SYNGAP1基因和UPF3B基因与秦巴山区精神发育迟滞的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精神发育迟滞(Mental retardation, MR)是人类精神系统疾病的一种,具有一定的遗传基础。地处陕、川、甘、鄂、豫的秦巴山区是我国主要的贫困地区之一,也是我国精神发育迟滞疾病的高发地区之一,深入研究当地精神发育迟滞的遗传病因,是一件具有实际意义和理论意义的工作。本论文从基因组水平出发,以秦巴山区汉族MR家系人群为研究样本,采用SYNGAP1基因和UPF3B基因作为候选基因进行关联分析,以研究这两个基因与秦巴山区MR的关系。
     SYNGAP1基因编码蛋白为大脑中特异性表达的GTP活性蛋白,通过抑制Ras蛋白活性,对其下游信号传导通路进行调控,同时作为NMDA受体蛋白复合体的重要组成部分,参与神经突触可塑性。(?)JPF3B基因编码蛋白作为剪接后蛋白复合体的一部分,参与mRNA的出核运输和无义密码子介导的mRNA降解(nonsense mediated mRNA decay, NMD)过程。鉴于以上两个基因在人体中的重要功能,我们怀疑它们的有害突变可能与中国秦巴山区汉族人群MR有所关联。本研究设计了一个来自中国秦巴山区MR核心家系人群的,由456份DNA样品组成的研究样本;并选取了SYNGAP1基因上的8个SNP位点和UPF3B基因上的5个SNP位点作为遗传标记,在核心家系样本中进行了关联分析。
     本研究采用PCR-RFLP和PCR-SSCP并结合测序的方法对标记位点进行基因分型,获得分型数据后采用Microsoft Excel 2007软件对家系数据进行录入和统计,使用Haploview 4.1软件进行HWE检验、连锁不平衡分析(LD)及传递不平衡检验(TDT),使用UNPHASE3.13软件进行HRR和HHRR分析,最后使用G*power 2.0软件计算统计效力。
     在对SYNGAP1基因的研究中:分析结果显示8个标记位点均符合HWE平衡;依据LD分析结果划分了两个单倍型块:跨度2kb的由SNP位点rs75045763-rs453590组成的单倍型块1和跨度13kb的由SNP位点rs411136-rs12204193-rs2247385组成的单倍型块2,其余3个SNP位点:rs2076775、rs9394145和rs10807124由于同其他标记位点的连锁程度较低并没有位于划分的单倍型块中;TDT分析结果显示标记位点rs10807124存在显著传递不平衡现象(P=0.0071);HRR分析和HHRR分析中,也显示出该位点的多态性与MR存在阳性相关(PHRR=0.0067,PHHRR=0.0148);其他7个标记位点TDT、HRR、HHRR关联分析结果均显示它们的多态性与MR无关(P>0.05);单倍型分析结果显示,两个单倍型块的多态性也与MR无显著相关。在对UPF3B基因的研究中,分析结果显示5个标记位点均符合HWE平衡;依据LD分析结果划分了一个由SNP位点rs2496207-rs2285552组成的单倍型块,其余3个SNP位点:rs2239963、rs5910682和rs5910686由于同其他标记位点的连锁程度较低并没有位于划分的单倍型块中;TDT分析、HRR分析、HHRR分析以及单倍型分析结果均显示该基因各标记位点和单倍型的多态性与MR无显著相关(P>0.05)。
     本次研究的结论为:SYNGAP1基因的标记位点rs10807124与秦巴山区汉族人群MR相关,提示在该标记位点附近的连锁区域内很可能存在着影响基因功能的突变位点,而这种有害突变很可能是造成秦巴山区人群患有MR病症的遗传原因之一;UPF3B基因的标记位点与秦巴山区汉族人群患有MR病症无关,也可以说该基因不是秦巴山区MR的主要致病基因。当然,本次研所得的结论只是初步结论,需要在日后进行更深一步的研究加以验证。
Mental retardation (retardation, MR), effected by certain genetic factors, is a human mental disorder. Qinba mountain region located at the interspace of Shaanxi, Sichuan, Gansu and Hubei province, is one of the main impoverished regions of China and is also a high-risk area for the mental retardation disease. So, revealing the genectic causes of local mental retardation disease is significant from practical and theoretical points of role. In present study, the SYNGAP1 gene and UPF3B gene were selected as candidate genes, and the 13 SNPS sites were selected as genetic markers, to study the relationship between polymorphism of the above genes and MR risk in the Chinese Han population of Qinba mountain region.
     SYNGAP1 gene encoding protein is a special GTP active protein expressed in brain. It acts by inhibiting the activity of Ras protein, which therefore controls its downstream signaling pathways. SYNGAP1 gene encoding protein also participates in the process of neural synaptic plasticity as an important member of protein complex for the NMDA receptors. UPF3B genetic encoding protein participates in outer nuclear transport process of mRNA and nonsense codon mediated mRNA degradation (NMD) process. In view of the important function of the SYNGAP1 gene and UPF3B gene to human, it is hypothesized that the polymorphism of the two genes may correlate with MR susceptibility of Chinese Han population of Qinba mountain region. A study based on the nuclear pedigree for 456 samples from Chinese Han population of Qinba mountain region was performed, using thirteen SNPs sites in the two genes, with the aim to investigate the relationship between their polymorphism and MR susceptibility.
     The PCR-SSCP, PCR-RFLP and sequencing methods were used in the genotyping of the markers. Later, the nuclear pedigree datas were treated with Microsoft Excel 2007. The Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD) block structure and TDT analysis were performed by Haploview 4.1. The HRR and HHRR analysis were performed by UNPHASE 3.13, and statistical power analysis was performed using the G*Power 2.0 program.
     In the study of SYNGAP1 genes, the results show that the eight markers are all in HWE balance; Linkage disequilibrium (LD) analysis revealed that the rs75045763-rs453590 and rs411136-rs12204193-rs2247385 were in strong LD, separately; The TDT analysis show that the marker rs10807124 was over-transmission from parents to MR offspring (P= 0.0071);HRR analysis and HHRR analysis of rs10807124 also shows positive results (PHRR=0.0067, PHHRR=0.0148); The other seven markers on SYNGAP1 gene are shows negativeresults in HHRR, TDT and HRR analysis (P>0.05);haplotype analysis shows that the polymorphism of the two blocks are not association with the MR in Qinba mountains.In the study of UPF3B genes, the results show that the five markers are all in HWE balance; Linkage disequilibrium (LD) analysis revealed that the rs2496207-rs2285552 were in strong LD; The result shows that all five markers polymorphism are not association with the MR in Qinba mountains in TDT analysis, HRR analysis, HHRR analysis and haplotype analysis (P>0.05).
     The resultes indicate SYNGAP1 gene polymorphism closely correlated with MR risk in Chinese Han population of Qinba mountain region, it was supposed that mutation on this gene lead to MR disease in Qinba mountain region; UPF3B gene polymorphism showed negative correlation with MR desease in Chinese Han population of Qinba mountain region, and mutation on this gene is not a major genetic reason for MR desease. And detail studies are still needed in future.
引文
[1]McLaren J., Bryson S. E. Review of recent epidemiological studies of mental retardation:prevalence, associated disorders, and etiology[J]. Am J Ment Retard, 1987,92(3):.243-254
    [2]张富昌,秦巴山区弱智成因及综合防治研究[M].2005
    [3]龚耀先,戴晓阳。修订韦氏智力量表的简式用法[J].湖南医学院学报,1984,19(4)
    [4]Chelly J., Mandel J. L. Monogenic causes of X-linked mental retardation[J]. Nat Rev Genet,2001,2(9):669-680
    [5]左启华,雷贞武,张志祥等。全国0-14岁儿童智力低下的病因流行病学研究[J].中华医学杂志,994,74(3):134-137
    [6]WHO. Mental retardation:meeting the challenge[R]. WHO Offset Publ,1985, (86): 1-45
    [7]WHO. Sixth report on the world health Situation[R]. Geneva WHO,1980
    [8]Terwilliger J. D., Weiss K. M. Linkage disequilibrium mapping of complex disease: fantasy or reality?[J]. Curr Opin Biotechnol,1998,9(6):578-594
    [9]Gschwend T. P., Krueger S. R., Kozlov S. V., et al. Neurotrypsin, a novel multidomain serine protease expressed in the nervous system[J]. Mol Cell Neurosci, 1997,9(3):207-219
    [10]Motazacker M. M., Rost B. R., Hucho T., et al. A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation [J]. Am J Hum Genet,2007,81(4):792-798
    [11]Higgins J. J., Pucilowska J., Lombardi R. Q., et al. A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation [J]. Neurology,2004,63(10):1927-1931
    [12]Basel-Vanagaite L. Genetics of autosomal recessive non-syndromic mental retardation:recent advances[J]. Clin Genet,2007,72(3):167-174
    [13]Noor A., Windpassinger C., Patel M., et al. CC2D2A, encoding a coiled-coil and C2 domain protein, causes autosomal-recessive mental retardation with retinitis pigmentosa[J]. Am J Hum Genet,2008,82(4):1011-1018
    [14]Garshasbi M., Hadavi V., Habibi H., et al. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation[J]. Am J Hum Genet,2008, 82(5):1158-1164
    [15]Hamdan F. F., Gauthier J., Spiegelman D., et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation[J]. N Engl J Med,2009,360(6):599-605
    [16]Botstein D., Risch N. Discovering genotypes underlying human phenotypes:past successes for mendelian disease, future approaches for complex disease[J]. Nat Genet, 2003,33 Suppl:228-237
    [17]Cardon L. R., Bell J. I. Association study designs for complex diseases[J]. Nat Rev Genet,2001,2(2):91-99
    [18]Schaid D. J., Buetow K., Weeks D. E., et al. Discovery of cancer susceptibility genes:study designs, analytic approaches, and trends in technology[J]. J Natl Cancer Inst Monogr,1999, (26):1-16
    [19]Carlson C. S., Eberle M. A., Kruglyak L., et al. Mapping complex disease loci in whole-genome association studies[J]. Nature,2004,429(6990):446-452
    [20]Tabor H. K., Risch N. J., Myers R. M. Candidate-gene approaches for studying complex genetic traits:practical considerations [J]. Nat Rev Genet,2002,3(5):391-397
    [21]Marchini J., Cardon L. R., Phillips M. S., et al. The effects of human population structure on large genetic association studies[J]. Nat Genet,2004,36(5):512-517
    [22]Laird N. M., Lange C. Family-based methods for linkage and association analysis[J]. Adv Genet,2008,60:219-252
    [23]Laird N. M., Lange C. Family-based designs in the age of large-scale gene-association studies[J]. Nat Rev Genet,2006,7(5):385-394
    [24]Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium:the insulin gene region and insulin-dependent diabetes mellitus (IDDM)[J]. Am J Hum Genet,1993,52(3):506-516
    [25]Terwilliger J. D., Ott J. A haplotype-based'haplotype relative risk' approach to detecting allelic associations [J]. Hum Hered,1992,42(6):337-346
    [26]Tishkoff S. A., Verrelli B. C. Role of evolutionary history on haplotype block structure in the human genome:implications for disease mapping[J]. Curr Opin Genet Dev,2003,13(6):569-575
    [27]马炜楠。单核苷酸多态性的应用[J].中国优生与遗传杂志,2005,13(5):7
    [28]Daly M. J., Rioux J. D., Schaffner S. F., et al. High-resolution haplotype structure in the human genome[J]. Nat Genet,2001,29(2):229-232
    [29]Gillian C. L. Haplotype tagging for the identification of common disease genes[J]. Nature Genetics,2001,29(10):233-237
    [30]Goldstein D. B., Ahmadi K. R., Weale M. E., et al. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses[J]. Trends Genet,2003,19(11):615-622
    [31]Bandos A. I., Rockette H. E., Gur D. A permutation test for comparing ROC curves in multireader studies a multi-reader ROC, permutation test[J]. Acad Radiol, 2006,13(4):414-420
    [32]Marozzi M. A bi-aspect nonparametric test for the two-sample location problem[J]. Computational Statistics and Data Analysis,2004,44:639-648
    [33]荀鹏程,赵杨,易洪刚等。Permutation Test在假设检验中的应用[J].数理统计与管理,2006,25(5):616-621
    [34]Cohen J. Statistical power analusis for the behavioral sciences.[J]. Hillsdle, New Jersey,1988
    [35]Chen H. J., Rojas-Soto M., Oguni A., et al. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase Ⅱ[J], Neuron,1998,20(5):895-904
    [36]Kim J. H., Liao D., Lau L. F., et al. SynGAP:a synaptic RasGAP that associates with the PSD-95/SAP90 protein family[J]. Neuron,1998,20(4):683-691
    [37]Komiyama N. H., Watabe A. M., Carlisle H. J., et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor[J]. J Neurosci,2002,22(22):9721-9732
    [38]Kim J. H., Lee H. K., Takamiya K., et al. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity [J]. J Neurosci,2003,23(4): 1119-1124
    [39]Vazquez L. E., Chen H. J., Sokolova I., et al. SynGAP regulates spine formation[J]. J Neurosci,2004,24(40):8862-8872
    [40]Rumbaugh G., Adams J. P., Kim J. H., et al. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons[J]. Proc Natl Acad Sci U S A,2006,103(12):4344-4351
    [41]Guo X., Hamilton P. J., Reish N. J., et al. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia [J]. Neuropsychopharmacology,2009,34(7):1659-1672
    [42]Hamdan F. F., Daoud H., Piton A., et al. De Novo SYNGAP1 Mutations in Nonsyndromic Intellectual Disability and Autism [J]. Biol Psychiatry,2011
    [43]Hamdan F. F., Gauthier J., Rouleau G. A., et al. [De novo mutations in SYNGAP1 associated with non-syndromic mental retardation] [J]. Med Sci (Paris),2010,26(2): 133-135
    [44]侯筱宇,张光毅。NMDA受体信号复合体中蛋白质的相互作用[J].生命科学, 2003,15(5):274-278
    [45]Shepherd J. D., Huganir R. L. The cell biology of synaptic plasticity:AMPA receptor trafficking[J]. Annu Rev Cell Dev Biol,2007,23:613-643
    [46]Kim M. J., Dunah A. W., Wang Y. T., et al. Differential roles of NR2A-and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking[J]. Neuron,2005,46(5):745-760
    [47]Krapivinsky G., Medina I., Krapivinsky L., et al. SynGAP-MUPPl-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation[J]. Neuron,2004,43(4):563-574
    [48]Rosenberg C., Knijnenburg J., Bakker E., et al. Array-CGH detection of micro rearrangements in mentally retarded individuals:clinical significance of imbalances present both in affected children and normal parents[J]. J Med Genet,2006,43(2): 180-186
    [49]Krepischi A. C., Rosenberg C., Costa S. S., et al. A novel de novo microdeletion spanning the SYNGAP1 gene on the short arm of chromosome 6 associated with mental retardation[J]. Am J Med Genet A,2010,152A(9):2376-2378
    [50]Pena V., Hothorn M., Eberth A., et al. The C2 domain of SynGAP is essential for stimulation of the Rap GTPase reaction[J]. EMBO Rep,2008,9(4):350-355
    [51]Li W., Okano A., Tian Q. B., et al. Characterization of a novel synGAP isoform, synGAP-beta[J]. J Biol Chem,2001,276(24):21417-21424
    [52]Khajavi M., Inoue K., Lupski J. R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease[J]. Eur J Hum Genet,2006,14(10):1074-1081
    [53]邓艳,魏东霞,朱兴全。单核苷酸多态性及其检测方法[J].中国畜牧兽医,2005,32(5):32
    [54]候振平,蒋思文。单核苷酸多态性的研究进展[J].中国畜牧杂志,2004,40(4):45-46
    [55]Brookes A. J. The essence of SNPs[J]. Gene,1999,234(2):177-186
    [56]王萍。单核苷酸多态性研究及其应用[J].中国分子心脏病学杂志,2005,5(5):749[57]萨姆布鲁克J.,拉赛尔D.W.,黄培堂等译.分子克隆实验指南(美)[M].北京:科学出版社,2002
    [58]Orita M., Iwahana H., Kanazawa H., et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proc Natl Acad Sci U S A,1989,86(8):2766-2770
    [59]Newcombe R. G. Interval estimation for the difference between independent proportions:comparison of eleven methods[J]. Stat Med,1998,17(8):873-890
    [60]Barrett J. C., Fry B., Maller J., et al. Haploview:analysis and visualization of LD and haplotype maps[J]. Bioinformatics,2005,21(2):263-265
    [61]Faul F., Erdfelder E., Lang A. G, et al. G*Power 3:a flexible statistical power analysis program for the social, behavioral, and biomedical sciences[J]. Behav Res Methods,2007,39(2):175-191
    [62]Serin G, Gersappe A., Black J. D., et al. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4)[J]. Mol Cell Biol,2001,21(1):209-223
    [63]Noensie E. N., Dietz H. C. A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition[J]. Nat Biotechnol,2001,19(5):434-439
    [64]王黎芳。哺乳动物EJC的研究进展[J].国外医学分子生物学分册,2002,24(6):333-337
    [65]Hentze M. W., Kulozik A. E. A perfect message:RNA surveillance and nonsense-mediated decay[J]. Cell,1999,96(3):307-310
    [66]Palacios I. M., Gatfield D., St Johnston D., et al. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay[J]. Nature,2004, 427(6976):753-757
    [67]Dahlseid J. N., Lew-Smith J., Lelivelt M. J., et al. mRNAs encoding telomerase components and regulators are controlled by UPF genes in Saccharomyces cerevisiae[J]. Eukaryot Cell,2003,2(1):134-142
    [68]Gonzalez C. I., Bhattacharya A., Wang W., et al. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae[J]. Gene,2001,274(1-2):15-25
    [69]Couttet P., Grange T. Premature termination codons enhance mRNA decapping in human cells[J]. Nucleic Acids Res,2004,32(2):488-494
    [70]Maquat L. E., Carmichael G. G. Quality control of mRNA function [J]. Cell,2001, 104(2):173-176
    [71]Nagy E., Maquat L. E. A rule for termination-codon position within intron-containing genes:when nonsense affects RNA abundance[J]. Trends Biochem Sci,1998,23(6):198-199
    [72]Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells[J]. Annu Rev Biochem,1996,65:693-739
    [73]Lykke-Andersen J., Shu M. D., Steitz J. A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon[J]. Cell, 2000,103(7):1121-1131
    [74]Kashima I., Yamashita A., Izumi N., et al. Binding of a novel SMG-1-Upfl-eRFl-eRF3 complex (SURF) to the exon junction complex triggers Upfl phosphorylation and nonsense-mediated mRNA decay[J]. Genes Dev,2006,20(3): 355-367
    [75]Gehring N. H., Kunz J. B., Neu-Yilik G., et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements[J]. Mol Cell,2005,20(1):65-75
    [76]Chan W., Gudikote J. P., Wilkinson F. M. TCR nonsense-mediated decay is insensitive to UPF3b depletion.[J]. Eukaryotic mRNA Processing,2005, NY: ColdSpringHarbor
    [77]Garneau N. L., Wilusz J., Wilusz C. J. The highways and byways of mRNA decay[J]. Nat Rev Mol Cell Biol,2007,8(2):113-126
    [78]Holbrook J. A., Neu-Yilik G., Hentze M. W., et al. Nonsense-mediated decay approaches the clinic[J]. Nat Genet,2004,36(8):801-808
    [79]Frischmeyer P. A., Dietz H. C. Nonsense-mediated mRNA decay in health and disease[J]. Hum Mol Genet,1999,8(10):1893-1900
    [80]Culbertson M. R. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer[J]. Trends Genet,1999,15(2):74-80
    [81]Stephenson L. S., Maquat L. E. Cytoplasmic mRNA for human triosephosphate isomerase is immune to nonsense-mediated decay despite forming polysomes[J]. Biochimie,1996,78(11-12):1043-1047
    [82]Fryns J. P., Buttiens M. X-linked mental retardation with marfanoid habitus[J]. Am J Med Genet,1987,28(2):267-274
    [83]Lujan J. E., Carlin M. E., Lubs H. A. A form of X-linked mental retardation with marfanoid habitus[J]. Am J Med Genet,1984,17(1):311-322
    [84]Opitz J. M., Kaveggia E. G. Studies of malformation syndromes of man 33:the FG syndrome. An X-linked recessive syndrome of multiple congenital anomalies and mental retardation [J]. Z Kinderheilkd,1974,117(1):1-18
    [85]Tarpey P. S., Raymond F. L., Nguyen L. S., et al. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation [J]. Nat Genet,2007,39(9):1127-1133
    [86]Gehring N. H., Neu-Yilik G., Schell T., et al. Y14 and hUpf3b form an NMD-activating complex[J]. Mol Cell,2003,11(4):939-949
    [87]Kim V. N., Kataoka N., Dreyfuss G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex[J]. Science,2001, 293(5536):1832-1836
    [88]Kunz J. B., Neu-Yilik G., Hentze M. W., et al. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation[J]. RNA,2006,12(6):1015-1022
    [89]Laumonnier F., Shoubridge C., Antar C., et al. Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism[J]. Mol Psychiatry,2010,15(7):767-776
    [90]Addington A. M., Gauthier J., Piton A., et al. A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders[J]. Mol Psychiatry,2011,16(3):238-239