小口径多管转管火炮膛口流场数值模拟与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小口径多管转管火炮是近程防御系统的基本组成部分之一,其射击精度直接影响到近程防御系统的反导效能。小口径多管转管火炮发射过程中膛口产生的高温高压复杂激波系是影响其射击精度的重要因素之一。本论文主要通过数值模拟的方法,计算和分析膛口流场的形成发展过程及其对弹丸飞行的影响。具体内容如下:
     a)根据小口径火炮发射的实际物理过程,膛口流场的形成和发展与内弹道的瞬态变化过程是息息相关的。对内弹道过程的分析是准确模拟膛口流场变化过程的基础,对内弹道过程的数值分析首先采用集总参数数学模型,采用四阶Runge-Kutta法进行数值模拟,得到弹丸在膛内的运动规律。另外,通过建立火炮内弹道过程一维两相流模型,采用二阶精度的MacCormack差分格式对其数值模拟,分析了发射过程中膛内各状态参量的分布规律以及主要内弹道参量的变化规律,得到弹丸离开膛口时,膛内的气体参数在轴向上的分布情况。
     b)模拟弹丸挤进膛内后膛口流场形成、发展及变化过程,耦合内弹道过程分析弹丸出炮口前后膛口附近区域的流场变化。耦合内弹道过程,建立二维轴对称气体动力学模型计算弹前气体及膛口流场,通过弹前阻力将二者同步耦合计算。数值模拟的结果与试验结果相符合,说明建立的模型和采用的计算方法是正确有效的。同时,通过数值模拟的结果详细地反映了膛口附近区域流场的瞬态变化过程。
     c)针对火炮发射过程中膛口流场高温、高压、高速以及存在正激波、斜激波、相交激波等特点,构建基于BWIP(Blast Wave Identification Paramete)方法的动态网格自适应方法对某小口径非定常膛口流场进行数值模拟和仿真。对某小口径火炮的发射过程采用BWIP的动态自适应方法进行数值模拟,对于同样的膛口流场捕捉能力,采用BWIP的动态自适应方法可以较大的节省计算量。
     d)研究线膛发射旋转稳定弹丸在膛口流场复杂激波系影响下的气动特性。通过划分局部加密的网格,采用双方程湍流模型求解可压缩的三维Navier-Stokes方程,数值模拟和分析旋转SOCBT (Secant Ogive Cylinder Boat Tail model)弹丸在复杂激波影响下的气动特性变化规律。数值模拟的结果与BRL (Ballistic Research Laboratory)实验室风洞实验数据相吻合。通过数值模拟进一步分析旋转速度、攻角、来流马赫数等对弹丸气动特性的影响,得到影响武器射击精度的弹丸表面压力不对称性分布规律以及弹丸阻力升力特性,分析不同旋转速度对内弹道后效期内弹丸速度增的影响规律。
     e)根据小口径多管转管火炮发射的物理过程,建立三维气动力计算模型,采用AUSM+格式模拟分析多管转管火炮的膛口流场的发展变化过程。数值模拟的结果揭示了多管转管火炮膛口流场的特性,转管发射弹丸在膛口流场的影响下其表面的压力呈现明显的不对称性,进而导致在零攻角发射的情况下也会产生弹丸的侧向偏移,第一发弹丸的侧向偏移达到1.6m/s,而第二发弹丸出炮口后受到第一发弹丸发射导致的不对称膛口流场的影响,其侧向偏移明显大于第一发弹丸,达到3.8m/s。
The revolving barrel gun is the principal component of the Close-In Weapons System (CIWS). The defense against anti-ship cruise missile was derectly influenced by the gun's shot accruracy. There will be unsteady high-temperature high-pressure muzzle complex shock waves during the revolving barrel gun firing and the shot ejection process has an important effect on the shot accuracy. Numerical methods were used to simulate and analysis the muzzle flow formation and development process and its affect on the projetile movement. The main parts of this research are concluded as follows:
     a) According to the actual physical process of the small caliber gun firing, the muzzle flow formation and development process is relational to the interior ballistic process. The interior ballistic lumped parameter model was solved using4th order Runge-Kutta scheme in the numerical simulation. The projectile movement law was got. The one-dimensional two-phase flow interior ballistic mathematical model was established and solved using MacCormack scheme in the numerical simulation. The change laws of interior ballistic parameters were analyzed. Base on the modeling results, the effect of different factors of the interior ballistic performance were discussed. The pressure distributions in the bore at shot exit ware obtained.
     b) Muzzle flow fields are simulated from the projectile engraving. Based on the mathematical assumptions, the muzzle flow simulation model coupled the interior ballistic process was established. Coupled with interior ballistics process, the2D axial symmetrical aerodynamic model was established to simulate muzzle flow field. The two models are coupled by the resistance of pressure in front of projectile. The agreement of the numerical results with experimental results shows that the model and method provided in the paper is reasonable and effective. The chang process of the muzzle flow was shown by simulation.
     c) During the gun firing, the muzzle flow field is high-temperature, high-pressure, high-velocity and includes normal shock, oblique shock, and intersection shock wave. According to the characteristics of muzzle flow, the BWIP (Blast Wave Identification Paramete) dynamic adaptive grid method with the numerical controller was established. The unsteady muzzle flow of the small caliber gun was simulated by solving two dimensional axisymmetric governing equations applying AUSM up scheme with the BWIP dynamic adaptive grid method. For the same shock capturing ability, the computer resource could be cut down.
     d) In order to enhance the shot accuracy of gun system, aerodynamic characteristics the rifled structure launching projectile was investigated while the projectile flying over the complex muzzle flow field. The projectile aerodynamic characteristics change laws were simulated by solving three dimensional N-S equations applying k-epsilon turbulence model with local refinement of unstructured grids. Numerical results of SOCBT (Secant Ogive Cylinder Boat Tail model) projectile are in good agreement with experimental results, so the used computational model and CFD method is effective and relative. Aerodynamic characteristic variation laws are simulated and analyzed due to different parameters, including attack angle, projectile rotating speed and incoming Mach number. The projectile body pressure asymmetry distribution and the characteristics of lift/drag were obtained and analyzed. Coupled with the interior ballistic process, the projectile velocity variations in different rotating speed were simulated and analyzed.
     e)The3D computational model was formulateated to illustrate the details of the flow field produced by the revolving barrel gun firing. The algorithm of a second order MUSCL approach with the AUSM+solver was used to simulate the high pressure muzzle flow field. The interior ballistic process was coupled with the simulation. The muzzle flow characteristics of the revolving barrel gun were illustrated by simulations. The muzzle flow field structure of a revolving barrel gun fire with no angle of attack was asymmetric while the projectile is flying through the flow.The maximum lateral velocity of the first and second projectile fired was about1.6m/s and3.8m/s.
引文
[1]Apte A and Rendon R. A diagnostic approach to weapon system lifecycle support:the phalanx close-in weapon system. International Journal of Defense Acquisition Management.2009,5(2):1-16
    [2]成楚之.近程防空中的国土防空与野战防空武器.战术导弹技术.2010,35(3):7-12
    [3]Michael R C. An Analysis of spending patterns associated with the PHALANX close-in weapon system (CIWS) program. Form approved OMB No.0704-0188,2003
    [4]Ebrahimi H B, Mohanraj R, Merkle C L. Modeling of multi-tube pulse detonation engine operation. AIAA 2001-3813,2001
    [5]李强,薄玉成,朵英贤.转管炮旋转发射惯性对弹丸起始扰动的影响分析.弹道学报.2005,17(4):88-92
    [6]尤国钊,许厚谦,杨启仁.中间弹道学.北京:国防工业出版社,2003:87-124
    [7]尤国钊.膛口流场数值计算的发展概况和展望.弹道学报.1993,5(2):83-88
    [8]江坤.炮口制退器优化设计理论与方法研究.南京:南京理工大学,2007
    [9]Schmidt E M and Shear D D. Aerodynamic interference during sabot discard.AIAA 1977-1142,1977
    [10]Taylor T D and Lin T C. Numerical model for muzzle blast flow fields. Space Division Air Force Systems Command,1980
    [11]郭正,李晓斌.用非结构动网格方法模拟有相对运动的多体绕流.空气动力学学报.2001,19(3):310-317
    [12]李鸿志.炮口装置受力与效率计算.华东工程学院学报.1984(3):1-7
    [13]李鸿志,高树滋.带膛口装置的膛口流场与冲击波形成机理.华东工程学院学报.1979(2):1-26
    [14]尤国钊,魏琪.膛口流场的数值模拟.爆炸与冲击.1989,9(3):254-260
    [15]Schmidt E M, Gion E J, Fansler K S. A parametric study of the muzzle blast from a 20mm cannon. AD-A105531,1981
    [16]Fansler K S, Lyou D H. Attenuation of muzzle blast using configurable mufflers. AD-A206565,1988
    [17]Van der Eerden F J M and Van der Eerden F H A. Simulations and measurements on muzzle blast mitigation with sound absorbing barriers. Noise Control Engineering Journal.2012,60(2):192-201
    [18]Singer I L, Hsieh P Y, Weimer J J, et al. Application of high-speed video and spectroscopy to railgun development. Materials and Manufacturing Processes. 2012,27(8):846-851
    [19]Dillon R E, Nagamatsu H T. An experimental study of perforated muzzle brakes. AD-A139766,1984
    [20]Schmidt E M, Gion E J, Fansler K S. Analysis of Weapon Parameters Controlling the Muzzle Blast Overpressure 5th International Symposium on Ballistics,1981
    [21]Klingenberg G. Experimental investigation of flow development about the muzzle of small caliber guns.Fraunhofer-Institut fur Kurzzeitdynamik.1975
    [22]Heimerl J M, Kilngenberg G. Gun Muzzle Flash and Its Suppression. Proceedings of the Seventh International Symposium on Ballistics.1983
    [23]Ferguson B G and Lo K W. A model-based acoustical signal processing method for the passive ranging of sniper gunfire. The Journal of the Acoustical Society of America. 2012,131(4):3312-3320
    [24]Baca A and Kornfeind P. Stability analysis of motion patterns in biathlon shooting. Human Movement Science.2012,31(2):295-302
    [25]Schyma C. Wounding capacity of muzzle-gas pressure. International Journal of Legal Medicine.2012,126(3):371-376
    [26]Maillie F H. Finite Difference Calculations of the Free-Air Blast Field about the Muzzle and a simple Muzzle Brake of a 105mm.Howiztzer Naval Surface Weapons Center, TR-3002,1973
    [27]Taylor T, Lin T C. A Numerical Model for Muzzle Blast Flow Fields. AIAA,1981
    [28]Wu Y C, Chang H, Tsung T T. Dynamic Characteristics of a Recoil System When Firing Projectiles with Mach 4.4 Muzzle Velocity from a 105 mm Cannon. Journal of Testing and Evaluation.2011,39(4):509-511
    [29]Chevaugeon N, Xin J, Hu P, et al. Discontinuous Galerkin methods applied to shock and blast problems. Journal of Scientific Computing.2005,22-3(1):227-243
    [30]Mizukaki T. Visualization and force measurement of high-temperature, supersonic impulse jet impinging on baffle plate. Journal of Visualization.2007,10(2):227-235
    [31]Chang H, Wu Y C, Tsung T T. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array. The Review of Scientific Instruments. 2011,82(8):084902
    [32]Rehman H, Hwang S H, Fajar B, et al. Analysis and attenuation of impulsive sound pressure in large caliber weapon during muzzle blast. Journal Of Mechanical Science and Technology.2011,25(10):2601-2606
    [33]Hugoniot M. On the diversified movement of a gas compressed in a reservoir which empties freely into the atmosphere. Comptes Rendue,1886
    [34]Kazineky L. Theoretical considerations in regard to the construction of muzzle brakes. Memorial Artillerie Franeaise,1930
    [35]Gabeaud M. The theory of reeoil brakes. Memorial Artillerie Franeaise,1932
    [36]Genti M. A summary of the studies of muzzle brakes. Memoria Artillerie Franeaise,1936
    [37]Schmidt E M, Gion E J, Shear D. Acoustic thermometric measurements of propellant gas temperatures in guns. AIAA 76-643,1976
    [38]Love S E, Grigsby C E, Lee L P, Woodling M J. Experimental and Theoretical Studies of Axisymmetric Free Jets. NASA TR R-6,1959
    [39]Schmidt E M. Muzzle blast loadings up on aircraft surfaces. AIAA 83-0423,1983
    [40]Fansler K S, Schmidt E M. The relationship between interior ballistics:gun exhaust parameters and the muzzle blast over pressure. AIAA 82-0856,1982
    [41]Smith F. A Theoretical Model of the Blast from Stationary and Moving Guns. Royal Armament Research and Development Establishment. Kent, UK. Dec 1974
    [42]Klingenberg G, Mach H, Smeets G. Shock waves of the muzzle flow. Journal of Heat Transfer.1983,150(4):884-888
    [43]Schmidt E M. Survey of Muzzle Blast Research.5th International Symposium on Ballistics. Toulouse, France,1980
    [44]Heimerl J M and Kilngenberg G. Gun muzzle flash and its suppression. Proceedings of the 7th international symposium on ballistics. Hague, Netherlands,1983
    [45]Klingenberg G. Hypothesis on the muzzle flash formation and its suppression. Fraunhofer-Institut fur Kurzzeit dynamic,1983
    [46]Oswatitsch K. Intermediate ballistics. Deutschen Versuchsanstalt fur Luft-und Raumfahrt,1964
    [47]Erdos J I and DelGuidice P. Gas dynamics of muzzle blast. AIAA 1974-532,1974
    [48]Moretti G. Muzzle blast flow and related problems. AIAA 78-1190,1978
    [49]Maillie F H. Finite difference calculations of the free-air blast field about the muzzle and a simple muzzle brake of a 105mm howiztzer. Naval Surface Weapons Center, Rept.TR-3002,1973
    [50]Buell J C.Three-dimensional simulation of STS ignition overpressure. AIAA 1984-1629, 1984
    [51]Widhopf G F, Buell J C, Schmidt E M. Time-dependent near field muzzle brake flow simulations. AIAA 82-0973,1982
    [52]Buell J C and Widhopf G F. Three-dimensional simulation of muzzle brake flowfields. AIAA 84-1641,1984
    [53]Moretti G. A numerical analysis of muzzle blast precursor flow. Polyteehnie Institute of New York Report79-40,1979
    [54]Robert E D. A method of analyzing of perforated muzzle brake performances. New York: Rensselaer Polyteehnie Institute,1983
    [55]Carofano G C. Blast computation using harten's total variation diminishing scheme. Army Benet Weapons Laboratory. Watervliet, NY,1984
    [56]Makinen T and Pertila P. Shooter localization and bullet trajectory, caliber, and speed estimation based on detected firing sounds. Applied Acoustics.2010,77(10):902-913
    [57]唐赛·赛比奇.工程计算流体力学.北京:清华大学出版社,2009
    [58]Crowley A B. Computation of muzzle flow fields using unstructured meshes.19th International Symposium of Ballistics,2001:265-271
    [59]Cayzac R, Alziary T. Intermediate ballistic computations and validations.17th International Symposium of Ballistics,1998:1-8
    [60]Sakamoto K and Matsunaga K. Numerical analysis of the propagating blast wave in a firing range.19th International Symposium of Ballistics,2001:289-292
    [61]Zibarov A V, Babayev D B, Mironov A A. Numerical simulation of 3D muzzle brake and missile launcher flowfileds in the presence of movable objects.20th International Symposium of Ballistics,2002:225-232
    [62]李鸿志,尤国钊.炮口冲击波的形成和分布规律以及对减小冲击波途径的分析.华东工程学院学报.1977(1):26-48
    [63]李鸿志,刘晓利.膛口变能量冲击波特性分析:弹道初始参量的影响.兵工学报.1993,14(3):17-21
    [64]尤国钊.膛口流场数值计算的发展概况和展望.弹道学报.1993,5(2):83-88
    [65]马大为.内含运动物体的非定常流场计算.爆炸与冲击.1991,11(1):31-36
    [66]乐贵高,马大为,冯勇等.某火炮膛口流场数值仿真.兵工学报.2004,25(1):19-22
    [67]张辉,谭俊杰,崔东明.带膛口装置的流场数值模拟.火炮发射与控制学报.2007,28(2):48-51
    [68]姜孝海,李鸿志,范宝春,陈志华.基于ALE方程及嵌入网格法的膛口流场数值模拟.兵工学报.2007,28(12):1512-1515
    [69]代淑兰,许厚谦,孙磊.含动边界的膛口流场数值模拟.弹道学报.2007,19(3):93-96
    [70]代淑兰,许厚谦,肖忠良.带制退器的膛口燃烧流场并行模拟.弹道学报.2009,21(4):84-87
    [71]苏晓鹏,钱林方,戴劲松,王健.膛口装置对双联自动机弹丸飞行姿态影响研究.弹道学报.2009,21(3):35-38
    [72]郁伟,朱斌,张小兵.耦合内弹道过程膛口流场数值与分析.南京理工大学学报.2009,33(3):335-339
    [73]周彦煌,王升晨.实用两相流内弹道学.北京:兵器工业出版社,1990
    [74]金志明.枪炮内弹道学.北京:北京理工大学出版社,2004
    [75]金志明,袁亚雄.内弹道气动力原理.北京:国防工业出版社,1983
    [76]王升晨,周彦煌.膛内多相燃烧理论及应用.北京:兵器工业出版社,1994
    [77]Kuo K K and Koo J H. Transient combustion in mobile gas-permeable propellants. Acta Astronautica.1976(3):573-591
    [78]Kuo K K and Summerfield M. High speed combustion of mobile granular solid propellants:wave structure and the equivalent rankine-hugoniot relation. Proceeding of 15th International Symposium on Combustion,1974:515-527
    [79]Gough P S. The predictive capacity of models of interior ballistics. Proceedings of the 12th JANNAF Combustion Meeting, CPIA,1975
    [80]Gough P S. Zwarts F J. Modeling heterogeneous two-phase reacting flow. AIAA/SAE 13th Propulsion Conference, Oralndo, Florida,1977
    [81]Gough P S. Two dimensional convective flame spreading in packed beds of granular propellant. USA Armament Research and Development Command Ballistic Research Laboratory, MD,1979
    [82]Krier H and Summerfield M. Interior ballistics of guns. American Institute of Aeronautics and Astronautics, New York,1979
    [83]Kulkami A R, Dalal K S, Sharma K C. A study on pressure variation in a turbulent flow. Proceedings of 17th International Symposium on Ballistics. Midrans, South Africa,1998
    [84]Gough P S. The XNOVAKTC code. U.S. Army BRL-CR-627, Paul Gough Associates, Portsmouth, NH,1990
    [85]Gough P S. Interior ballistics modeling:extensions to the one-dimensional XKTC code and analytical studies of pressure gradient for lumped parameter codes. Army Research Laboratory, MD,2001
    [86]袁亚雄,张小兵.高温高压多相流体动力学基础.哈尔滨:哈尔滨工业大学出版社,2005
    [87]陶其恒.涉及身管传热的准一维两相流动及其计算.弹道学报.1997,9(4):66-69
    [88]申越,袁亚雄,张小兵.超高射频武器系统的内弹道一维两相流数值仿真.兵工学报.2005,25(5):600-604
    [89]陆欣.整装式液体随行装药的两相流数值仿真.兵工学报.2001,21(1):26-30
    [90]Jin Z M and Song M. Forming mechanism and numerical simulation of pressure waves in guns.17th International Symposium on Ballistic,1998
    [91]Horst A W and Conroy P J. Flame-spreading process in a small-caliber gun. U.S. Army Research Laboratory Weapons and Materials Research Directorate, MD,2007
    [92]Nussbaum J, Helluy P, Herard J M, Baschung B. Multi-dimensional two-phase flow modeling applied to interior ballistics. Journal of Applied Mechanics of the ASME. 2011,78(5):051016
    [93]郑之初,唐安民,林同骥.低超声速绕球流动的数值模拟.中国科学(A辑).1993,23(7):725-732
    [94]Nath P K. Kineto-Elasto dynamic analysis of mechanisms by finite element method. Mechanism and Machine Theory.1980(15):179-211
    [95]Sneck H J. Normal mode analysis of gun tube dynamics. AD-A16213,1985
    [96]郭锡福.弹丸发射动力学.南京:华东工学院出版社,1988
    [97]王力,谷良闲.导弹助推器分离过程数值模拟研究.航空动力学报.2008,23(2):343-346
    [98]王巍,刘君,刘冰,等.火箭助推器从芯级飞行器动态分离过程的数值模拟.宇航学报.2006,27(4):766-770
    [99]王惠玲,李玉亮,倪鸿礼等.爆炸波与超声速运动物体相互作用的数值研究.实验流体力学.2006,20(2):1-6
    [100]郑之初,雷晓晓.圆球绕前体流场的数值模拟.空气动力学学报.1996,14(1):104-109
    [101]Kovalev P I, Mikhalev AN, Podlaskin A B, et al. The investigation of the aerodynamic properties and flow field of the hypervelocity projectiles at the ballistic range. Experiment and Measurements in Fluid Mechanics.1999(3):10-20
    [102]Warken D and Schilling H. Experimental and theoretical simulation of the flight characteristics of explosively formed6projectiles. Ernst Mach Institute. Freiburg, Germany,1986
    [103]Nichols R H and Denny A G. Numerical simulation of a store in controlled separation. AIAA 99-3128,1999
    [104]郭正,刘君,瞿章华.非结构网格在三维可动边界问题中的应用.力学学报.2003,35(2):140-146
    [105]张来平,徐庆新,张涵信.非结构网格及混合网格复杂无粘流场并行计算方法研究.空气动力学学报.2006,24(2):14-20
    [106]Blazek J. Computational fluid dynamics:principles and applications. ELSEVIER, 2001:81-96
    [107]Wang Z J, Parthasarathy V, Hariharan A. Fully automated Chimera method for multiple moving body problems. AIAA 98-0217,1998
    [108]Zienkiewicz O C and Zhu J Z. A Simple Error Estimator and Adaptive Practical Engineering Analysis. International Journal for Numerical Engineering, 1987,24:337-357
    [109]王巍,刘君,白晓征,等.非结构网格技术及其在超高速飞行器头罩分离模拟中的应用.空气动力学学报.2008,28(1):131-135
    [110]柳军,刘伟,曾明,等.高超声速三维热化学非平衡流场的数值模拟.力学学报.2003,35(6):730-734
    [111]Simkins T E. Transverse Response to Moving Projectile Mass by the Finite Element Method. AD-A014988,1987
    [112]Sawada K and Dendou E. Validation of hypersonic equilibrium flow calculation using ballistics-range data. AIAA 97-034,1997
    [113]Furudate M, Nonaka S, Sawada K. Behavior of two-temperature model in intermediate hypersonic regine. AIAA 99-0223,1999
    [114]Jameson A and Yoon S. LU implicit scheme with multiple grids for Euler equation. AIAA 86-0105,1986
    [115]Nonaka S, Mizuno H, Takayama K. Ballistics range measurement of shock shapes in intermediate hypersonic regine. AIAA 99-1025,1999
    [116]Chu S H. In bore motion analysis of the 155-mm Xm 712 projectile when fired in the M 198 howitzer. AD-A 075943,1979
    [117]Perdreaurille F J. Analysis of the Lateral Motion of an imbalanced Projectile in a rigid Gun Tube. SAND 74-0361,1974
    [118]朱斌.与内弹道耦合的多管发射膛口非定常流场数值模拟.南京:南京理工大学,2006:6-10
    [119]Chu S H. An insight into gun tube vibrations.4th US Army Symposium on Gun Dynamics.1985
    [120]Hang B T. Microwave radar techniques applied to gun accuracy measurements. AD-A185743,1985
    [121]Cler D L and Mark D. Numerical blast wave identification and tracking using solution-based mesh adaptation approach. AIAA 2007-4188,2007
    [122]Soifer M T. Projectile motion in a flexible gun tube. AD-A 140737,1985
    [123]Cox P A. Muzzle motion of the m68 105-mm gun.2nd US Army Symposium on Gun Dynamics.1978
    [124]Penny M. The predicted effect on gun jump due to changes in gun cradle bearing and gun barrel stiffness.4th US Army Symposium on Gun Dynamics,1985
    [125]Jiang Z, Takayama K, Skews B W. Wave interaction following the emergence of a supersonic projectile from a tube.17th International Symposium In Ballistic,1998:9-16
    [126]Schmidt E M. Automatically set ooze and communication link during muzzle exit. AD-A227318,1990
    [127]Cler D L, Chevaugeon N, Shephard M S.CFD application to gun muzzle blast-a validation case study.AIAA 2003-1142,2003
    [128]姜孝海,范宝春,李鸿志.膛口流场动力学过程数值研究.应用数学与力学.2008,29(3):316-324
    [129]Aibarow A V, Babayev D B, Mironov A A. Numerical simulation of 3D muzzle brake and missile launcher flow field in the presence of movable objects.20th International Symposium In Ballistic,2002:226-232.
    [130]Vottis P M, Cipollo, Kathe E. Use of electromagnetic coil launcher to increase muzzle velocity of conventional cannons. ADARCCB-TR-97001,1997
    [131]倪晋平,蔡荣立,田会,等.基于大靶面光幕30mm口径弹丸速度测试技术.测试技术学报.2008,22(1):17-23
    [132]Mirsajedi S M and Multizone A. Moving mesh algorithm for simulation of flow around a rigid body with arbitrary motion. Journal of Fluids Engineering.2006(3):297-304
    [133]张展冀,柏劲松,钟敏,陈森华.自适应网格技术在流体力学界面处理中的应用.爆轰波与冲击波,2005,22(3):97-101
    [134]Beck S D, Nakasone H, Marr K W. Variations in recorded acoustic gunshot waveforms generated by small firearms. Journal of The Acoustical Society of America.2011,129(4):1748-1759
    [135]郑靖森.使用改进型AUSM格式进行膛口流场的数值模拟.南京:南京理工大学,2010
    [136]江坤,王浩,黄明.带炮口制退器火炮发射流场数值模拟.弹道学报,2010,22(3):51-53
    [137]李寒清.结冰机翼自适应非结构化网格生成及流场分析.上海:复旦大学,2011:14-26
    [138]Li X L. Adaptive meshless Galerkin boundary node methods for hypersingular integral equations. Applied Mathematical Modelling.2012,36(10):4952-4970
    [139]Berger M J and Colella P. Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys.,1989,82:64-8
    [140]Berger M J, Leveque R J. Adaptive mesh refinement using wave propagation algorithms for hyperbolic systems. SIAM J. Numeric Analysis,1998,35(8):2298-2316
    [141]王俊杰.基于Euler方程的三维自适应笛卡尔网格在复杂外形上的应用研究.西安:西北工业大学,2005:34-50
    [142]徐怀好.自适应网格上多介质流动问题的数值模拟.上海:复旦大学,2008:18-32
    [143]Lovely D and Haimes R. Shocks detection from computational fluid dynamics results. AIAA 99-3285,1999
    [144]魏惠之,朱鹤松,汪东晖,都兴良.弹丸设计理论.北京:国防工业出版社.
    [145]Cayzac R, Carette E, et al. Advanced 120 mm lightweight tank demonstrator:direct modeling of the interior, intermediate and exterior ballistic as well as the weapon system environment.25th International Symposium on Ballistics. Beijing, China, 2010:505-511
    [146]Tchon K F, Khachan M, Guibault F, Camarero R. Three-dimensional Anisotropic Geometric Metrics Based on Local Domain Curvature and Thickness. Computer-Aided Design.2005,37(2):173-187
    [147]Steward B J, Perram G P, Gross K C. Modeling midwave infrared muzzle flash spectra from unsuppressed and flash-suppressed large caliber munitions. Infrared Physics & Technology.2012,55(4):246-255
    [148]Jiang X H, Fan B C, Li H Z. Numerical investigations on dynamic process of muzzle flow. Applied Mathematics and Mechanics.2008,29(3):351-360
    [149]王成华,汪令羽.超音速大攻角旋转飞行器气动特性数值方法研究.兵工学报.1998,19(1):24-27
    [150]王智杰,陈伟芳,李洁.旋转弹丸空气动力特性数值解法.国防科技大学学报.2003,25(4):15-19
    [151]Mirsajedi S M and Kaimian H. Unsteady flow calculation with a new moving algorithm. AIAA 2006-1153,2006
    [152]鞠玉涛,郑亚,武晓松.弹丸跨声速粘性绕流数值计算.南京理工大学学报.1999,23(3):113-115
    [153]王良明.柔性弹丸飞行动力学研究.兵工学报.1998,19(3):208-213
    [154]Rossouw W J. Spin Deficiencies of spin stabilised projectiles differential spin.25th International Symposium on Ballistics. Beijing, China,2010:293-298
    [155]Burchett B, Peterson A, and Costello M. Prediction of swerving motion of a dual-spin projectile with lateral pulsejets in atmospheric flight. AD-A441073,2005
    [156]Pechier M, Guillen P, Cayzac R. A Combined theoretical-experimental investigation of magnus effects. AIAA 98-32474,1998
    [157]Liou M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds. AIAA 2003-4116,2003
    [158]Schiff L B and Sturek W B. Numerical simulation flow over an ogive cylinder boattail body.18th Aerospace Science Meeting, Pasadena, California January,1980
    [159]Yu Wei, Zhang Xiao-bing. Aerodynamic Analysis of Projectile in Gun System Firing Process. Journal of Applied Mechanics of the ASME.2010,77(5):051406
    [160]张海航,狄长安.某型多管火炮的振动模态分析.兵工学报.2008,29(13):108-111
    [161]Kazemahvazi S, Russell B P, Zenkert D. IMPact of carbon fibre/epoxy corrugated cores. Composite Structures.2012,94(11):3300-3308
    [162]Merlen A, Dyment A. Similarity and asymptotic analysis for gun-firing aerodynamics, Journal of Fluid Mechanics.1991,22(5):497-528
    [163]Numata D, Kikuchi T, Sun M, et al. Experiment study of ejects composition in iMPact phenomenon.26th International Symposium on Ballistics, Miami, FA 2011:821-825
    [164]Steward Bryan J, Gross K C, Perram G P. Optical characterization of large caliber muzzle blast waves. Propellants, Explosives, Pyrotechnics.2011,36(6):564-575