人类染色体13q32区域精神分裂症相关基因的遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类基因组计划是人类认识自我的伟大科学工程,计划的目标是测定人类基因组的全部序列,从而通过解读全部遗传信息,阐明人类基因组及所有基因的结构和功能,揭开人类生命的奥秘。
    人类基因组是一个十分稳定却又存在各种变异的体系。不同种族、群体和个体都有46条染色体,有相同数目的基因和基因分布,也有基本相同的核苷酸序列。这种基因组结构的稳定性保证了人类作为一个物种的共同性和稳定性。在长期进化的过程中,基因组DNA序列又不断发生变异,其中一些变异被保存下来,导致了不同种族、群体和个体间基因组的差异和多态性。人类基因组计划的最伟大成就之一就是发现数以百万计的多态性遗传标记,众多的多态性遗传标记不仅有助于基因的鉴别和定位,在整个基因组水平上探讨基因与基因、基因与环境的相互作用机制,而且对于揭示与遗传因素密切相关的人类重大疾病(如肿瘤、心脑血管疾病、神经与精神性疾病)的遗传本质具有重要意义,为人类最终在基因水平上预防、诊断和治疗疾病奠定了重要基础。
    人类基因组中,最常见的DNA序列变异形式是单核苷酸多态性(SNP),约占90%左右。至今已发现超过15000个SNPs并保存到公共数据库。SNPs以其丰富、稳定和容易判定等特点逐步取代微卫星成为研究基因组多样性和识别、定位疾病相关基因的新一代遗传标记。它不但有助于解释个体的表型差异、不同群体和个体对疾病,特别是对复杂疾病易感性的差异,对各种药物反应性、耐受性的差异及对环境因子反应性的差异,而且通过建立序列变异与表型、序列变异与疾病风险之间的关系,将复杂疾病的预防、诊断和治疗置于坚实的遗传学基础上,从而使HGP给人类健康带来实际的利益。
    精神分裂症是一种以基本个性改变,思维、情感和行为的分裂,精神活动与环境不协调为主要特征的精神疾患,是人类面临的最为严重的疾病之一。在全世界范围内终生患病率接近1%(种族、地域、文化等差异不显著)。精神分裂症的严重之处在于:不仅给患者本人造成终身的痛苦,这种痛苦除来自疾病本身的折磨外,还来自于社会经济地位的下降、社会的歧视及治疗药物的副作用等;而且给家庭和社
    
    
    会造成长期沉重的负担,精神分裂症约占全球疾病总负担的2.8%,占用大量的医疗卫生资源。因此,确定精神分裂症的病因并在基因水平上预防和治疗疾病是当前医学研究中的重大课题。
    遗传流行病学研究证实,精神分裂症与遗传因素关系密切,但并非经典的孟德尔单基因遗传疾病,不是由一对显性或隐性基因所导致,而是多对微效基因所产生的协同作用,属于多基因遗传的人类复杂疾病。全基因组扫描连锁分析及连锁不平衡研究为筛检精神分裂症易感基因提供了强有力的研究手段,人类基因组计划已构建和正在构建的遗传图、物理图、基因图、DNA序列图、SNP图和单倍型图为定位精神分裂症易感基因提供了强有力的研究工具。目前,精神分裂症易感基因研究已经取得了较大进展,许多研究报道证实1q21-22、5q31-33、6p21-24,6q25-26、8p21-22、10p11-15、13q14-33及22q11-13等染色体区域可能含有精神分裂症易感基因。
    本研究工作选择人类第13号染色体长臂三区二带(13q32)为精神分裂症易感基因候选区域,应用基于家系的连锁不平衡分析方法和基于群体的case-control相关分析方法在13q32染色体区域内筛检与精神分裂症相关联的基因位点。
    以229个中国汉族精神分裂症患者及其健康父母双亲组成的核心家系为研究对象,利用生物信息学工具,通过http://www.ncbi.nlm.nih.gov/、http://www.ncbi.nlm.nih.gov/SNP及http://snp.cshl.org/等数据库,确定13q32染色体区域内的48个已知基因,浏览每个基因上的SNPs。在每个基因DNA序列上分析1~2个含有限制性内切酶酶切位点,杂合度大于10%的SNPs。选定13q32染色体区域内3个候选基因和2个EST上的7个SNPs,包括结合糖基磷脂酰肌醇的硫酸乙酰肝素蛋白多糖6基因(GPC6)的rs2892679、丝氨酸/苏氨酸激酶24基因(STK24)的rs1886089和亲核素β3基因(KPNB3)的rs626716、rs624066和rs2761072及LOC160889(EST位点)的rs2282135和LOC122330(EST位点)的rs942358。长度横跨13139.81kb,在GPC6和LOC122330两个基因之间构建SNPs连锁不平衡图。用PCR-RFLP方法检测SNPs基因型,采用SPSS统计学软件管理和分析基因分型数据。
    用拟合优度卡方检验验证每个SNP基因型在抽样群体中的分布是否符合Hardy-Weinberg平衡。用EH plus和UNPHASED软件分析两个SNPs之间的连锁不平衡程度。对于单位点的SNP数据,除进行单倍型相对风险(HRR)和传递不平衡(TDT)方法分析外,还要进行临床亚组分析。这是因为由于SNPs的突变时间不同,每个SNP有其自己的遗传祖先,它们的等位基因频数分布可能互相干扰,只有进行临床亚组分析才能发现与疾病相关联的SNPs,排除假阴性结果,并证实临床异质性与遗传异质性的存在。对于两个以上SNPs构成的单倍型数据,用Transmit软件进
    
    
    行分析。
    针对精神分裂症的某一特定临床症状将患者分为有或无该症状两组,分析每个SNP位点等位基因及基因型在两组之间的分布是否有显著性差异,从而推测SNPs位点与精神分裂症临床症状的关系
The Human Genome Project (HGP), a marvelous science approach to human biology, is attempting to elucidate the structure and constituent of human genome, and to decipher the sequence of DNA. These achievements facilitate the human being to understand themselves well and unravel the mystery of human life.
    The human genome is the whole set of DNA arrayed in 24 distinct chromosomes, which consists of 3.2 billions of base pairs (bp). The genomic DNA is 99.9% identical to that of other humans and 0.1% is variable. One of the fruits of the Human Genome Project is the discovery of millions of DNA sequence variants in the human genome. The use of these genetic markers has been playing an increasing part in genetics studies. Most variation of the human genome is attributable to single nucleotide polymorphisms (SNPs), which contributes to the differences between individuals in physical appearances, susceptibility to a disease and response to medication with drugs. SNPs have been widely used. A dense set of SNP markers opens up the possibility of studying the genetic basis of complex disease. In recent years, SNPs have been used as new DNA markers to replace microsatellites in mapping of disease-related genes in humans. There is no doubt that SNPs will play a key role in identifying and cloning of disease-related genes, investigating the mechanism of the genome-environment interaction and gene-gene interaction.
    Schizophrenia is a serious mental disorder with a lifetime prevalence rate of 1% in the general population worldwide. It was characterized by the abnormal mental functions and disturbed behaviors, which characteristically appear as a series of clinical features, such as positive and negative symptoms, and disturbances in basic cognitive functions. Because the illness causes heavy economical and social burdens to families and societies, it is very important to establish a procedure of treating and preventing schizophrenia. While the cause for schizophrenia remains unknown, several lines of evidence from
    
    
    family, twin and adoption suggest that genetic factors are likely to play an essential role in the developing of schizophrenia and influence susceptibility to schizophrenia. Epidemiological data have demonstrated that schizophrenia is not a simple Mendelian disease but looks like a complex disease involving several genes with each susceptiblity gene having only a modest individual effect. The completion of the HGP has provided a good opportunity for mapping all the genes involved in human diseases, including schizophrenia. Basically, there are two steps for mapping a disease-related gene in the human genome, the linkage-based genome-wide scan and the regional mapping with linkage disequilibrium (LD) analysis. Genome-wide scan has suggested that the following chromosomal regions may contain several genes contributing to schizophrenia, including 1q21-22, 5q31-33, 6p21-24, 6q25-26, 8p21-22, 10p11-15, 13q14-33 and 22q11-13. To validate these initial findings, the present study has been focused on identifying the candidate susceptibility genes on the 13q32 region using a family-based LD and case-control analysis and was designed to construct a SNP-based LD map.
    The family trio consists of healthy fathers, healthy mothers and affected offspring with schizophrenia. The SNP-based LD map was constructed between the GPC6 gene and the LOC122330 by looking through the known genes and SNPs of each gene on the 13q32 region using bioinformatics methods. 7 SNPs were chosen in this region spanning 13139.8kb including rs2892679 present in the GPC6 locus, rs2282135 in the EST LOC160889, rs2761072、rs626716 and rs624066 in the KPNB3 locus, rs1886089 in the STK24 locus, as well as rs942358 in the EST LOC122330.
    SNPs were genotyped using PCR-based RFLP analysis. Genotyping data were put into the SPSS database. The Hardy-Weinberg (H-W) equilibrium was tested for genotype frequency distributions of SNPs using the goodness of fit test. The LD between paired SNPs was estimated with the EH plus (version 1.11) and UNPHASED programs. The
引文
Dulbeccl R. A turning point in cancer research:sequencing the human genome[J]. Science. 1986,231:1055~1056.
    Collins FS, Galas D. A new five-year plan for the U.S. Human Genome Project [J]. Science. 1993, 262:43~46.
    Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L. New goals for the U.S. human genome project: 1998~2003[J]. Science. 1998, 282:682~689.
    International Human Genome Sequencing Consortium. Initial sequencing and analysis of the humangenome [J]. Nature. 2001,409; 860~921.
    Bentley DR. The human Genome Project—an Overview [J]. Medical Research Review. 2000,20:189~196.
    Venter JC, Adams MD, Sutton GG, Kerlavage AR, Smith HO, Hunkapiller M. Shotgun sequencing of the human genome [J]. Science. 1998,280:1540~1642.
    Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996,380:152~154.
    Collins FS. Shattuck Lecture-Medical and sociital consequences of the huaman genome project [J]. N Engl J Med. 1999, 341: 28~37.
    Peltonen L, Mckusick VA. Dissecting human disease in the post-genomic era [J]. Science. 2001, 291:1224~1228.
    Pennisi E. The Human Genome [J]. Science. 2001, 261:1177~1180.
    贺林. 解码生命:人类基因组计划和后基因组计划[M]. 北京,科学出版社,2000,333~354.
    Aach J, Bulyk ML, Church GM, Comander J, Derti A, Shendure J. Computational comaparison of two draft sequences of the human genome [J]. Nature. 2001, 409:856~859.
    Woychik RP, Klebig ML, Justice MJ, Magnuson TR, Avner ED, Avrer ED. Functional genomics in the post-genome era [J]. Mutation Research. 1998, 400:3~14.
    Brookes AJ. The essence of SNPs. Gene.1999, 234:177~186.
    Nei M. Molecular Evolutional Genetics. New York: Columbia University Press. 1987, 28.
    Collins FS, Guyer MS, Charkrabarti A. Variations on a theme: cataloging human DNA sequence variation. Science.1997, 278: 1580~1581.
    Chasman D, Adams RM. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol, 2001, 307: 683~706.
    Sunyaev S, Ramensky V, Koch I, Lathe W, Kondrashov AS, Bork P. Prediction of deleterious human alleles. Hum Mol Genet. 2001,10:591~597.
    Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Research. 2001,11:863~874.
    Marshall E. ‘Playing chicken' over gene markers. Science.1997, 278:2046~2048.
    Hoh J, Wille A, Zee R, Cheng S, Reynolds R, Lindpaintner K, Ott J. Selectiong
    
    
    SNPs in two-stage analysis of desease association data: a model-free approach. Ann Hum Genet, 2000, 64:413~417.
    Riley JH, Allan CJ, Lai E, Roses A. The use of single nucleotide polymorphism in the isolation of common disease genes. Pharmacogenomecs, 2000,1:39~47.
    Sherry ST, Ward MH, Klolodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 2001,29:308~311.
    Brookes AJ, Lehvaslaiho H, Siegfried M, Boehm JG, Yuan YP, Sarkar CM, Bork P, Ortigao F. HGBASE: a database of SNPs and other variations in and around human genes. Nucleic Acids Res, 2000,28:356~360.
    Piazza A. Towanls a genetics history of China. Nature. 1998, 395:636~639.
    Holloway JW, Beghe B, Turner S, Hinks LJ, Day IN, Howell WM. Comparison of three methods for single nucleotide polymorphism typing for DNA bank studies: sequence-specific oligonucleotide probe hybridisation, TaqMan liquid phase hybridisation, and microplate array diagonal gel electrophoresis (MADGE). Hum Mutat, 1999,14:340~347.
    Cariello NF, Douglas GR, Dycaico MJ, Gorelick NJ, Provost GS, Soussi T. Databases and software for the analysis of mutations in the human p53 gene, the human hprt gene and both the lacI and lacZ gene in transgenic rodents. Nucleic Acids Res.1997, 25:136~137.
    Beroud C, Soussi T. p53 and APC gene mutations: software and databases. Nucleic Acids Res. 1997,259:138.
    Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nature Genetics.1997, 17:21~24.
    Garber K. More SNPs on the way. Science.1998, 281:1788.
    Martin G, Dol F, Mares AM, Berezowski V, Staels B, Hum DW, Schaeffer P, Herbert JM. Lesion progression in apoE-deficient mice: implication of chemokines and effect of the AT1 angiotensin II receptor antagonist irbesartan. J Cardiovasc Pharmacol. 2004,43:191~199.
    Delahunty C, Ankener W, Deng Q, Eng J, Nickerson DA. Testing the feasibility of DNA typing for human identification by PCR and an oligonucleotide ligation assay. Am J Hum Genet.1996, 58:1239~1246.
    Brown PO, Hartwel L. Genomics and human disease——variation on variation. Nature Genetics.1998, 18:91~93.
    Housman D, Ledley FD. Why pharmacogenomics? Why now? Nature Biotechnol. 1998, 16:492~493.
    Moldin SO. Sponsoring initiatives in the molecular genetics of mental disorders. In: Genetics and mental disorders: report of the NIMH genetics workgroup. Bethesda, Md: NIH, 1998, 98:4268.
    张继志. 精神医学与心理卫生研究. 北京: 北京出版社, 1994, 62~164.
    Tascedda F, Blom JM, Brunello N, Zolin K, Gennarelli M, Colzi A, Bravi D, Carra S, Racagni G, Riva MA. Modulation of glutamate receptors in response to the novel antipsychotic olanzapine in rats [J]. Biol Psychiatry, 2001, 50:117~122.
    Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia-implication for schizophrenia and Parkinson’s
    
    
    disease [J]. Trends Neurosci, 1990, 13:272~276.
    Wei J, Lee KH, Hemmings GP. Is the cplA2 gene associated with schizophrenia? Mol Psychiatry, 1998, 3:480~481.
    Kirov G, Murray R. The molecular genetics of schizophrenia: progress so far. Mol Med Today. 1997,3:124~130.
    Weeks DE, Lange K. The affected-pedigree-member method of linkage analysis. Am J Hum Genet. 1988,42:315~326.
    戴亚美.多基因遗传病易感基因的遗传定位. 国外医学遗传学分册, 1999, 22: 330~333.
    Thomson G. Mapping disease genes: family-based association studies. Am J Hum Genet.1995, 57:487~498.
    Bellodi L, Bussoleni C, Scorza-Smeraldi R, Grassi G, Zaechetti L, Smeraldi E. Family study of schizophrenia: exploratory analysis for relevant factors. Schizopr Bull.1986, 12:120~128.
    Richard S, Spielman, Warren J, Ewwns. The TDT and other family-based for linkage disequilibrium and association. Am J Genet.1996, 59:983~989.
    Harrison PJ, Owen MJ. Gene for schizophrenia? Resent findings and their pathophysiological implications. Lancet.2003, 361:417~419.
    Brzustowicz LM, Hodgkinson K.A., Chow E.W, Honerw.G.and Bassett A.S. Location of a major susceptibiltity locus fro familial schizophrenia on chromosome 1q21-22.Science. 2000,288:678~682.
    Brzustowicz LM, Simone J, Mohseni P, Hayter JE, Hodgkinson KA, Chow EW, Bassett AS. Linkage Disequilibrium Mapping of Schizophrenia Susceptibility to the CAPON Region of Chromosome 1q22. Am J Hum Genet. 2004, 74 [Epub ahead of print].
    Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J. A genome –wide search fro schizophrenia susceptibility genes. Am.J.Med.Genet. 1998,81:364~376.
    Hovatta I, Lichtermann D, Juvonen H, Suvisaari J, Terwilliger JD, Arajarvi R. Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p and 22q In a population –based sampled Finnish family set.Mol.Psychiatry.1998, 3:452~457.
    Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo B.S.et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci fro schizophrenia, on chromosomes 1q32.2,5q33.2, and 8p21-22and provides support for linkage to schizophrenia on chromosome 11q23.3-24and 20q12.1-11.23. Am.J. Hum. Genet.2001, 68:661~673.
    Coon H, Myles-Worsley M, Tiobech J, Hoff M, Rosenthal J, Bennett P. Evidence for a chromosome 2p13-14 schizophrenia susceptibility locus In families from Palau, Micronesia. Mol Psychiatry.1998, 3:521~527.
    Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F. An International two-stage genome-wide search for schizophrenia susceptibility genes. Nat. Genet.1995, 11:321~324.
    Faraone SV, Matise T, Svrakic d, Pepple J, Malaspina D, Suarez B. Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium.Am.J.Med.Genet.1998, 81:290~295.
    
    Straub RE, MacClean CJ, O’Neil FA, Walsh D and Kendler KS. Genome scan for schizophrenia genes: a detailed report In an Irish cohort. Am.J.Med. Genet. 1999,74:558.
    Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA, Rinard K, Foti A, Terwilliger JD, Juvonen H, Suvisaari J, Arajarvi R, Suokas J, Partonen T, Lonnqvist J, Meyer J, Peltonen L. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet. 2001,10:3037~3048.
    Silverman JM, Greenberg DA, Altstiel LD, Siever LJ, Mohs RC, Smith CJ, Zhou G, Hollander TE, Yang XP, Kedache M, Li G, Zaccario ML, Davis KL. Evidence of a locus for schizophrenia and related disorders on the short arm of chromosome 5 in a large pedigree. Am J Med Genet. 1996,67:162~171.
    Bassett AS, Chow EW, Weksberg R, Brzustowicz L. Schizophrenia and genetics: new insights. Curr Psychiatry Rep. 2002, 4:307~14.
    Sherrington R, Mankoo B, Dixon M, Curtis D, Kalsi G, Melmer G, Gurling H. Microsatellite polymorphisms for chromosome 5 bands q11.2-q13.3. Hum Hered. 1993, 43:197~202.
    Kennedy JL, Basile VS, Macciardi FM. Chromosome 4 Workshop Summary: Sixth World Congress on Psychiatric Genetics, Bonn, Germany. Am J Med Genet. 1999, 88:224~228.
    Kendler KS, Walters EE, Truett KR, Heath AC, Neale MC, Martin NG, Eaves LJ. Sources of individual differences in depressive symptoms: analysis of two samples of twins and their families. Am J Psychiatry. 1994,151:1605~1614.
    Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, Shinkwin R, Webb BT, Zhang J, Walsh D. A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet. 1995, 11:287~293.
    Wei J, Hemmings GP. The Notch4 locus is associated with susceptibility to schizophrenia. Nature Genet.2000, 25: 376~377.
    Gottesman II, Moldin SO. Schizophrenia genetics at the millennium: cautious optimism. Clin Genet.1997, 52: 404~407.
    Lindholm E, Ekholm B, Balciuniene J, Johansson G, Castensson A, Koisti M, Nylander PO, Pettersson U, Adolfsson R, Jazin E. Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am J Med Genet.1999, 88:369~377.
    Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL. Schizophrenia:a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet.1995, 60:252~260.
    Kendler KS, Maclean CJ, O’Neill FA, Burke J, Murphy B, Duke F. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish study of high-density schizophrenia families. Am J Psychiatry.1996, 153:1534~1540.
    Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G. schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat.Genet.1998, 20: 70~73.
    Kendler KS.The genetics of schizophrenia: chromosomal deletions, attentional
    
    
    disturbances, and spectrum boundaries. Am J Psychiatry. 2003,160:1549~1553.
    Straub RE, Maclean CJ, Martin RB, Ma Y, Myakishev MV, Harris-Kerr C. A schizophrenia locus may be located in region 10p15-11. Am J Med Genet.1998, 81: 296~301.
    Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M. A genome –wideautosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry. 2000, 5:638~649.
    Faraone SV, Meyer J, Matise T, Svrakic D, Pepple J, Malaspina D. Suggestive linkage of chromosome 10p to schizophrenia is not due to transmission ratio distortion. Am J Med Genet.1999, 88:607~608.
    Kennedy JL, Giuffra LA, Moises HW, Wetterberg L, Sjogren B, Cavalli-Sforza LL, Pakstis AJ, Kidd JR, Kidd KK. Molecular genetic studies in schizophrenia. SchizophrBull, 1989, 15:383~391.
    Shaw SH, Mroczkowski-Parker Z, Shekhtman T, Alexander M, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Kelsoe JR. Linkage of a bipolar disorder susceptibility locus to human chromosome 13q32 in a new pedigree series. Mol Psychiatry. 2003, 8:558~564.
    Pulver AE. Search for schizophrenia susceptibility genes. Biol Psychiatry. 2000, 47:221~230.
    Arranz B, Rosel P, Sarro S, Ramirez N, Duenas R, Cano R, Maria Sanchez J, San L. Altered platelet serotonin 5-HT2A receptor density but not second messenger inositol trisphosphate levels in drug-free schizophrenic patients. Psychiatry Res. 2003,118:165~174.
    Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 2002, 99: 13675~13680.
    Stober G, Saar K, Ruschendorf F, Meyer J, Nurnberg G, Jatzke S, Franzek E, Reis A, Lesch KP, Wienker TF, Beckmann H. Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet. 2000, 67: 1201~1207.
    Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F, Wender P, Waldo M, Freedman R, Leppert M. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet. 1994,54:59~71.
    Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P, Zerbe G, Olincy A, Ross RG, Adler LE, Freedman R. Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry. 2002, 59: 1085~1096.
    Deleon J, Dadvand M, Canusoc C, White AO, Stanilla JK, and Simpson JK. Schizophrenia and smoking: an epidemiological survey in astste hospital. Am j Psychiatry.1995, 152:453~455.
    Freedman R, Coon H, Myles-Worsley M, Orr-Ortreger A, Olincy A, Davis A. Linkage of a neurophysiological deficitin schizophrenia to a chromosome 15 locus.
    
    
    Proc Natl Acad Sci USA.1997, 94: 587~592.
    Wildenauer DB, Schwab SG, Maier W, Detera-Wadleigh SD. Do schizophrenia and affective disorder share susceptibility genes? Schizophr Res. 1999,39:107~111.
    Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G, Antonarakis S, Housman D, Kazazian HH, Meyers D. Sequential strategy to identify a susceptibility gene for schizophrenia: reportof potential linkage on chromosome 22q12-q13.1: Part 1. Am J Med Genet.1994, 54:36~43.
    Pulver AE, Karayiorgou M, Lasseter VK, Wolyniec P, Kasch L, Antonarakis S, Housman D, Kazazian HH, Meyers D, Nestadt G. Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. Am J Med Genet.1994, 54:44~50.
    Vallada HP, Gill M, Sham P, Lim LC, Nanko S, Asherson P, Murray RM, McGuffin P, Owen M, Collier D. Linkage studies on chromosome 22 in familial schizophrenia. Am J Med Genet.1995, 60:139~146.
    Moises HW, Yang L, Li T, Havsteen B, Fimmers R, Baur MP, Liu X, Gottesman II. Potential linkage disequilibrium between schizophrenia and locus D22S278 on the long arm of chromosome 22. Am J Med Genet.1995, 60:465~467.
    Barak V, Brrak Y, Levine J. Changes in interleukin-1 beta and soluble interleukin-2 receptor levels in CSF and serum of schizophrenic patients. J-Basic-Clin-Physiol-Pharmacol.1995,6:61~69.
    Hyde TM, Ziegler JC, Weinberger DR. Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis. Arch Neurol.1992, 49:401~406.
    Ichimura-Ohshima Y, Morii K, Ichimura T, Araki K, Takahashi Y, Isobe T, Minoshima S, Fukuyama R, Shimizu N, Kuwano R. cDNA cloning and chromosome assignment of the gene for human brain 14-3-3 protein eta chain. J Neurosci Res.1992,31:600~605.
    Hayakawa T, Ishiguro H, Toru M. Systematic search for mutations in the 14-3-3 eta chain gene on chromosome 22 in schizophrenia. Psychiatr genet.1998,891:33~36.
    Williams J, Spurlock G, McGuffin P, Mallet J, Nothen MM, Gill M, Aschauer H, Nylander PO, Macciardi F, Owen MJ. Association between schizophrenia and T102C polymorphism of the 5-hydroxytryptamine type 2a-receptor gene. European Multicentre Association Study of Schizophrenia (EMASS) Group. Lancet. 1996, 347:1294~1296.
    Joober R, Benkelfat C, Brisebois K, Toulouse A, Turecki G, Lal S, Bloom D, Labelle A, Lalonde P, Fortin D, Alda M, Palmour R, Rouleau GA. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability. J Psychiatry Neurosci.1999, 24:141~146.
    Inayama Y, Yoneda H, Sakai T, Ishida T, Nonomura Y, Kono Y, Takahata R, Koh J, Sakai J, Takai A, Inada Y, Asaba H. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia. Am J Med Genet. 1996, 67:103~105.
    Tay AH, Lim LC, Lee WL, Wong KE, Wong LY, Tsoi WF. Association between allele 1 of T102C polymorphism, 5-hydroxytryptamine2a receptor gene and schizophrenia in Chinese males in Singapore. Hum Hered. 1997, 47:298~300.
    
    罗星光,江开达,顾牛范.精神分裂症患者5 HT2A受体基因相关因素的研究.中国神经精神疾病杂志. 2000,26:156~158.
    Hamid MA, Stephen VF, Stephen JG, Ming TT. Meta-analysis of association between the T102C polymorphism of the 5HT2a receptor gene and schizophrenia. Schizophrenia Research.2004, 67:53~62.
    Yu YW, Tsai SJ, Lin CH, Hsu CP, Yang KH, Hong CJ. Serotonin-6 receptor variant (C267T) and clinical response to clozapine. Neuroreport. 1999, 10:1231~1233.
    Claudine L, Dana N, Stephanie B, Douglas FL, Stephane S, Simon P, Michael H, Irena M, Robin E, Jean FD, Jacques M. CAG repeat polymorphisms in KCNN3(HSKCa3) and PPP2R2B show no association or linkage to schizophrenia. Am J Med Gent. 2003,116:45~50.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A. 2001,98:6917~6922.
    Kunugi H, Vallada HP, Sham PC, Hoda F, Arranz MJ, Li T, Nanko S, Murray RM, McGuffin P, Owen M, Gill M, Collier DA. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr Genet.1997, 7:97~101.
    Chaldee M, Laurent C, Thibaut F, Martinez M, Samolyk D, Petit M, Campion D, Mallet J. Linkage disequilibrium on the COMT gene in French schizophrenics and controls. Am J Med Genet. 1999,88:452~457.
    Wonodi IW, Stine OC, Mitchell BD, Buchanan RW, Thaker GK. Association between Val108/158met polymorphism of the COMT gene and schizophrenia. Am J Med Genet. 2003, 120: 47~50.
    Stefansson h, Sarginson J, Kong A. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet.2003, 72:83~87.
    Thome J, Jonsson E, Foley P, et al. Ciliary neurotrophic factor null mutation and schizophrenia in a Swidish population. Psychiatri Genet, 1997, 7:79~82.
    Thome J, Durany N, Harsanyi A, et al. A null mutation allele in the CNTF gene and schizophrenic psychoses. Neuroreport, 1996, 7:1413~1416.
    Wei J, Hemmings GP. TNXB locus may be a candidate gene predisposing to schizophrenia. Am J Med Genet. 2004,125:43~49.
    Breen G, Brown J, Maude S, Fox H, Collier D, Li T, Arranz M, Shaw D, StClair D. -141 C del/ins polymorphism of the dopamine receptor 2 gene is associated with schizophrenia in a British population. Am J Med Genet.1999, 88:407~410.
    Gershon ES, Badner JA, Goldin LR, Sanders AR, Cravchik A, Detera-Wadleigh SD. Closing in on genes for manic-depressive illness and schizophrenia. Neuro psycho pharmacology.1998; 18:233~242.
    Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M, Detera-Wadleigh SD, Gibbs RA, Gershon ES. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet. 2003, 72:1131~1140.
    Gainetdinov RR, Mohn AR, Garon MG. Genetic animal models: focus on schizophrenia. Trend Neurosci, 2001, 24:527~533.
    
    Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Desease-specific changees in regulator of G-protein Signaling 4(RGS4) expression in schizophrenia [J]. Mol Psychiatry, 2001,6:293~301.
    李璞. 医学遗传学. 北京:中国协和医科大学出版社, 1999, 97~98.
    Berry N, Jobanputra V. Molecular genetics of schizophrenia:a critical review.J Psychiatry Neurosce.2003,28:415~424.
    Pulver AE, Wolyniec PS, Housman D, Kazazian HH, Antonarakis SE, Nestadt G, Lasseter VK, McGrath JA, Dombroski B, Karayiorgou M, Ton C, Blouin JL, Kempf L. The Johns Hopkins University Collaborative Schizophrenia Study: an epidemiologic-genetic approach to test the heterogeneity hypothesis and identify schizophrenia susceptibility genes. Cold Spring Harb Symp Quant Biol. 1996; 61:797~814.
    Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, Hodgkinson K, Bassett AS. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet. 1999, 6:1096~1103.
    Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002,7:405~411.
    Veugelers M, De Cat B, Delande N, Esselens C, Bonk I, Vermeesch J, Marynen P, Fryns JP, David G. A 4-Mb BAC/PAC contig and complete genomic structure of the GPC5/GPC6 gene cluster on chromosome 13q32. Matrix Biol. 2001,20:375~385.
    Veugelers M, De Cat B, Ceulemans H, Bruystens AM, Coomans C, Durr J, Vermeesch J, Marynen P, David G. Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. J Biol Chem. 1999, 274: 26968~26977.
    Huang CY, Wu YM, Hsu CY, Lee WS, Lai MD, Lu TJ, Huang CL, Leu TH, Shih HM, Fang HI, Robinson DR, Kung HJ, Yuan CJ. Caspase activation of mammalian sterile 20-like kinase 3 (Mst3). Nuclear translocation and induction of apoptosis. J Biol Chem. 2002,277:34367~34374.
    Jakel S, Gorlich D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 1998,17:4491~4502.?
    Yaseen NR, Blobel G. Cloning and characterization of human karyopherin beta3. Proc Natl Acad Sci U S A. 1997,94:4451~4456.