人类MHCⅡ、Ⅲ区域精神分裂症相关基因的遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类基因组序列提供了人类生命过程中的全部遗传信息,作为生命背景的一个特有的参照物,将大大促进下个世纪人类生物学和医学的进展。人类基因组计划是将人类的基因组DNA序列分为大小为150-200碱基片段,装载到定位重叠的细菌克隆中,力求每个克隆序列的准确率大于99.9%。这种基因序列的可参照性,特别是最近研究较多的单核苷酸多态性(SNP),为研究人类基因序列变异提供了基础。人类基因组序列是基于少数人的草图,反映人类基因组的稳定性的一面,未反映变异性的一面。有关人类的信息可归于2个方向,纵向人类基因组测序计划是绘制完成全部核苷酸序列的检测;横向则是在基因特异位点上的序列变化即SNP。SNP分型是一种十分有效的基因分析工具,能帮助我们揭示在基因中某些特殊位点和许多疾病的关系。基因组中SNP的发生率大约为1个SNP/Kb。近期广泛进行的发现定位SNP并建立SNP基因图谱的工作,可以提供一个对所有基因的完全性的描述。SNP做基因分析的优点是可以提供一套在致病基因内部或者附近的标志,同时位于基因内部的SNP更可能影响蛋白质的结构或表达水平。SNP的遗传性稳定,数量大,有希望迅速获得大量有效型SNP来做遗传风险因子分析。通过新定位的基因产物比较和已知功能蛋白的同源性分析,有助于推测并检验这些基因的生物学功能。随着对基因序列及其突变性的认识的深入,人类能够更精确地定位越来越多的常见人类复杂疾病的易感基因。如果充分识别了那些控制基因表达的序列,人类就能够对自身基因的功能有一个更详尽的理解。通过基因序列比较,我们还可以检测基因在个别组织的表达情况,通过比较不同种属之间的相应基因序列,可以识别那些在进化中高度保守的区域。这些研究都大大加速了对人类基因序列的解释和翻译。
    精神分裂症是一种常见的病因尚未完全阐明的精神系统疾病。发病率约为1%。多起病于青壮年,常有特殊的思维、知觉、情感和行为等多方面的障碍和精神活动的不协调。精神分裂症作为特殊的疾病,给社会和家庭带来了严重的经济和精神上的负担。因此,明确其发病机制是目前迫切需要解决的重大课题。
    
    目前,通过连锁研究发现1q21-22、5q31-33、6p24-21、6q25-26、8p22-21、10p11-15、13q14-33 及22q11-13等染色体区域可能含有精神分裂症易感基因。其中第6号染色体自Kendler在1994年首次发现其短臂可能存在易感基因之后,Straub等人进一步研究证实6p24-22区与精神分裂症连锁,并发现最显著性位点分别是D6S296(P=0.00001)、D6S274(P=0.004)及D6S285(P=0.006)。2000年Wei和 Hemmings首次报道第6号染色体短臂人类主要组织相容性复合体(MHC)区域NOTCH4基因及其附近区域可能与精神分裂症密切相关。此后,许多学者对此区域做了重复性研究,也得到了类似的结果。本研究在上述研究的基础上,选择人类第6号染色体MHCⅡ、Ⅲ 类基因区为精神分裂症易感基因候选区,以中国汉族精神分裂症患者和他们的健康父母组成的核心家系为研究对象,利用连锁不平衡分析方法,在ADR、TSBP、NOTCH4和TNXB基因上构建SNP连锁不平衡图,检测该区域内是否存在精神分裂症易感位点。在技术路线上,遵循全基因组扫描染色体阳性区域→基因图→SNPs图→RFLP(限制性片段长度多态)图这样一个基本研究过程。用PCR-RFLP方法检测SNPs基因型,采用SPSS统计学软件管理和分析基因分型数据,用拟合优度卡方检验验证每个SNP基因型在抽样群体中的分布是否符合Hardy-Weinberg平衡。用EH软件分析两个SNPs之间的连锁不平衡程度。利用单倍体相对风险(HRR)和传递不平衡检验(TDT)方法分析单位点SNP数据,用Transmit软件分析由两个以上SNPs构成的单倍型数据。此外,通过临床亚组分析,证实遗传异质性的存在,通过用来源不同的核心家系重复阳性位点,排除假阳性结果,探讨决定精神分裂症的易感基因。
    患者均为吉林省四平市精神病院、长春市凯旋精神病院、汽车厂职工医院及北京大学第六医院的住院病人。依据ICD-10的精神分裂症诊断标准,精分症患者和他们的健康父母双亲组成的124个核心家系,共372名研究对象。以父母双亲传递给患病子女的等位基因为疾病基因,以未传递的等位基因为对照基因。在每个遗传标记位点,先分析50~80个核心家系,发现阳性位点时,用来源不同的核心家系进行重复。通过http://www.ncbi.nlm.nih.gov/、http://www.ncbi.nlm.nih.gov/SNP及http://snp.cshl.org/等人类基因组数据库,确定与疾病相关的染色体阳性区域内候选基因和含有限制性酶切位点的SNPs。
    1.Hardy-Weinberg平衡检验结果
    采用SNP Alyze2.0遗传学软件进行Hardy-Weinberg平衡检验。父母组和患者组的每个SNP基因型在抽样群体中的分布均符合Hardy-Weinberg平衡(P>0.05),说明该样品池适合遗传学分析。
    
    2.SNPs与精分症的相关性分析
    2.1 传递不平衡检验(TDT)分析结果
    对父母双亲至少一方为杂合子的核心家系进行TDT检验,发现NOTCH4基因SNP108位点由父母传递给患病子女的等位基因频率偏离50%的期望值(P<0.05),说明NOTCH4基因与精分症相关联。而ADR、TSBP、TNXB基因与精分症无关联。
    2.2 单倍体相对风险(HRR)分析结果
The sequence of Human Genome Project (HGP) includes all the informations of the course of life of human beings. It will promote the advance of biology and medicine greatly in next century as a special control of groundback of life. For Human Genome Project planning digested human gene DNA sequence into many 150-200bp fragments, and reconstructed into the germ clone and to be sure the accuracy is over 99.9%. Single nucleotide polymorphism (SNP) provides the basis of the research of variations of human gene sequence. The sequence of Human Genome Project is a draft coming from a few people and it can reflect the stable aspects of human genome, but it can’t reflect the varied aspects of human genome. SNP is a very efficient gene analyse tool and it can help us explore the relationships between some special sites and many diseases. The occurrence rate of SNP is 1SNP/kb. Mapping and constructing the SNP map can provide a complete description of all the genes. It is beneficial to elucidate the difference of phenotype and susceptibility to disease of individual person. On the basis of high density and high polymorphisms SNP map, genome scanning and association study are used to screen for more relative genes of complex diseases. It makes a great progress in mapping the susceptibility genes of polygenic disease. These studies will accelerate the pace of the description and translation of the sequence of Human Genome Project greatly.
    Schizophrenia is a common mental disorder with 1% of the life-time prevalence in the general population worldwide. Schizophrenia is mostly
    
    
    present special thinking, sense, feelings and behavior disorder. It brings heavy burden to society and family, so how to declare its mechanism is the most urgent important study filed. Epidemiological data demonstrate that schizophrenia is not a simple Mendelian disease, but it looks like a complex disease with a polygenic mechanism. At present, Genome-wide scanning shows the susceptibility genes linkage findings on some chromosome regions, such as 1q21-22, 5q22-23, 6p24-21, 8p22-21, 13q14-33 and 22q11-12 .Our study has focused on identifying the candidate susceptibility genes on the MHCⅡ,Ⅲ region of chromosome 6 using a family-based LD analysis. The family trios consist of healthy fathers, healthy mothers and affected offspring with schizophrenia. Technique route was followed in such a way that from positive region determined by genome scanning to gene map, and SNP-based LD map. The SNP-based LD map was constructed near the NOTCH4 gene and the TNXB gene. 8 SNPs were chosen in this region spanning 101365bp. SNPs were genotyped using PCR-based RFLP analysis. Genotyping data were put into the SPSS database. The Hardy-Weinberg (H-W) equilibrium was tested for genotype frequency distributions of SNPs using the goodness of fit test. The LD between paired SNPs was estimated with the EH program. The haplotype relative risk (HRR) test and the transmission/disequilibrium test (TDT) were applied to detect allelic association between an SNP and schizophrenia. Haplotypes consisting of two or more SNPs were tested by the program Transmit (Version2.5). To elucidate genetic heterogeneity, in addition, schizophrenic patients were sub-grouped based on their clinical symptoms and the genetic association between SNPs and clinical subgroups was then analyzed. Positive loci were replicated with different family trios to rule out the false positive results. A total of 120 family trios of Chinese Han decent, consisting of fathers, mothers and affected offspring with schizophrenia, were recruited. Patients were diagnosed as having schizophrenic illness by the ICD-10 criteria. Eight SNPs included SNP99 (rs8084), SNP100 (rs2143466), SNP101 (rs387071), SNP102 (rs367398), SNP103 (rs915894), SNP104 (rs422951), SNP108 (rs1009382) and SNP120 (rs520688). The following is the details of major results obtained in this study.
    
    1. The H-W equilibrium:
    The goodness of fit test showed that genotype frequency distributions of 8 SNPs were not deviated from the H-W equilibrium,
引文
朱平. 临床分子遗传学. 北京医科大学出版社. 2002,59~64.
    Rowen L, Mahairas G, Hood L. Sequencing the human genome. Science.1997, 278: 605~607.
    田志刚.人类基因组计划、后基因组研究与基因医学----基因诊断、基因制药与基因治疗的新世纪. 山东医科大学学报 (社会科学版). 2000, 3:1~5.
    Dib C, Faure S, Fizames C, et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996,380:152~154.
    Kruglyak L.The use of a genetic map of biallelic markers in linkage studies. Nat Genet. 1997, 17:2124~2128.
    Collins F S, Guyer M S, Charkravarti A. Variation on a theme: cataloging human DNA sequence variation. Science. 1997, 278: 1580~1581.
    Haluska M K, Fan J B, Bentkey K, et al. Patterns of single nucleotide polymorphisms in candidate genes for blood pressure homeostasis. Nat Genet. 1999, 22:239~247.
    Pinnisi E. A closer look at SNPs suggests difficultied. Science. 1998,281:1878~1792.
    Cargill M, Altshuler D, Ireland J, et al. Characterization of single nucletotide polymorphisms in coding regions of human genes. Nature Genetics. 1999, 22:231~238.
    Ito E, Yanagisawa Y, Iwahashi Y, et al. A core promoter and a frequent single nucletide polymorphism of the mismatch repair gene Hmlh1. Biochem Biophys Res Commun. 1999, 256: 488~494.
    Nebert D W. Pharmacogenetics and pharmacogenomics: Why is this relevant to the clinical geneticist. Clin Genet. 1999, 56: 247~583.
    Collins FS, Guyer MS, Charkrabarti A. Variations on a theme: cataloging human DNA sequence variation. Science. 1997,278:1580~1581.
    Iollins FS, Patrinos A, Jordan E, et al. New goals for the U.S. Human Genome Project: 1998-2003. Science. 1998,282:682~689.
    Harshall E. ‘Playing chicken' over gene markers. Science. 1997,278:2046~2048.
    Pease AC, Solas D, Sullivan EJ, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994,91:5022~5026.
    
    Lipshutz RJ, Morris D, Chee M, et al. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques. 1995, 19:442~447.
    Wang DG, Fan JB, Siao CJ, Berno A, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998,280 :1077~1082.
    Pinnisi E. Sifting through and making sense of genome sequences. Science. 1998,280:1692~1693.
    Fong KY, Boey ML.The genetic of systemic lupus erythematosus [J]. Ann Acad MED Singapore. 1998, 27(1): 42~68.
    Galeazzi M, Annunziata P, Sebastiani GD, et al. Antiganglioside antibodies in a large cohort of European patients with systemic lupus erythematosus: clinical, serological, and HLA class II gene associations [J]. European Concerted Action on the Immunogenetics of SLE. J Rheumatol. 2000,27(1): 135~141.
    Chen QY, Nadell D, Zhang XY, et al. The human leucocyte antigen HLA DRB3/DQA1 haplotype is associated with Graves Disease in African Americans [J]. J Clin Endocrinol Metab. 2000, 85 (4): 1545~1549.
    Tsuchiya N, Shiota M, Yamaguchi A et al. Elevated serum level of soluble HLA class I antigens in patients with systemic lupus erythematosus. [J]. Arthritis Rheum. 1996; 39 (5): 792~796.
    Skarsvag S, Hansen KE, Holst A, et al. Distribution of HLA class II alleles among Scandinavian patients with systemic lupus erythe-matosus (SLE): an increased risk of SLE among class II homozygotes? [J] Tissue Antigens. 1992,40(3): 128~133.
    Steinsson K, Jonsdittir S, Arason G, et al .A study of the association of HLA DR, DQ, and complement C4 alleles with systemic lupus erythematosus in Iceland. [J]. Ann Rheum Dis. 1998, 57(8): 503~505.
    Lavad I, Madsen HQ, Perrild H, et al. HLA class II association in juvenile Graves disease: indication of a strong protective role of the DRB*0701,DQA1*0201 haplotype [J]. Tissue Antigens. 1997,50(6): 639~641.
    Chen QY, Nadell D, Zhang XY, et al. The human leukocyte antigen HLA DRB3*020/DQA1*0501 haplptype is association with Graves Disease in African Americans [J]. J Clin Endocrine Metab. 2000,85(4): 1545~1549.
    曹林森. HLA多态性与HIV感染及AIDS发病相关性的研究[J]. 中华微生物学和免疫学杂志. 1997,17(5): 356~358.
    
    28. Malhotra U, Holte S, Dutta S, et al. Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment[J]. J Clin Invest. 2001,107(4):505~517.
    罗军敏. HLA 与免疫性疾病的研究进展.遵义医学院学报. 2003,26(1):88~91.
    Wright P, Sham PC, Gilvarry CM, et al. Autoimmune disorders in the first degree relatives of schizophrenia and control subjects. Sxhizophr Res. 1996,20:261~267.
    Nimgapnkar VL, Ganguli R, Rudert WA, et al. A negative association of schizophrenia with an allele of the HLA DQB1 gene among African-Americans. Schizpphre Res. 1992,8: 199~209.
    Straub RE, MacLean CJ, O'Neill FA, et al. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet. 1995,11:287~293.
    Wei J, Hemmings GP. The Notch 4 locus is associated with susceptibility to schizophrenia. Nature Genet. 2000,25:376~377.
    34. Tazi-Ahnini R, Timms JM, Cox A, et al. Identification of novel single nucleotide polymorphisms within the NOTCH4 gene and determination of association with MHC alleles. Eur J Immunogenet. 2003 Apr; 30(2):101~105.
    Skol AD, Young KA, Tsuang DW, et al. Modest evidence for linkage and possible confirmation of association between NOTCH4 and schizophrenia in a large Veterans Affairs Cooperative Study sample. Am J Med Genet. 2003 Apr 1;118 B(1):8~15.
    Xingguang Luo, Tim A. Klempan, NOTCH4 gene haplotype is associated with schizophrenia in African Americans. Biological Psychiatry. 2004,55(2): 112~117.
    Holmans P. Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet. 1993,52:362~374.
    Schultz S K, Andreasen NC. Schizophrenia. Lancet.1999, 353:1425~1430.
    39. 金卫东, 刘小林. 精神分裂症. 北京:中国医药科技出版社. 1998, 33.
    Harrison PJ, Owen MJ.Gene for schizophrenia? Resent findings and their pathophysiological Implications. Lancet. 2003,361:417~419.
    41. 赵靖平, 杨德森. 精神分裂症单胺病理假说的药理学研究进展. 国外医学精神病学分册. 1996, 26:140.
    42. 蔡汤基, 翁永振.. 精神分裂症病因、诊断、治疗和康复. 北京:科学出版社. 2000, 50~54.
    Hsuang M. Biol Psychiatry. Schizophrenia: genes and environment. 2000,47:210~220.
    Gurling HM, Kalsi G, Brynjolfson J, et al. Genomewide genetic linkage analysis
    
    
    confirms the presence of susceptibility loci for schizophrenia,on chromosome 1q32.5, 5q33.2 and 8p21-22 and 11q23.3 and 20q12.1-11.23. Am J Hum Genet. 2001,68:661~665.
    Kirov G, Murray R. The molecular genetics of schizophrenia: progress so far. Mol Med Today. 1997,3:124~130.
    Blouin JL, et al. Schizophrenia susceptibility loci on chromosome 13q32 and 8p21. Nat Genet. 1998,20:70~74.
    Pulver AE. Search for schizophrenia susceptibility genes. Biol Psychiatry. 2000,47:221~225.
    Gainnetdinov RR, Mohn AR, Garon MG, et al. Genetic animal models: focus on schizophrenia. Trend Neurosci. 2001,24:527~530.
    Hodgkinson KA, Murphy J, O’Neil S, et al. Genetic counseling of schizophrenia in the era of molecular genetics. Can J Psychiatey. 2001,46:123~130.
    Cao Q, Martinez M, Zhang J, et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics. 1997, 43: 1~6.
    Gershon ES, Badner JA, Goldin LR, et al. Closing in on genes for manic-depressive illness and schizophrenia. Neuro psycho pharmacology. 1998;18:233~242.
    Morrow B, Goldberg R, Carlson C, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet. 1995,56:1391~1403.
    Gibson S, Hawi Z, Straub RE, et al. HLA and schizophrenia: refutation of reported associations with A9DR4 and DQ0602. Am J Med Genet. 1999, 88:416~421.
    Crowe R, Thompson J, Flink R, et al. HLA antigens and schizophrenia. Arch Gen Psychiatry. 1979,30: 231~233.
    Hawi J, Abi-Dargham A, et al. Increased baseline ocupaney of D2receptor by dopamine in schizophrenia. PNAS. 2000,97:8104~8201.
    Goldberg R, Motzkin B, Marion R, et al. Velo-cardio-facial syndrome: a review of 120 patients. Am J Med Genet. 1993,45:31~39.
    Bruzustawicz LM, Hodgkinson KA, Chow EWC, et al. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science. 2000,288:678~683.
    Murphy KC, Jones LA, Owen MJ. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Psychiatry. 1999,56:940~945.
    
    Bennett RL, et al. Indentification of an intestinal deletion in an adult female with schizophrenia, mental retardation,and dysmorphic features:further support for a putative schizophrenia susceptibility locus at 5q2-23. Am J Genet. 1997,61:1450~1455.
    William J, Mcguffin P, Nothen M, et al. Meta-analysis of association between the -HT a receptor T102C polymorphism and schizophrenia. Lancet. 1997,349:1221~1225.
    Meyer J, Huberth A, Ortega G, et al. A missense mutation in anovel gene coding a putative cation channel is associated with catatonoc schizophrenia in a large pedigree. Mol Psychiatry. 2000,47:221~226.
    Karayiorgou M, Morris MA, Morrow B, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A. 1995,92:7612~7616.
    Weeks DE, Lange K.The affected-pedigree-member method of linkage analysis. Am J Hum Genet. 1988,42:315~326.
    Uolmans P. Detecting gene-gene interactions using affected sib pair analysis with covariates. Hum Hered. 2002,53:92~102.
    Uolmans P. Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet. 1993,52:362~374.
    66. 戴亚美.多基因遗传病易感基因的遗传定位. 国外医学遗传学分册. 1999, 22: 330~333.
    Thomson G. Mapping disease genes: family-based association studies. Am J Hum Genet.1995,57:487~498.
    Hellodi L, Bussoleni C, Scorza-Smeraldi R, et al. Family study of schizophrenia: exploratory analysis for relevant factors. Schizopr Bull. 1986,12:120~128.
    Hichard S, Spielman, Warren J, Ewwns. The TDT and other family-based for linkage disequilibrium and association. Am J Genet. 1996,59:983~989.
    Brzustowicz LM, Hodgkinson K.A., Chow E.W, et al. Location of a major susceptibiltity locus fro familial schizophrenia on chromosome 1q21-22. Science. 2000,288:678~682.
    Kunugi H, Vallada HP, Sham PC, et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatry Genet. 1997,7:97~101.
    Murphy KC, Jones LA, Owen MJ. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Psychiatry. 1999,56:940~945.
    
    Collins FS, Patrinos A, Jordan E, et al. New goals for the U.S. Human Genome Project: 1998-2003. Science. 1998,282:682~689.
    Marshall E. ‘Playing chicken' over gene markers. Science. 1997,278:2046~2048.
    Spurlock G, Williams J, McGuffin P, et al. European Multicentre Association Study of Schizophrenia: a study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. Am J Med Genet. 1998,81:24~28.
    Breen G, Brown J, Maude S, et al. 141 C del/ins polymorphism of the dopamine receptor 2 gene is associated with schizophrenia in a British population. Am J Med Genet. 1999,88:407~410.
    Kennedy JL, Basile VS, Macciardi FM. Chromosome 4 Workshop Summary: Sixth World Congress on Psychiatric Genetics, Bonn, Germany. Am J Med Genet. 1999,88:224~228.
    Milunsky J, Huang XL, Wyandt HE, et al. Schizophrenia susceptibility gene locus at Xp22.3. Clin Genet. 1999, 55: 455~460.
    Gottesman II, Moldin SO. Schizophrenia genetics at the millennium: cautious optimism. Clin Genet.1997,52:404~407.
    Lindholm E, Ekholm B, Balciuniene J, et al. Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am J Med Genet. 1999,88:369~377.
    张咸宁,江三多,乐燕萍等.精神分裂症与D6S470、D6S274、D6S296和D6S1755多态性的关联分析.中华医学杂志. 2001,19:387~291.
    Woychik RP, Klebig ML, Justice MJ, et al. Functional genomics in the post-genome era. Mut Res. 1998,400:3~14.
    Jacquet H, Raux G, Thibaut F, et al. PRODH mutation and hyperprolinemia in a subset of schizophrenia patients. Hum Mol Genet. 2002,11(19):2243~2249.
    Liu H, Health HC, Sobin C, et al. Genetic variation at the 22q11 PRODH/DGCR6 locus presents an unusual patterns and increase susceptibility to schizophrenia. Proc Natl Acad Sci, USA. 2002,99(6):3717~3722.
    Rreifuss FE. Classification of epileptic seizure and epilepsies. Pediatric Clinics of North America. 1989,36:256~279.
    Goodfellow PN, Seften L, Farr CJ. Genetic maps. Philos Trans R Soc Lond B Biol Sci. 1993,339:139~146.
    Reimer NB, Sercice SK, Slatkin M. Expanding on population studies. Nat Genet.
    
    
    1997,17:1175~1182.
    Straub RE, MacLean CJ, O'Neill FA,et al. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet. 1995,11:287~293.
    Wei J, Hemmings GP. The Notch4 locus is associated with susceptibility to schizophrenia. Nature Genet. 2000,25:376~377.
    Gottesman II, Moldin SO. Schizophrenia genetics at the millennium: cautious optimism. Clin Genet. 1997,52:404~407.
    Ddholm E, Ekholm B, Balciuniene J, et al. Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am J Med Genet. 1999,88:369~377.
    Pulver AE, Lasseter VK, Kasch L, et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet. 1995,60:252~260.
    张咸宁,江三多,乐燕萍等. 精神分裂症与D6S470、D6S274、D6S296和D66174多态性的关联分析. 中华医学杂志. 2001, 19:387~391.
    Sugaya K, Fukagawa T, Matsumoto K, et al.Three genes in the MHC class Ⅲ region near the junction with the class Ⅱ: genes for receptor of advanced glycosylation end products, PBX2 homeobox gene and a Notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics. 1994, 23:408~419.
    Uyttendaele H, Marazzi G, Yan Q, et al. Notch4/int3, amammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development. 1996,122:2251~2259.
    Ando A, Shigenari A, Naruse TK, et al. Triplet repeat polymorphism within the NOTCH4 gene located near the junction of the HLA class II and class III regions in narcolepsy. Tissue Antigens. 1997, 50(6):646~649.
    Swift-Scanlan T, Lan TH, Fallin MD, et al. Genetic analysis of the (CTG)n NOTCH4 polymorphism in 65 multiplex bipolar pedigrees. Psychiatr Genet. 2002,12(1): 43~47.
    Carmine A, Chheda MG, Jonsson EG, et al. Two NOTCH4 polymorphisms and their relation to schizophrenia susceptibility and different personality traits. Psychiatry Genet. 2003 , 13(1):23~28.
    Iiroshi Ujike, Yasushi Takehisa, Manabu Takaki. NOTCH4 gene polymorphism and
    
    
    susceptibility to schizophrenia and schizoaffective disorder. Neuroscience Letters. 2001,301(1): 41~44.
     张萱. 人类MHC class Ⅲ 区域精神分裂症相关基因的遗传学研究. 吉林大学博士论文. 2003.
    Erickson HP. Tenascin-R and Tenascin-X: a family of talented proteins in search of functions. Curr Opin Cell Biol. 1993.5:869~876.
    Wei J, Hemmings GP. TNXB locus maybe a candidate gene predisposing to schizophrenia. Am J Med Genet. 2004,125(1): 43~49.
    Cargill M, Altshuler D, Ireland J, et al. Characterization of single nucletotide polymorphisms in coding regions of human genes. Nature Genetics. 1999, 22:231~238.
    Ito E, Yanagisawa Y, Iwahashi Y, et al. A core promoter and a frequent single nucletide polymorphism of the mismatch repair gene Hmlh1. Biochem Biophys Res Commun. 1999, 256: 488~494.
    Inisi E. Sifting through and making sense of genome sequences. Science. 1998,280:1692~1693.
    Roitt I. Essential Immunology [M]. 8th ed. Oxford: Blackwell Scientific Publications. 1994.