] Saffari H, Tabatabaei R. A finite circular arch element based on trigonometric shape functions.Mathematical Problems in Engineering,2007, Article ID78507:19.
    [76] Sugiyama H. Koyama H, Yamashita H. Gradient deficient curved beam element using theabsolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics.2010,5(2):021001-1-021001-8.
    [77] Sugiyama H, Mikkola A M, Shabana A A. A non-incremental nonlinear finite element solutionfor cable problems. Transactions of the ASME,2003,(125):746-756.
    [78] Dombrowski S V. Analysis of large flexible body deformation in multibody systems usingabsolute coordinates. Multibody System Dynamics,2002,8(4):409–432.
    [79]朱大鹏.多体动力学框架下的大变形曲梁单元及其应用[D].北京:清华大学,2008.
    [80]刘锦阳,李彬,陆皓.计及热应变的空间曲梁的刚-柔耦合动力学.固体力学学报,2007(1):30-36.
    [81] Ray M. C, Oh J, Baz A. Active constrained layer damping of thin cylindrical shells. Journal ofSound and Vibration.2001,240,9,21-35.
    [82] Ray M C, Reddy J N. Optimal control of thin circular cylindrical laminated composite shellsusing active constrained layer damping treatment. Smart Mater Structure,2004,13:64-72.
    [83] Evseev E G, Morozov E V. Aeroelastic interaction of the shock waves with the thin-walledcomposite shells. Composite Shells,2001,54:153-159.
    [84] Li J, Hua H. Transient vibrations of laminated composite cylindrical shells exposed tounderwater shock waves. Engineering Structures,2009,31:738-748.
    [85] Qatu M S. Accurate theory for laminated composite deep thick shells. International Journal ofSolids and Structures,1999,36:2917-2941.
    [86] Toorani M H, Lakis A A. Shear deformation in dynamic analysis of anisotropic laminated opencylindrical shells filled with or subjected to a flowing fluid. Computer Methods in AppliedMechanics Engineering,2001,190:4929-4966.
    [87] Dong K, Wang X. The effect of transverse shear and rotary inertia on wave propagation inlaminated piezoelectric cylindrical shells in thermal environment. Journal of Reinforced PlasticComposites,2007,26:1523-1538.
    [88] Wang X, Lu G, Guillow S R. Stress wave propagation in orthotropic laminated thick-walledspherical shells. International Journal of Solids and Structures,2002,39:4027-4037.
    [89] Wu C P, Lo J Y. An asymptotic theory for dynamic response of laminated piezoelectric shells.Acta Mechanica Sinica,2006,183:177-208.
    [90] Varelis D, Saravanos D A. Coupled mechanics and finite element for nonlinear laminatedpiezoelectric shallow shells undergoing large displacements and rotations. International Journalfor Numerical Methods in Engineering,2006,66:1211-1233.
    [91] Dong K, Wang X. Wave propagation in piezoelectric laminated cylindrical shells under largedeformations and rotary inertias. Journal of Mechanical Engineering Science,2006,220:1537-1548.
    [92] Shin W H, Lee S J, Oh I K, Lee I. Thermal post-buckled behaviors of cylindrical compositeshells with viscoelastic damping treatments. Journal of Sound and Vibration,2009,323:93-111.
    [93] Amabili M. Nonlinear vibrations of circular cylindrical Shells with Different BoundaryConditions. AIAA JOURNAL,2003,41(6):1119-1130.
    [94] Amabili M. A comparison of shell theories for large-amplitude vibrations of circular cylindricalshells: Lagrangian approach. Journal of Sound and Vibration,2003,264:1091-1125.
    [95] Yoo H H, Lee S H, Shin S H. Flapwise bending vibration analysis of rotating multi-layeredcomposite beams. Journal of Sound and Vibration,2005,286:745–761.
    [96]刘锦阳,潘科琪.考虑热效应的复合材料多体系统动力学研究.动力学与控制学报,2009,7(1):9-13.
    [97] Pan K. Q, Liu J Y. Dynamic investigation on composite flexible multi-body system consideringthermal effect. Journal of Shanghai Jiaotong University,2010,15(4):414-422.
    [98]潘科琪,刘锦阳.计及剪切变形的复合材料梁的刚-柔耦合动力学.上海交通大学学报,2009,43(8):1293-1297.
    [99] Neto M A, Ambrosio J A C, Leal R P. Composite materials in flexible multibody systems.Computer Methods in Applied Mechanics and Engineering,2006,195:6860-6873.
    [100]杨辉.刚-柔耦合动力学系统的建模理论与实验研究[D].上海:上海交通大学,2002.
    [101] Yoo W S, Lee J H, Park S J, etal. Large oscillations of a thin cantilever beam: physicalexperiments and simulation using the absolute nodal coordinate formulation. NonlinearDynamics,2003(34):3–29.
    [102] Yoo W S, Park S J, Park J Y, etal. Physical experiments and computer simulations of a steppedcantilever beam with a hybrid coordinate formulation. Mechanics Based Design of Structuresand Machines,2004,32(4):515-532.
    [103] Yoo W S, Lee J H, Park S J, etal. Large deflection analysis of a thin plate: computer simulationsand experiments. Multibody System Dynamics,2004,11:185–208.
    [104] Yoo W S, Park S J, Dmitrochenko O N, etal. Verification of absolute nodal coordinateformulation in flexible multibody dynamics via physical experiments of large deformationproblems. Journal of Computational and Nonlinear Dynamics,2006,1:81-93.
    [105] Yoo W S, Kim M S, Mun S H, etal. Large displacement of beam with base motion: flexiblemultibody simulations and experiments. Computer Methods in Applied Mechanics andEngineering,2006,195:7036-7051.
    [106]凌复华,殷学刚,何冶奇.常微分方程数值方法及其在力学中的应用,重庆大学出版社,1990.
    [107] Newmark N. M. A method of computation for structural dynamics. Journal of the EngineeringMechanics Division ASCE.1959,85(3):67-94.
    [108] Wilson E L. A computer program for the dynamics stress analysis of underground structures,SESM Report No.68-1. Division of structural Engineering and Structural Mchanics. Universityof California, Berkeley, CA.
    [109] Hilber H M, Hughes T J R, Taylor R L. Improved numerical dissipation for time integrationalgorithms in structural dynamics. Earthquake Engineering and structural Dynamics.1977,5,283-292.
    [110] Chung J, Hulbert G M. A time integration algorithm for structural dynamics with improvednumerical dissipation: The Generalized-Method. Journal of Applied Mechanics,1993,60,371-375.
    [111]王文亮,结构动力学.复旦大学出版社,1993年.
    [112] Hussein B, Negrut D, Shabana A A. Implicit and explicit integration in the solution of theabsolute nodal coordinate differential/algebraic equations. Nonlinear Dynamics,54,283-296.
    [113] Arnold M, Brüls O. Convergence of the generalized-α scheme for constrained mechanicalsystems. Multibody System Dynamics.2007,18:185–202.
    [114] Manabendra D, Atila B, Erdogan M. Analysis of multibody systems experiencing large elasticdeformations. Multibody system dynamics,2010,23:1-31.
    [115] Broyden C. G. A class of methods for solving nonlinear simultaneous equations. Mathematicsof Computation,1965,19(92):577-593.
    [116]安恒斌,白中治.关于多元非线性方程的Broyden方法.计算数学,2004,26(4):385-400.
    [117] Ben-Israel A. A Newton-raphson method for the solution of system of equations. Journal ofmathmatical analysis and applications,1966,15(2):243-252.
    [118]杨世铭.传热学基础.北京:高等教育出版社,1991.
    [119] Thornton E A, Kim Y A. Thermally induced bending vibrations of a flexible rolled-up solararray. Journal of Spacecraft and Rockets,1993,30(4):438-448.
    [120] Johnston J D. Thermally-induced structural motions of satellite solar arrays. Virginia: UMIcompany,1999.
    [121]姚海民,薛明德,丁勇.大型空间结构热诱发振动的有限元分析.清华大学学报,2002,42(11):1524-1527.
    [122]刘锦阳,崔麟.热载荷作用下大变形柔性梁刚柔耦合动力学分析.振动工程学报,2009,22(1):48-53.
    [123]李智勇.考虑热效应的刚-柔耦合动力学分析[D],上海交通大学,2006.
    [124]薛明德,李伟,向志海.中心舱体-附件耦合系统热颤振有限元分析,清华大学学报,2008,48(2):270-275.
    [125] Molins C, Rocai P, Barbat A H. Flexibility-based linear dynamic analysis of complex structureswith curved-3D members. Earthquake Engineering&Structural Dynamics,1998,27(7):731-747.
    [126] Shabana A A, Mikkola A M. Use of the finite element absolute nodal coordinate formulation inmodeling slope discontinuity. Journal of Mechanical Design,2003,125:342-350.
    [127] Mikkola A M, Shabana A A. A Non-incremental finite element procedure for the analysis oflarge deformation of plates and shells in mechanical system applications. Multibody SystemDynamics,2003,9:283-309.
    [128] Sugiyama H, Shabana A A. Application of plasticity theory and absolute nodal coordinateformulation to flexible multibody system dynamics. Journal of Mechanical Design,2004,126:478-487.
    [129]刘铸永.刚-柔耦合动力学建模理论与仿真技术研究[D].上海:上海交通大学,2008.
    [130] Lee S S, Koo J S, Choi J M. Development of a new curved beam element with shear effect.Engineering Computations,1996,13:9-25.
    [131] Chen S H, Cheung Y K, Xing H X. Nonlinear vibration of plane structures by finite elementand incremental harmonic balance method. Nonlinear Dynamics,2001,26:87-104.
    [132] Luczko J. Bifurcations and internal resonances in space-curved rods. Computer Methods inApplied Mechanics and Engineering,2002,191:3271-3296.
    [133] Bauchau O A. Parallel computation approaches for flexible multibody dynamics simulations.Journal of the Franklin Institute,2010,347:347,53-68.
    [134] Bauchau O A, Choi J Y, Bottassoi C L. On the modeling of shells in multibody dynamics.Multibody System Dynamics,2002,8:459-489.
    [135] Betsch P, S nger N. On the use of geometrically exact shells in a conserving framework forflexible multibody dynamics. Computer Methods in Applied Mechanics and Engineering,2009,198:1609–1630.
    [136] Krejaa I, Schmidt R. Large rotations in first-order shear deformation FE analysis of laminatedshells. International Journal of Non-linear Mechanics,2006,1:101-123.
    [137] Abea A, Kobayashib Y, Yamada G. Nonlinear dynamic behaviors of clamped laminated shallowshells with one-to-one internal resonance. Journal of Sound and Vibration,2007,304:957-968.
    [138] Zhou C T, Wang L D. Nonlinear theory of dynamic stability for laminated compositecylindrical shells. Applied Mathematics and Mechanics,2001,22:53-62.
    [139] Yoo H H. Modal analysis of rotating composite cantilever plates, Journal of Sound andVibration,2002,256(2):233-246.
    [140] Ding K W. The thermoelastic dynamic response of thick closed laminated shell. Shock andVibration,2005,12:283-291.
    [141]沈观林.复合材料力学.北京:清华大学出版社,2006.
    [142]钱伟长.变分法及有限元(上册).北京:科学出版社,1980.
    [143]冯刚,安翔,张铎.空间站大面积太阳翼热分析,强度与环境,2001(1):54-61
    [144] Berzeri M, Shabana A A. Development of simple models for the elastic forces in the absolutenodal coordinate formulation. Journal of Sound and vibration,2000,235(4):539-565.
    [145] Chu S C, Pan K C. Dynamic response of a high speed slider crank mechanism with an elasticconnecting rod. Journal of Engineering for Industry.1975,97(2):542-550.