多相流系统的格子玻尔兹曼方法与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相流系统是典型的非线性、非平衡、多尺度、复杂系统。基于非平衡统计物理的格子玻尔兹曼(lattice Boltzmann, LB)方法对该类系统的建模与模拟具有天然的自适应性。本论文从物理建模、数值算法和数据后处理三个方面发展LB方法并将其用于多相流系统的研究。主要研究内容为:(1)基于傅里叶变换(FFT)和逆变换构造了含温度场的可压FFT-TLB多相流模型。该模型能够有效抑制界面处的虚假速度,更好地保持系统总能量的数值守恒;(2)将FFT-TLB模型用于等温和非等温气液对称相分离的研究。为了实现复杂物理场信息的有效提取,将形态分析技术用于相变所形成的斑图的数据处理中,澄清了非等温相变的温度场效应;(3)利用FFT-TLB模型和形态分析技术定量研究了相分离过程中的热传导、粘性和Prandtl数效应;(4)构造了一个适用于可压流体系统的D2V19-LB模型,该模型在连续极限下给出与Euler方程一致的结果,利用该模型研究了可压开尔文-赫姆霍兹不稳定性,着重研究了速度和密度梯度效应;(5)在D2V65-LB模型的基础上,通过修改LB方程中的BGK碰撞项构造了适用于任意比热比、任意Prandtl数可压流体系统的通量限制LB模型。上述工作推进了多相流和可压流体系统介观模拟方法的发展,获得一系列新的规律和认识,为相关的工程应用提供物理支持。
Multiphase flows are typical nonlinear, nonequilibrium, multiscale complex systems. The lattice Boltzmann method (LBM), based on nonequilibrium statistical physics, is particularly suitable for modeling and simulating such systems. This paper aims to develop LBM from the following three aspects:physical modeling, numerical scheme and data analysis method, and applies it to investigate behaviors of multiphase flows. The main contents are as below:(i) Based on the fast Fourier transform (FFT) and its inverse, we propose the FFT-TLB model for compressible thermal multiphase flows. With this new model, artificial velocities near interfaces decrease to negligible scale and the numerical total energy is better conserved;(ii) Investigate thermal and isothermal symmetric liquid-vapor separations via the FFT-TLB model. To effectively characterize and pick up information from such a complex system. Minkowski functionals are employed to characterize the density fields, as well as to understand the configurations and the kinetic processes;(iii) Via the FFT-TLB model, we study the effects of heat conduction, viscosity and Prandtl number on thermal liquid-vapor separation quantitatively:(iv) Propose a D2V19-LB model for compressible fluids. Via this model, we investigate the Kelvin-Helmholtz instability, specially examine the velocity and density gradient effects;(v) Based on the original D2V65-LB model, by modifying the BGK collision operator, we propose a flux-limiter-LB model for compressible flows with flexible specific-heat ratio and Prandtl number. The above-mentioned works help to extend the LBM to study multiphase and compressible flows, and provide physical supports for related engineering applications.
引文
1. 郭烈锦.两相与多相流动力学.西安:西安交通大学出版社,2002.
    2. 林宗虎,王树重,王栋.气液两相流和沸腾传热.西安:西安交通大学出版社,2003.
    3. 胡文端,徐硕昌.微重力流体力学.北京:科学出版社,1999.
    4. 国家自然科学基金委员会工程与材料科学部.工程热物理与能源利用学科发展战略研究报告(2006-2010).北京:科学出版社,2006.
    5. 中国工程热物理学会.2007-2008工程热物理学科发展报告.北京:中国科学技术出版社,2008.
    6. 国家自然科学基金委员会工程与材料科学部.工程热物理与能源利用学科发展战略报告(2011-2020).北京:科学出版社,2011.
    7. 车得福,李会雄.多相流及共应用.西安:西安交通大学出版社,2007.
    8. 周力行.第六届国际多相流会议(ICMF2007)简介.力学进展,2008,1:131-131.
    9. 许爱国,张广财,朱建士,等.材料动力学的介观模拟.北京应用物理与计算数学研究所讲义,2010.
    10. Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, London,2001.
    11. 郭照立,郑楚光.格子Boltzmann方法的原理与应用.北京:科学出版社,2009.
    12. 何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用.北京:科学出版社,2009.
    13. 许爱国,张广才,计延标,等.可压流体系统的格子玻尔兹曼理论与应用.中国交叉科学学会第14届学术年会会议论文,2012.
    14. Tien C L, Majumdar A, Carey V P, et al. Molecular and microscal transport phnomena: A report on the 2nd US Japan Joint Seminar, Santa Barbara, California,7-10 August,1996. Microscale Thermophysical Engineering,1997,1:71-84.
    15. Horbach J and Succi S. Lattice Boltzmann versus Molecular Dynamics Simulation of Nanoscale Hydrodynamic Flows. Phys. Rev. Lett.,2006,96(22):224503/1-4.
    16. Rothman D H and Keller J M. Immiscible cellular-automaton fluids. J. Slat. Phys.,1988.52(3-4): 1119-1127.
    17. Gunstensen A K, Rothman D H, Zaleski S, et al. Lattice Boltzmaim model of immiscible fluids. Phys. Rev. A.1991,43(8):4320-4327.
    18. ((?)nistsen A K and Rothman D H, Lattice-Boltzmann studies of immiscible two-phase flow through porous media. J. Geophys. Res.,1993,98(B4):6431-6441
    19. Gunstensen A K and Rothman D H. Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method. Europhys. Lett.,1992,18(2):157-161
    20. Shan X W and Chen H D. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E,1993,47(3):1815-1819.
    21. Shan X W and Chen H D. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E,1994,49(4):2941-2948.
    22. Shan X W and Doolen G. Multicomponent lattice-Boltzmann model with interparticle interac-tion. J. Stat. Phys,1995,81(1-2):379-393.
    23. Swift M R, Osborn W R, Yeomans J M. Lattice Boltzmann Simulation of Nonideal Fluids. Phys. Rev. Lett.,1995,75(5):830-833.
    24. Osborn W R, Orlandini E, Swift M R, et al. Lattice Boltzmann Study of Hydrodynamic Spinodal Decomposition. Phys. Rev. Lett.,1995,75(22):4031-4034.
    25. Gonnella G, Orlandini E, Yeomans J M. Spinodal Decomposition to a Lamellar Phase:Effects of Hydrodynamic Flow. Phys. Rev. Lett.,1997,78(9):1695-1698.
    26. Biferale L, Perlekar P, Sbragaglia M, and Toschi F. Convection in Multiphase Fluid Flows Using Lattice Boltzmann Methods. Phys. Rev. Lett.,2012,108(10):104502/1-4.
    27. Grunau D G, Lookman T, Chen S Y, et al. Domain growth, wetting, and scaling in porous media. Phys. Rev. Lett.,1993,71(25):4198-4201.
    28. Kang Q J, Zhang D X, Chen S Y, et al. Lattice Boltzmann Simulations of Chemical Dissolution in Porous Media. Phys. Rev. E,2002,65(3):036318/1-8.
    29. Kang Q J, Zhang D X, and Chen S Y. Unified lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E,2002,66(5):056307/1-11.
    30. Kang Q J, Lichtner P C, and Zhang D X. An Improved Lattice Boltzmann Model for Multi-Component Reactive Transport in Porous Media at the Pore Scale, Water Resour. Res.,2007, 43:W12S14/1-12.
    31. Kang Q J, Lichtner P C, and Zhang D X, Lattice-Boltzmann Pore-Scale Model for Multi-Component Reactive Transport in Porous Media, J. Geophy. Res.,2006,111:B05203/1-12.
    32. Guo Z L and Zhao T S. A lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E,2002,66(3):036304/1-9.
    33. Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equa-tion. Part 1. Theoretical foundation. J. Fluid Mech.,1994,271:285-309.
    34. Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equa-tion. Part 2. Numerical results. J. Fluid Mech.,1994,271:331-339.
    35. Heemels M W, Hagen M H, and Lowe C P. Simulating solid colloidal particles using the lattice Boltzmann method.J. Comput. Phys.,2000,164(1):48-61.
    36. Lorenz E. Hoekstra A G, and Caiazzo A. Lees Edwards boundary conditions for lattice Boltzmann suspension simulations. Phys. Rev. E,2009,79(3):036706/1-8.
    37. Yepez J. Quantun Lattice-gas model for the diffusion equation. Int. J. Mod. Phys. C,2001,12(9): 1285-1303.
    38. Berman G P, Ezhov A A, Kamenev D Ⅰ, et al. Simulation of the diffusion equation on a type-Ⅱ quantum computer. Phys. Rev. A,2002,66(1):012310/1-8.
    39. Furtado K and Yeomans J M. Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids. Phys. Rev. E,2006,73(6):066124/1-7.
    40. Chen S Y, Chen H D, Martinez D, et al. Lattice Boltzmann model for simulation of magnetohy-drodynamics. Phys. Rev. Lett.,1991,67(27):3776-3779.
    41. Succi S, Vergassola M, and Benzi R. Lattice Boltzmann scheme for two-dimensional magnetohy-drodynamics. Phys. Rev. A,1991,43(8):4521-4524.
    42. Martinez D O, Chen S Y, and Matthaeus W H. Lattice Boltzmann magnetohydrodynamics. Phys. Plasmas,1994,1(6):1850-1867.
    43. Schafffenberger W and Hanslmeier A. Two-dimensional lattice Boltzmann model for magnetohy-drodynamics. Phys. Rev. E,2002,66(4):046702/1-7.
    44. Breyiannis G and Valougeorgis D. Lattice kinetic simulations in three-dimensional magnetohy-drodynamics. Phys. Rev. E,2004,69(6):065702(R)/1-4.
    45. Vahala G, Keating B, Soe M, et al. Lattice kinetic simulations in three-dimensional magnetohy-drodynamics. Commun. Comput. Phys.,2008,4(3):624-646.
    46. He X Y, Chen S Y, and Zhang R Y. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability. J. Comput. Phys,1999, 152(2):642-663.
    47. He X Y, Zhang R Y, Chen S Y, et al. On three-dimensional Rayleigh-Taylor instability. Phys. Fluids,1999,11(5):1143-1152.
    48. Zhang R Y, He X Y, Doolen G, et al. Surface tension effects on two-dimensional two-phase Kelvin-Helmholtz instabilities. Adv. Water Resour.2001,24(3-4):461-478.
    49. Biferale L, Mantovani F, Sbragaglia M, et al. Reactive Rayleigh-Taylor systems: Front propaga-tion and non-stationarity. Europhys. Lett.,2011,94(5):54004/1-6.
    50. Biferale L, Mantovani F, Sbragaglia M, et al. Second-order closure in stratified turbulence:Sim-ulations and modeling of bulk and entrainment regions. Phys. Rev. E,2011,84(1):016305/1-7.
    51. Benzi R and Succi S. Two-dimensional turbulence with the lattice Boltzmann equation. J. Phys. A:Math. Gen.,1990,23:1-5.
    52. Filippovaa O. Succi S, Mazzoccoc F, el al. Multiscale Lattice Boltzmann Schemes with Turbu-lenceModeling.J. Comput. Phys,2001,170(2):812-829.
    53. Vahala G, Keating B, Soe M, et al. Entropic, LES and boundary conditions in lattice Boltzmann simulations of turbulence. Eur. Phys. J. Spec. Top,2009.171(1):167-171.
    54. Fang H P, Lin Z F. and Wang Z W . Lattice Boltzmann simulation of viscous fluid systems with elastic boundaries. Phys. Rev. E,1998,57(1):R25-R28.
    55. Fang H P, Wang Z W, Lin Z F, et al. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. Phys. Rev. E,2002,65(5):051925/1-11.
    56. Li H B, Fang H P, Lin Z F, Lin Z F, et al. Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery. Phys. Rev. E,2004,69(3):031919/1-9.
    57. Guo Z L, Zhao T S, and Shi Y. Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows.J. Appl. Phys,2006,99(3):074903/1-10.
    58. Tang G H, Gu X J, Barber R W, et al. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Phys. Rev. E,2008,78(2):026706/1-8.
    59. Tang G H, Zhang Y H, Gu X J, et al. Lattice Boltzinann modelling Kuudsen layer effect in non-equilibrium flows. Europhys. Lett.,2008,83(4):40008/1-6.
    60. Ghazanfarian J and Abbassi A. Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method. Phys. Rev. E,2010,82(2): 026307/1-8.
    61. Meng J P and Zhang Y H. Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows. Phys. Rev. E,2011,83(3):036704/1-10.
    62. Miller W, Succi S, and Mansutti D. Lattice Boltzmann Model for Anisotropic Liquid-Solid Phase Transition. Phys. Rev. Lett.,2001,86(16):3578-3581.
    63. Miller W and Succi S. A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt, J. Stat, Phys.,2002,107(1-2):173-186.
    64. Kang Q J, Zhang D X, Lichtner P, et al. Lattice Boltzmann Model for Hydrate Crystal Growth from Supersaturated Solution, Geophys. Res. Lett.,2004,31, L21604:1-5.
    65. Lu G P, Depaolo D J, Kang Q J, et al. Lattice Boltzmann simulation of snow crystal growth in clouds, Geophys. Res. Lett.,2009,114, D07305:1-14.
    66. Succi S and Vergari P. A Lattice Boltzmann scheme for semiconductor dynamics. VLSI. Design, 1998,6(1-4):137-140.
    67. Chopard B, Luthi P O, and Marconi S. A Lattice Boltzmann Model for Wave and Fracture phenomena.1998, arXiv:cond-mat/9812220v1.
    68. Chopard B. Cellular Automann Modeling of Physics Systems. Cambridge University Press, Cam-bridge,1998.
    69. Shao X P. A lattice Boltzmann method for shock wave propagation in solids. Commun. Numer. Meth. En.,2007,23(1):71-84.
    70. Escobar R, Smith B, Amon C, et al. Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices.J. Electron Packaging.2006. 128:115-124.
    71.Jiaung W S and Ho J R. Lattice-Boltzmann modeling of phonon hydrodynamics. Phys. Rev. E, 2008,77(6):066710/1-13.
    72. Korner C, Thies M, and Singer R F, Modeling of metal foaming with lattice Boltzmann automata, Adv. Eng. Mater,2002,4(10):765-769.
    73. Korner C, Thies M, Singer R F, et al. Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming, J. Stat. Phys,2005,121(112):179-196.
    74. Palpacelli S, Succi S, and Spigler R. Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E,2007,76(3):036712/1-17.
    75. Palpacelli S and Succi S. Numerical validation of the quantum Lattice Boltzmann scheme in two and three-dimensions, Phys. Rev. E,2007,75(6):066704/1-13.
    76. Succi S. Lattice Boltzmann method for quantum field theory. J. Phys. A:Math. Theor.,2007, 40(26):F559-F567.
    77. Melchionna S, Succi S, and Hansen J P. Simulation of single-file ion transport with the Lattice Fokker-Planck equation. Phys. Rev. E,2007,73(1):017701/1-4.
    78. Zhang J Y, Yan G W, and Shi X B. Lattice Boltzmann model for wave propagation. Phys. Rev. E,2009,80(2):026706/1-13.
    79. Zhang J Y and Yan G W. Lattice Boltzmann model for the complex Ginzburg-Landau equation. Phys. Rev. E,2010,81(6):066706/1-13.
    80. Lai H L and Ma C F. The lattice Boltzmann model for the second-order Benjamin-Ono equations. J. Stat. Mech.:Theory Exp.,2010,201004:P04011/1-14.
    81. Lai H L and Ma C F. Lattice Boltzmann model for generalized nonlinear wave equations. Phys. Rev. E,2011,84(4):046708/1-12.
    82. Hardy J, Poineau Y, and de Pazzis O. Time evolution of two-Dimensional model system:Invariant states and time correlation functions. J. Math. Phys.,1973,14(12):1746-1759.
    83. Hardy J, de Pazzis O, and Pomeau Y. Molecular dynamics of a classical Lattice gas: Transport properties and time correlation functions. Phys. Rev. A 1976,13(5):1949-1961.
    84. Frissch U, Hasslacher B, and Pomeau Y. Lattice-gas automata for the Navier-Stokes equations. Phys. Rev. Lett.,1986,56(14):1505-1508.
    85. Wolfram S. Cellular automaton fluids 1:Basic theory. J. Stat. Phys.,1986,45(3-4):471-529.
    86. Frissch U, d'Humieres D, Hasslacher B, et al. Lattice gas hydrodynamics in two and three di-mensions. Complex Systems 1987,1:649-707.
    87. Higuera F and Succi S. Simulating the Flow around a Circular Cylinder with a Lattice Boltzmann Equation. Europhys. Lett,1989,8(6):517-521.
    88. McNamara G R and Zanetti G. Use of the Boltzmann equation to simulate lattice automata Phys. Rev. Lett.,1988,61(20):2332-2335.
    89. Higuere F and Jinenez J. Boltzmann approach to lattice gas simulations. Europhys. Lett.,1989, 9(7):663-668.
    90. Higuere F, Scuui S, and Benzi R, Lattice gas dynamics with enhanced collisions. Europhys. Lett.. 1989,9(4):345-349.
    91. Koelman J M V A. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. Europhys Lett.,1991,15(6):603-607.
    92. Qian Y H, d'Humieres D, and Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett.,1992,17(6):479-484.
    93. Bhatnagar P L, Gross E P, and Krook M. A model for collision processes in gases, I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev.,1954,94(3): 511-525.
    94. He X Y and Luo L S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E,1997,56(6):6811-6817.
    95. Swift M R, Orlandini E, Osborn W R, et. al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E,1996,54(5):5041-5052.
    96. Xu A G, Gonnella G, and Lamura A. Phase-separating binary fluids under oscillatory shear. Phys. Rev. E,2003,67(5):056105/1-14.
    97. Xu A G. Rheology and Structure of Quenched Binary Mixtures Under Oscillatory Shear. Com-mun. Theor. Phys.,2003,39(6):729-736.
    98. Watari M and Tsutahara M. Two-dimensional thermal model of the finite-difference lattice Boltz-mann method with high spatial isotropy. Phys. Rev. E,2003,67(3):036306/1-7.
    99. Xu A G. Two-dimensional finite-difference lattice Boltzmann method for the complete Navier-Stokes equations of binary fluids. Europhys. Lett.,2005,69(2):214-220.
    100. Xu A G. Finite-difference lattice-Boltzmann methods for binary fluids, Phys. Rev. E,2005,71(6): 066706/1-12.
    101. Pan X F, Xu A G, Zhang G C, et al. Lattice Boltzmann approach to high-speed compressible flows. Tut. J. Mod. Phys. C,2007.18(11):1747-1764.
    102. Gan Y B, Xu A G, Zhang G C, et al. Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Phys. A,2008,387(8-9):1721-1732.
    103. Gan Y B, Xu A G, Zhang G C, et al. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow:Two-Dimensional Case. Commun. Theor. Phys.,2008,50(1):201-210.
    104. Gan Y B, Xu A G, Zhang G C, et al. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat, Ratio and Prandtl Number. Commun. Theor, Phys.,2011.56(3):490-498.
    105. Gan Y B, Xu A G, Zhang G C, el al. Lattice Boltzmann study on Kelvin-Helmholtz instability: Roles of velocity and density gradients. Phys. Rev. E,2011,83(5):056704/1-10.
    106. Chen F, Xu A G, Zhang G C, et al. Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number. Europhys. Lett.,2010, 90(5):54003/1-6.
    107. Chen F, Xu A G. Zhang G C, et al. Multiple-relaxation-time lattice Boltzmann model for com-pressible fluids. Phys. Lett. A,2011,375(21):2129-2139.
    108. Xu A G, Gonnella G, and Lamura A. Phase separation of incompressible binary fluids with lattice Boltzmann methods. Physica A,2004,331(1-2):10-22.
    109. Xu A G, Gonnella G, and Lamura A. Numerical study of the ordering properties of lamellar phase. Physica A,2004,344(3-4):750-756.
    110. Xu A G, Gonnella G, and Lamura A. Simulations of complex fluids by mixed lattice Boltzman-n-finite difference methods. Physica A,2006,362(1):42-47.
    111. Xu A G, Gonnella G, and Lamura A. Morphologies and flow patterns in quenching of lamellar systems with shear. Phys. Rev. E,2006,74(1):011505/1-11.
    112. Xu A G, Gonnella G, Lamura A, et al. Scaling and hydrodynamic effects in lamellar ordering. Lett.,2005,71(4):651-657.
    113. Xu A G, S Succi, and Boghosiand B M. Lattice BBGKY scheme for two-phase flows:One-dimensional case. Math. Comput. Simulat.,2006,72(2-6):249-252.
    114. Wang C, Xu A G, Zhang G C, et al. Simulating liquid-vapor phase separation under shear with lattice Boltzmann method. Sci. China Ser. G,2009,52(9):1337-1344.
    115. Gan Y B, Xu A G, Zhang G C. et al. Phase separation in thermal systems:A lattice Boltzmann study and morphological characterization. Phys. Rev. E,2011,84(4):046715/1-15.
    116. Gan Y B. Xu A G, Zhang G C, et al. Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization. Europhys. Lett.,2012,97(4):44002/1-6.
    117. Gan Y B, Xu A G, Zhang G C, et al. FFT-LB Modeling of Thermal Liquid-Vapor System. Commun. Theor. Phys.,2012,57(4):681-694.
    118. Gan Y B, Xu A G, Zhang G C, et al. Physical modeling of multiphase flow via lattice Boltzmann method:Numerical effects, equation of state and boundary conditions. Front. Phys.,2012, DOI: 10.1007/s11467-012-0245-0.
    119. Sbragaglia M, Benzi R, Biferale L, et al. Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E,2007,75(2):026702/1-13.
    120. Corberi F, Gonnella G, and Lamura A. Spinodal Decomposition of Binary Mixtures in Uniform Shear Flow. Phys. Rev. Lett.,1998,81(18):3852-3855.
    121. Sofonea V and Mecke K R. Morphological characterization of spinodal decomposition kinetics. Eur. Phys.J. B,1999,8(1):99-112.
    122. Sofonea V, Lamura A, Gonnella G, et al. Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems. Phys. Rev. E,2004,70(4):046702/1-9.
    123. Tiribocchi A. Stella N, Gonnella G, et al. Hybrid lattice Boltzmann model for binary fluid mix-tures. Phys. Rev. E,2009,80(2):026701/1-7.
    124. Cristea A, Gonnella G. Lamura A, et al. Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems. Commun. Comput. Phys.,2010,7(2):350-361.
    125. Xi H and Duncan C. Lattice Boltzmann simulations of three-dimensional single droplet defrma tion and breakup under sinple shear flow. Phys. Rev. E,1999,59(3):3022-3026.
    126. Kalarakis A N, Burganos V N, and Payatakes A C. Galilean-invariant lattice-Boltzmann simula-tion of liquid-vapor interface dynamics. Phys. Rev. E,2002,65(5):056702/1-13.
    127. Premnath K N and Abraham J. Lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E,2005,71(5):056706/1-14.
    128. Hyvauoma J, Raiskinmai P, J aberg A, et al. Simulation of liquid penetration in paper. Phys. Rev. E,2006,73(3):036705/1-8.
    129. Briant A J, Wagner A J, and Yeomans J M. Lattice Boltzmann simulations of contact line motion. Ⅰ. Liquid-gas systems. Phys. Rev. E,2004,69(3):031602/1-14.
    130. Huang H B, Thorne D T, Schaap M G, et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E,2007, 76(6):066701/1-6.
    131. Fan L, Fang H P, and Lin Z F. Simulation of contact line dynamics in a two-dimensional capillary tube by the lattice Boltzmann model. Phys. Rev. E,2001,63(5):051603/1-6.
    132. Onuki A. Phase Transition Dynamics. Cambridge University Press, Cambridge,2002.
    133. Onuki A. Boilingleadingto self-organized convection near the gas-liquid critical point. Physica A, 2002,314(1-4):419-426.
    134. Onuki A and Kanatani K. Droplet motion with phase change in a temperature gradient. Phys Rev. Lett.,2005,72(6):066304/1-11.
    135. Onuki A. Dynamic van der Waals Theory of Two-Phase Fluids in Heat Flow. Phys. Rev. Lett., 2005,94(5):054501/1-4.
    136. Onuki A. Dynamic van der Waals theory. Phys. Rev. E,2007,75(3):036304/1-15.
    137. Zhang R Y and Chen H D. Lattice Boltzmann method for simulations of liquid-vapor thermal flows. Phys. Rev. E,2003,67(6):066711/1-16.
    138. Zhou Y, Zhang R Y, Staroselsky I, et al. Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm. Int. J. Heat Mass Transfer,2004,47(22): 4869-4879.
    139. Tentner A, Chen H D, and Zhang R Y. Simulation of two-phase flow and heat transfer phenomena in a boiling water reactor using the lattice Boltzmann method. Physica A,2006,362(1):98-104.
    140. Yuan Y and Schaefer L. A Thermal Lattice Boltzmann Two-Phase Flow Model and Its Appli-cation to Heat Transfer Problems -Part 1. Theoretical Foundation. J. Fluid Eng.,2006,128(1): 142-150.
    141. Yuan Y and Schaefer L. A Thermal Lattice Boltzmann Two-Phase Flow Model and Its Applica-tion to Heat Transfer Problems -Part 2. Integration and Validation.J. Fluid Eng.,2000,128(1): 151-156.
    142. Gonnella G. Lamura A, Piscitelli A, et al. Phase separation of binary fluids with dynamic tem-perature. Phys. Rev. E,2010,82(4):046302/1-8.
    143. Gonnella G, Lamura A, Tiribocchi A, et al. Thermal and hydrodynamic effects in the ordering of lamellar fluids. Phil. Trans. R. Soc. A,2011,369(1945):2592-2599.
    144. Tiribocchi A, Piscitelli A, and Gonnella G. Pattern study of thermal phase separation for binary fluid mixtures. Int. J. Numer. Method H.2011,21(5):572-583.
    145. Markus A and Hazi G. Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method: A quantitative analysis. Phys. Rev. E,2011,83(4):046705/1-10.
    146. Sbragaglia M, Benzi R, Biferale L, et al. Lattice Boltzmann method with self-consistent local thermo hydrodynamic equilibria. J. Fluid Mech.,2009,628(4):046705/299-309.
    147. Seta T, Kono K, and Chen S Y. Lattice Boltzmann method for two-phase flows. Int. J. Mod. Phys. B,2003,17(1-2):169-172.
    148. Gonnella G, Lamura A, and Sofonea V. Lattice Boltzmann simulation of thermal nonideal fluids. Phys. Rev. E,2007,76(3):036703/1-5.
    149. Gonnella G, Lamura A, and Sofonea V. A lattice Roltzmann method for thermal nonideal fluids. Eur. Phys. J. Spec. Top.,2009,171(1):181-187.
    150. Watari M and Tsutahara M. Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method. Phys. Rev. E,2004,70(1):016703/1-9.
    151. Yuan P and Schaefer L. Equations of state in a lattice Boltzmann model. Phys. Fluids,2006, 18(4):042101/1-11.
    152. Wagner A J. The origin of spurious velocities in lattice Boltzmann. Mod. Phys. B,2003,17(1-2): 193-196.
    153. Cristea A and Sofonea V. Reduction of spurious velocity in finite difference lattice Boltzmann models for liquid-vapor systems. Int. J. Mod. Phys. C,2003,14(9):1251-1266.
    154. Cristea A. Numerical effects in a finite difference lattice Boltzmann model for iquid-vapor systems. Int. J. Mod. Phys. C,2003,17(8); 1191-1201.
    155. Shan X W. Analysis and reduction of the spurious current in a class of multiphase lattice Boltz-mann models. Phys. Rev. E,2006,73(4):047701/1-4.
    156. Shan X W. Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E,2008,77(6):066702/1-6.
    157. Lee T and Fischer P F. Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E,2006,74(4):046709/1-7.
    158. Seta T and Okui K. Effects of Truncation Error of Derivative Approximation for Two-Phase Lattice Boltzmann Method. J. Fluid Sci. Technol.,2007,2(1):139-151.
    159. Pooley C M and Furtado K. Eliminating spurious velocities in the free-energy lattice Boltzmann method. Phys. Rev. E,2008,77(4):046702/1-9.
    160. Pooley C M, Kusumaatmaja H, and Yeomans J M. Contact line dynamics in binary lattice Boltzmann simulations. Phys. Rev. E,2008,78(5):056709/1-9.
    161. 刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社.2003.
    162. Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Verlag, Berlin, 1999.
    163. Lee T and Lin C L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys.,2005,206(1):16-47.
    164. 梁昆淼.数学物理方法.北京:高等教育出版,2010.
    165. Canuto C, Hussaini M, Quarteroni A, et al. Spectral Methods in Fluid Dynamics. Springer-Verlag, London,1987.
    166. Birdsall C K and Langdon A B. Plasma Physics via Computer Simulation. Adam Hilger, Bristol, 1991.
    167. Boyd J P. Chebyshev and Fourier Spectral Methods. Dover Publications, New York,2000.
    168. Orszag S A. Galerkin Approximations to Flows within Slabs, Spheres, and Cylinders. Phys. Rev. Lett.,1971,26(18):1100-1103.
    169. Sod G A. J. Comput. Phys.. Asurvcy of several finite difference methods for systems of nonlin-earhyperbolicconservationlaws.1978,27(1):1-31.
    170. Hussaini M Y, Kopriva D A, Salas M D, el al. Spectral methods for Euler equations:Fourier methods and shock capturing. AIAA.1.,1985,23(1):64-70.
    171. Sun Y H, Zhou Y C, Li S, et al. A windowed Fourier pseudospectral method for hyperbolic conservation laws. J. Comput. Phys..2006,214(2):400-490.
    172. Shu C W. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. ICASE Report No.97-65,1997, NASA/CR-97-206253.
    173. Bongiorno V and Davis H T. Modified Van der Waals theory of fluid interfaces. Phys. Rev. A, 1975,12(5):2213-2224.
    174. McCoy B F and Davis H T. Free-energy theory of inhomogeneous fluids. Phys. Rev. A.1075, 20(3):1201-1207.
    175. Rowlinson R and Widom B. Molecular Theory of Capillarity. Clarendon Press, Oxford,1982.
    176. Inamuro T, Konishi N, and Ogino F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput. Phys. Commun.,2000.129(1-3): 32-46.
    177. Inamuro T, Ogata T, Tajima S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys.,2001,198(2):628-644.
    178. Gonnella G, Lamura A. and Piscitelli A. Dynamics of binary mixtures in inhomogeneous tem-peratures. J. Phys. A:Math. Theor..2008.41(10):105001/1-13.
    179. Brennen C. Fundamentals of Multiphase Flow. Cambridge University Press. Cambridge,2005.
    180. Starikovicius V, The multiphase flow and heat transfer in porous media. Berichte des Fraunliofer ITWM,2003,Nr 55.
    181. Held R J and Celia M A. Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines. Adv. Water Resour.,2001,24(3-4):325-343.
    182. Guo Z L and Zhao T S. Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids. Phys. Rev. E,2003,68(3):035302(R)/1-4.
    183. Rosenfeld A and Kak A. Digital Picture Processing, Academic Press, New York,1976.
    184. Minkowski H. Volumen und Oberflache, Math. Ann.,1903,57(4):447-495.
    185. Mecke K R. Morphological characterization of patterns in reaction-diffusion systems. Phys. Rev. E,1996,53(5):4794-4800.
    186. Winitzkia S and Kosowskya A. Minkowski functional description of microwave background Gaus-sianity. New Astron.,1998,3(2):75-99.
    187. Xu A G, Zhang G C, Pan X F, et al. Morphological characterization of shocked porous material. J. Phys. D:Appl. Phys.,2009,42(7):075409/1-10.
    188. Xu A G, Zhang G C, Ying Y J, et al. Shock wave response of porous materials:from plasticity to elasticity. Phys. Scri.,2010,81(5):055805/1-8.
    189. Mecke K R. Morphological characterization of patterns in reaction-diffusion systems. Phys. Rev. E,1996,53(5):4794-4800.
    190. Mecke K R and Sofonea V. Morphology of spinodal decomposition. Phys. Rev. E,1997,56(4): R3761-R3764.
    191. Aksimentiev A, Moorthi K, and Holyst R. Scaling properties of the morphological measures at the early and intermediate stages of the spinodal decomposition in homopolymer blends. J. Chem. Phys.,2000,112(13):6049/1-14.
    192. Hadwiger H. Normale Korper im euklidischen Raum und ihre topologischen und metrischen Eigenschaften. Math. Z.,1959,71(1):124-140.
    193. Allen S M and Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall.,1979,27(6):1085-1095.
    194. Bray A J. Theory of phase-ordering kinetics. Adv. Phys.,1994,43(3):357-459.
    195. Alexander F J, Chen S Y, and Grunau D W. Hydrodynamic spinodal decomposition:Growth kinetics and scaling functions. Phys. Rev. B,1993,48(1):634-637.
    196. Grunau D G, Lookman T, Chen S Y, et al. Domain growth, wetting, and scaling in porous media. Phys. Rev. Lett.1993,71(25):4198-4201.
    197. Yeomans J M. Phase ordering in fluids. Anm. Rev. Comp. Phys. Ⅶ,2000,61.
    198. Larnorgese A and Mauri R. Diffuse-interface modeling of liquid-vapor phase separation in a van der Waals fluid. Phys. Fluids,2003,21(4):044107/1-8.
    199. Kendon V M. Desplat J C, Bladon P. et al.3D Spinodal Decomposition in the Inertial Regime. Phys. Rev. Lett.,1999,83(3):576-579.
    200. Gonzalez-Segredo N, Nekovee M, and Coveney P V. Three-dimensional lattice-Boltzmann simu-lations of critical spinodal decomposition in binary immiscible fluids. Phys. Rev. E,2003,67(4): 046304/1-17.
    201. Kikkinides E S, Yiotis A G, Kainourgiakis M E, et al. Thermodynamic consistency of liquid-gas lattice Boltzmann methods:Interfacial property issues. Phys. Rev. E,2008,78(3):036702/1-16.
    202. Teshigawara R and Onuki A. Droplet evaporation in one-component fluids: Dynamic van der Waals theory. Europhys. Lett.,2008,84(3):36003/1-6.
    203. Teshigawara R and Onuki. Spreading with evaporation and condensation in one-component fluid. Phys. Rev. E,2010,82(3):021603/1-14.
    204. Binder K. Kinetics of Phase Transitions, edited by Puri S and Wadhawan V. CRC Press, London, 2009.
    205. Binder K and Fratzl P. Phase Transformations in Material, edited by Kostorz G, WILEY-VCH Verlag GmbH, Weinheim,2001.
    206. Binder K. Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures. J. Chem. Phys.,1983,79(12):6387-6409.
    207. Okada M and Han C. Experimental study of thermal fluctuation in spinodal decomposition of a binary polymer mixture. J. Chem. Phys.,1986,85(9):5317-5327.
    208. Bates F S and Wiltzius P. Spinodal decomposition of a symmetric critical mixture of deuterated and protonated polymer. J. Chem. Phys.,1989,91(5):3258-3264.
    209. Onuki A and Taniguchi T. Viscoclastic effects in early stage phase separation in polymeric sys-tems. J. Chem. Phys.,1997,106(13):5761-5770.
    210. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford University, London,1961.
    211. Walker J S. Talmage G, Brown S H, el al. Kelvin-Hehmholtz instability of Couctte flow between vertical walls with a free surface. Phys. Fluids A,1993,5(6):1466-1451.
    212. Bau H H. Kelvin-Helmholtz instability for parallel flow in porous media:A linear theory. Phys. Fluids,1982,25(10):1719-1722.
    213. Miles J W. On Kelvin-Helmholtz instability. Phys. Fluids,1980,23(9):1719-1720.
    214. Wang L F, Xue C, Ye W H, et al. Destabilizing effect of density gradient on the Kelvin-Helmholtz instability. Phys. Plasma,2009,16(11):112104/1-0.
    215. Wang L F, Ye W H, Li Y J. Combined effect of the density and velocity gradients in the combina-tion of Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Phys. Plasma,2010,17(4):042103/1-6.
    216. Miura A. Self-Organization in the Two-Dimensional Kelvin-Helmholtz Instability. Phys. Rev Lett..1999,83(8):1586-1589.
    217. Blaauwgeers R, Eltsov V B, Eska G. et al. Shear Flow and Kelvin-Helmholtz Instability in Superfluids. Phys. Rev. Lett..2002,89(4):155301/1-4.
    218. Bodo G, Mignone A, and Rosner R. Kelvin-Helmholtz instability for relativistic fluids. Phys. Rev. E,2004,70(3):36304/1-4.
    219. Horton W, Perez J C, Carter T, et al. Vorticity probes and the characterization of vortices in the Kelvin-Helmholtz instability in the large plasma device experiment. Phys. Plasmas 12(2): 22303/1-8.
    220. Wang L F, Ye W H, Fan Z F, et al. Weakly nonlinear analysis on the Kelvin-Helmholtz instability. Europhys. Lett.,2009,86(1):15002/1-6.
    221. Drake R P. High-Energy-Density Physics: Fundamentals, Inertial Fusion and Experimental As-trophysics. Springer, New York,2006.
    222. Lesieur M. Turbulence in Fluids. Kluwer Academic Publishers, Dordrecht,1997.
    223. Gamexo V N, Khokhlo A M, Oran E S. et al. Thermonuclear supernovae: simulations of the de° agration stage and their implications. Science,2003,299:77-80.
    224. Burrows A. Supernova explosions in the Universe. Nature (London),2000,430:727-733.
    225. Nomoto K, Iwamoto K, and Kishimoto N. Type la supernovae: Their origin and possible appli-cations in cosmology. Science,1997,276:1378-1381.
    226. Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into Earth's rnagnetosphere through rolled-up Kelvin- Helmholtz vortices. Nature (London),2004,430:755-758.
    227. Wang L F, YeWH. and Li Y J. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime. Phys. Plasma,2010,17(5):052305/1-6.
    228. Wang L F, Ye W H, Fan Z F, et al. Nonlinear saturation amplitude in the Rayleigh-Taylor instability at arbitrary Atwood numbers with continuous profiles. Europhys. Lett.,2010.90(1): 15001/1-6..
    229. Remington B A, Drake R P, Takabe H, et al. A review of astrophysics experiments on intense lasers. Phys. Plasmas,2000,7(5):1641-1652.
    230. Remington B A, Drake R P, and Ryutov D D. Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys.,2006,78(3):755-807.
    231. Atzeni S and Meyer-ter-Vehn J. The Physics of Inertial Fusion:beam plasma interaction, hydro-dynamics, hot dense matter. Oxford University Press, New York,2004.
    232. Chimonas G. The combined Rayleigh, Kelvin-Helmholtz problem. Phys. Fluids,1986,29(7): 2061-2066.
    233. Jiang G S and Shu C W. Efficient Implementation of Weighted ENO Schemes. J. Oomput. Phys. 1996,126(1):202-228.
    2.34. Shu C W and Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys.,1988,77(2):439-471.
    235. Liu X D, Osher S, and Chan T. J. Weighted Essentially Non-oscillatory Schemes. Comput. Phy 1994,115(1):200-212.
    236. 张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报.1988,6(2):43-165
    237. Keppens R and T骯h G. Phys. Nonlinear dynamics of Kelvin- Helmholtz unstable magnetized jets:Three-dimensional effects. Plasma,1999,6(5):1461-1469.
    238. Perucho M, Hanasz M, Marti J M, et al. Resonant Kelvin-Helmholtz modes in sheared relativistic flows. Phys. Rev. E,2007; 75(5):056312/1-10.
    239. Wang L F, Teng A P, Ye W H, et al. Phase Effect on Mode Coupling in Kelvin-Helmholtz Instability for Two-Dimensional Incompressible Fluid. Commun. Theor. Phys.,2009,52(4):694-696.
    240. Amerstorfer U V, Erkaev N V, Taubenschuss U, et al. Influence of a density increase on the evolution of the Kelvin- Helmholtz instability and vortices. Phys. Plasma,2010,17(7):072901/1-8.
    241. Ashwin J and Ganesh R. Kelvin Helmholtz Instability in Strongly Coupled Yukawa Liquids. Phys. Rev. Lett.,2010,104(21):215003/1-4.
    242. Obergaulinger M, Aloy M A, and Muller E. Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers. Astron. Astrophys.,2010,515:A30/1-25.
    243. Qu K., Shu C, and Chew Y T. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E,2007,75(3):036706/1-13.
    244. Li Q, He Y L, Wang Y, et al. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations. Phys. Rev. E,2007,76(5):056705/1-19.
    245. Chapman S and Cowling T. The Mathematical Theory of Non-uniform Gases. Cambridge Uni-versity Press, Cambridge,1970.
    246. Watari M. Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations. Physica A,2007,382(2):502-522.
    247. Alexander F, Chen H. Chen S, et al. Lattice Boltzmann model for compressible fluids. Phys. Rev. A,1992,46(4):1967-1970.
    248. Yan G W, Chen Y, and Hu S X. Simple lattice Boltzmann model for simulating flows with shock wave. Phys. Rev. E.,1999.59(1):454-459.
    249. Sun C H. Lattice-Boltzinaim models for high speed Hows. Phys. Rev. E,1998,58(6):7283-7287.
    250. Sun C H. Adaptive lattice Boltzmann model for compressible flows: Viscous and conductive properties. Phys. Rev. E,2000,61(3):2645-2653.
    251. Kataoka T and Tsutahara M. Lattice Boltzmann model for the compressible Navier-Stokes equa-tions with flexible specific-heat ratio. Phys. Rev. E,2004.69(3):035701(R)/1-4.
    252. Kataoka T and Tsutahara M. Lattice Boltzmann method for the compressible Euler equations. Phys. Rev. E,2004,69(5):056702/1-14.
    253. Watari M. Velocity slip and temperature jump simulations by the three-dimensional thermal finite-difference lattice Bolt/maim method. Phys. Rev. E,2009,79(6):066706/1-9.
    254. He X Y, Chen S Y, and Doolen G D. A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit, J. Comput. Phys.,1998,146(1):282-300.
    255. Shan X W. Simulation of Rayleigh-Benard convection using a lattice Boltzmann method. Phys. Rev. E,1997,55(3):2780-788.
    256. Chen Y, Ohashi H, and Akiyama M. Two-parameter thermal lattice BGK model with a control-lable Prandtl number. J. Sci. Comput.,1997,12(2):169-185.
    257. Toro E. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer Verlag, Berlin, 1999.
    258. 马延文,傅德薰.群速度直接控制四阶迎风紧致格式.中国科学A辑,2001,31(6):554-561.
    259. 沈孟育,李海东,刘秋生.用解析离散法构造WENO+FFT格式.空气动力学报,1998,16(1):56-63.
    260. Chang T, Chen G Q, and Yang S. On the Riemann problem for two-dimensional Euler equations I:Interaction of shocks and rarefaction waves. Discrete Contin. Dynam. Systems,1995,1:555-584
    261. Lax P and Liu X D. Solution of Two-dimensional Riemann Problems of Gas Dynamics by Positive Schemes. SIAM J. Sci. Comp.,1998,19(2):319-340.
    262. Schulz-Rinne C W, Collins J P, and Glaz H M. Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comp.,1993,14(6):1394-1414.
    263. Fey F. Multidimensional Upwinding. Part Ⅰ. The Method of Transport for Solving the Euler Equations. J. Comp. Phys.,1998,143(1):159-180.
    264. Chen Y and Cai Q D. The lattice Boltzmann method based on quadtree mesh. Mod. Phys. Lett. B,2009,23(3):289-292.
    265. Chen Y, Kang Q J, Cai Q D, and Zhang D X. Lattice Boltzmann method on quadtree grids. Phys. Rev. E,2011,83(2):026707/1-10.