玉米D族促分裂原活化蛋白激酶MAPK基因ZmMPK17的分离与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
促分裂原活化蛋白激酶(MAPK)级联途径是真核生物中普遍存在的高度保守的信号转导模式。MAPK级联途径由三个蛋白激酶组成:MAPKKK、MAPKK和MAPK,这三个信号转导组分通过逐级磷酸化作用将外界信号级联放大并向下传递。大量研究表明,MAPK级联途径在植物调控生物与非生物胁迫,生长发育以及植物激素信号转导过程中起着重要作用。系统进化树分析发现,MAPK家族成员主要分为A,B,C,D四族,有关A,B和C族MAPK功能的研究比较深入,但关于D族MAPK功能研究的相关报道主要集中在水稻中。本研究从玉米品种郑单958叶片中克隆到一个D组MAPK基因,命名为ZmMPK17,对其序列特征,表达模式,过表达转基因烟草的抗逆生理功能,以及其上游的组分做了初步研究。主要结果如下:
     (1)从玉米中分离到一个促分裂原活化蛋白激酶基因:ZmMPK17,该基因的开放阅读框长1476bp,编码一个491个氨基酸的蛋白,对其序列分析发现,该蛋白具有MAPK进化上保守的11个蛋白激酶催化结构域。在第七和第八结构域之间的激活环中有一个MAPKK的磷酸化位点TDY基序。进化树分析表明,ZmMPK17属于D族的MAPK。
     (2)将ZmMPK17与GFP荧光蛋白融合后,瞬时转化洋葱表皮细胞,发现ZmMPK17主要定位于细胞核,并且ZmMPK17蛋白的C-末端延长区对其核定位是必须的。
     (3)通过Northern blot及qRT-PCR分析发现,ZmMPK17在玉米根、茎、叶中均有表达,在根中表达量最高。4℃、ABA、SA、MeJA和ETH处理均能诱导ZmMPK17的表达,而PEG、H2O2、NaCl和高温则抑制ZmMPK17的表达。H2O2和Ca2+介导PEG和4℃对ZmMPK17表达的调控。
     (4)对ZmMPK17基因的启动子分析发现,启动子中含有多个响应生物与非生物胁迫的顺式作用元件。对ProZmMPK17::GUS转基因烟草GUS染色分析表明,低温(8℃)、ABA、SA和JA处理不同程度地诱导了GUS基因的表达,而PEG处理则抑制GUS的表达。这些结果与表达分析的结果基本一致。
     (5)将ZmMPK17及其失活突变基因ZmMPK17-AF构建pBI121表达载体,成功转化烟草,Northern blot和Western blot结果表明,ZmMPK17在转基因植株中正常表达。
     (6)在渗透胁迫下,过表达ZmMPK17的转基因烟草积累了较少的ROS,具有较高的抗氧化酶活性(APX和CAT),MV处理后表现出较强的抗氧化能,这表明过表达ZmMPK17通过ROS的清除,增强对渗透胁迫的抗性。
     (7)在低温胁迫下,过表达ZmMPK17及失活型ZmMPK17-AF的转基因烟草种子萌发率明显高于WT,并且积累了较多的渗透调节物质(包括可溶性糖和脯氨酸)。这表明过表达ZmMPK17增强了转基因烟草株系的低温抗性,并且ZmMPK17激活环中TDY基序的磷酸化对其低温抗性并不是必须的。
     (8)在渗透和低温胁迫下,过表达ZmMPK17增强了转基因烟草株系中胁迫相关基因的表达。
     (9)用病原菌CMV和PVY侵染后,过表达ZmMPK17的转基因烟草株系表现出较轻发病症状,CMV和PVY的积累受到明显抑制,而且抗病相关基因的表达要高于WT和AF株系。
     (10)利用酵母双杂交实验发现,ZmMPK17并没有与CaMs和ZmMKKs发生互作,并且从cDNA文库中也没有筛选到与ZmMPK17互作的蛋白。ZmMPK17与其它蛋白的相互作用,还需要通过其它方法做进一步的验证。
Mitogen-activated protein kinase (MAPK) cascades are universal modules of signaltransduction, which are highly conserved in eukaryotes. The MAPK cascades are composedof MAPK, MAPKK (MAPK kinase) and MAPKKK (MAPKK kinase). The intracellularsignals were relayed and amplified through sequential phosphorylations ofMAPKKK→MAPKK→MAPK. In plants,numerous studies show that MAPKs play animportant role in the regulation of biotic and abiotic stresses, development and growth andphytohormones cues. Phylogenetic trees reveal that plant MAPKs can be divided into at leastfour groups (A–D). The most extensively studied MAPKs are in groups A, B and C, reportsabout the function of group D MAPKs is emerging. Currently, the study of group D MAPKhas been concentrated mainly in monocot modle plant rice. In this study, we isolated andcharacterized a novel group D MAPK gene, ZmMPK17, from maize (Zea mays L.Zhengdan958). Sequence characteristic, expression analysis, functional studies on theover-expressing ZmMPK17transgenic plants, and the upstream kinases of ZmMPK17wereanalyzed in this work. The main results are as follows:
     (1) We isolated a MAPK gene, designated ZmMPK17, from Zea mays. The ZmMPK17genehas an open reading frame of1,476bp encoding a protein of491amino acid residues.Alignment of the deduced protein sequence with other MAPKs from plants indicated thatZmMPK17contains all11conserved subdomains that are characteristic of MAP kinases. Aspecific dual phosphorylation activation motif TDY (aa175-177) between subdomains VIIand VIII was found. Phylogenetic tree analysis showed that ZmMPK17belongs to group D.
     (2) The fusion protein ZmMPK17-GFP was expressed transiently in onion epidermis. Theresults clearly indicate that ZmMKK4is localized in the nucleus, and the C-terminal domainextension (CD) of ZmMPK17is essential for its nuclear localization.
     (3) ZmMPK17was ubiquitously detected in roots, stems and leaves. The transcription level inthe roots was higher than that in the stems and leaves.4℃, ABA, SA, MeJA and ETHtreatments led to an increase of ZmMPK17expression, whereas PEG, H2O2, NaCl and45℃ resulted in a decline in ZmMPK17transcript levels. H2O2and Ca2+mediate PEG and4℃-induced the regulation of ZmMPK17at transcription level.
     (4) Many potential cis-elements related to biotic and abiotic stress responsiveness were foundin the promoter region of ZmMPK17. The response of ProZmMPK17::GUS transgenic plantsto different treatments was investigated. Upon8℃, ABA, SA and MeJA application, theexpression of GUS was induced, but PEG treatment caused a decrease in transcription level ofGUS. The GUS staining analyses were consistent with the expression pattern of ZmMPK17.
     (5) The full coding regions of ZmMPK17and constitutively inactive version ZmMPK17-AFligated into the binary pBI121expression vector under the control of the CaMV35S promoter,and transgenic tobacco was obtained. Northern blot and Western blot analysis revealed thatZmMPK17and ZmMPK17-AF were expressed normally in engineered lines.
     (6) ZmMPK17-overexpressing tobacco plants accumulated less reactive oxygen species (ROS)and presented higher activities of antioxidant enzymes (APX and CAT) under osmotic stress.After methyl-niologen (MV) treatment, ZmMPK17-overexpressing lines showed increasedtolerance to oxidative stress. These observations demonstrate that overexpression ofZmMPK17in transgenic tobacco enhanced osmotic stress tolerance by affecting ROSscavenging system.
     (7) Overexpression of ZmMPK17and ZmMPK17-AF improved transgenic lines tolerance tolow temperature stress. Compared to WT plants, transgenic lines showed a significantlyhigher germination rate, and accumulated more proline and soluble sugars. These resultsindicate that overexpression of ZmMPK17increased transgenic tobacco tolerance to coldstress, and the phosphorylation of TDY motif was not essential for full function in plants.
     (8) Under osmotic and low temperature stress, ZmMPK17-overexpressing transgenic tobaccoplants increased the expression levels of stress-responsive marker genes.
     (9) ZmMPK17-overexpressing transgenic tobacco plants showed slight disease symptomsafter inoculated with cucumber mosaic virus (CMV) and potato virus Y (PVY), and theaccumulation of CMV and PVY was suppressed. The expression of PR genes was elevated inZmMPK17-overexpressing plants in compare with WT and ZmMPK17-AF-overexpressingplants.
     (10) Using the Yeast Two-Hybrid System, we found that ZmMPK17does not interact with CaMs and ZmMKKs, we also did not obtain any ZmMPK17-interacting proteins from aproteome-wide Y2H screen of the maize leaf cDNA library. Interacting protein screen forZmMPK17need further research.
引文
孙大业,郭颜林,马耕,崔素娟。细胞信号转导。北京:科学出版社,2006
    赵世杰。植物生理学实验指导。北京:中国农业出版社,1998
    邹琦。植物生理生化实验指导。北京:中国农业出版社,1995
    陈菁。双分子荧光互补技术及其在蛋白质相互作用研究中的应用进展。生物医学工程研究,2008,27:302-306
    张志毅,周涛,巩伟丽,张德添。荧光共振能量转移技术在生命科学中的应用及研究进展。电子显微学报,2007,26:620-624
    Adie B.A., Perez-Perez J., Perez-Perez M.M., Godoy M., Sanchez-Serrano J.J., Schmelz E.A.and Solano R.. ABA is an essential signal for plant resistance to pathogens affecting JAbiosynthesis and the activation of defenses in Arabidopsis. Plant Cell,2007(19):1665-1681
    Agrawal G.K., Agrawal S.K., Shibato J., Iwahashi H. and Rakwal R.. Novel rice MAP kinasesOsMSRMK3and OsWJUMK1involved in encountering diverse environmental stressesand developmental regulation. Biochem Biophys Res. Commun,2003(300):775-783
    Agrawal G.K., Rakwal R. and Iwahashi H.. Isolation of novel rice (Oryza sativa L.) multiplestress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly inresponse to environmental cues. Biochem Biophys Res. Commun,2002(294):1009-1016
    Ahlfors R., Macioszek V., Rudd J., Brosche M., Schlichting R., Scheel D. and Kangasjarvi J..Stress hormone-independent activation and nuclear translocation of mitogen-activatedprotein kinases in Arabidopsis thaliana during ozone exposure. Plant J.,2004(40):512-522
    Anderson J.C., Bartels S., Gonzalez Besteiro M.A., Shahollari B., Ulm R. and PeckS.C..Arabidopsis MAP Kinase Phosphatase1(AtMKP1) negatively regulatesMPK6-mediated PAMP responses and resistance against bacteria. Plant J.,2011(67):258-268
    Andreasson E. and Ellis B.. Convergence and specificity in the Arabidopsis MAPK nexus.Trends Plant Sci.,2010(15):106-113
    Andreasson E., Jenkins T., Brodersen P., Thorgrimsen S., Petersen N.H., Zhu S., Qiu J.L.,Micheelsen P., Rocher A., Petersen M., Newman M.A., Bjorn Nielsen H., Hirt H.,Somssich I., Mattsson O. and Mundy J.. The MAP kinase substrate MKS1is a regulator ofplant defense responses. EMBO J.,2005(24):2579-2589
    Apel K. and Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annu. Rev. Plant Biol.,2004(55):373-399
    Asai S., Ohta K. and Yoshioka H.. MAPK signaling regulates nitric oxide and NADPHoxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell,2008(20):1390-1406
    Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.L., Gomez-Gomez L., Boller T.,Ausubel F.M. and Sheen J.. MAP kinase signaling cascade in Arabidopsis innateimmunity. Nature,2002(415):977-983
    Balugka F., Ovecka M. and Hirt H.. Salt stress induces changes in amounts and localization ofthe mitogen-activated protein kinase SIMK in alfalfa roots. Protoplasma,2000(212):262-267
    Bari R. and Jones J.D.. Role of plant hormones in plant defence responses. Plant Mol. Biol.,2009(69):473-488
    Barnhart B.C., Lee J.C., Alappat E.C. and Peter M.E.. The death effector domain proteinfamily. Oncogene,2003(22):8634-8644
    Bartels S., Anderson J.C., Besteiro M.A., Carreri A., Hirt H., Buchala A., Metraux J.P., PeckS.C. and Ulm R.. MAP kinase phosphatase1and protein tyrosine phosphatase1arerepressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. PlantCell,2009(21):2884-2897
    Bartels S., Gonzalez Besteiro M.A., Lang D. and Ulm R.. Emerging functions for plant MAPkinase phosphatases. Trends Plant Sci.,2010(15):322-329
    Beck M., Komis G., Ziemann A., Menzel D. and Samaj J.. Mitogen-activated protein kinase4is involved in the regulation of mitotic and cytokinetic microtubule transitions inArabidopsis thaliana. New Phytol.,2011(189):1069-1083
    Beckers G.J. and Spoel S.H.. Fine-Tuning Plant Defence Signalling: Salicylate versusJasmonate. Plant Biol.(Stuttg),2006(8):1-10
    Berberich T., Sano H. and Kusano T.. Involvement of a MAP kinase, ZmMPK5, in senescenceand recovery from low-temperature stress in maize. Mol. Gen. Genet.,1999(262):534-542
    Bergmann D.C., Lukowitz W. and Somerville C.R.. Stomatal development and patterncontrolled by a MAPKK kinase. Science,2004(304):1494-1497
    Bethke G., Pecher P., Eschen-Lippold L., Tsuda K., Katagiri F., Glazebrook J., Scheel D. andLee J.. Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11bythe flagellin-derived elicitor peptide, flg22. Mol. Plant Microbe Interact,2012(25):471-480
    Bethke G., Unthan T., Uhrig J.F., Poschl Y., Gust A.A., Scheel D. and Lee J.. Flg22regulatesthe release of an ethylene response factor substrate from MAP kinase6in Arabidopsisthaliana via ethylene signaling. Proc. Natl. Acad. Sci. USA,2009(106):8067-8072
    Blanco F.A., Zanetti M.E., Casalongue C.A. and Daleo G.R.. Molecular characterization of apotato MAP kinase transcriptionally regulated by multiple environmental stresses. PlantPhysiol. Biochem.,2006(44):315-322
    Boller T. and Felix G.. A renaissance of elicitors: perception of microbe-associated molecularpatterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol.,2009(60):379-406
    Brodersen P., Petersen M., Bjorn Nielsen H., Zhu S., Newman M.A., Shokat K.M., Rietz S.,Parker J. and Mundy J.. Arabidopsis MAP kinase4regulates salicylic acid-and jasmonicacid/ethylene-dependent responses via EDS1and PAD4. Plant J.,2006(47):532-546
    Brunet A., Roux D., Lenormand P., Dowd S., Keyse S. and Pouyssegur J.. Nucleartranslocation of p42/p44mitogen-activated protein kinase is required for growthfactor-induced gene expression and cell cycle entry. EMBO. J.,1999(18):664-674
    Burnett E.C., Desikan R., Moser R.C. and Neill S.J.. ABA activation of an MBP kinase inPisum sativum epidermal peels correlates with stomatal responses to ABA. J. Exp. Bot.,2000(51):197-205
    Caillaud M.C., Lecomte P., Jammes F., Quentin M., Pagnotta S., Andrio E., de AlmeidaEngler J., Marfaing N., Gounon P., Abad P. and Favery B.. MAP65-3microtubule-associated protein is essential for nematode-induced giant cell ontogenesis inArabidopsis. Plant Cell,2008(20):423-437
    Camps M., Nichols A. and Arkinstall S.. Dual specificity phosphatases: a gene family forcontrol of MAP kinase function. FASEB J.,2000(14):6-16
    Cardinale F., Meskiene I., Ouaked F. and Hirt H.. Convergence and divergence ofstress-induced mitogen-activated protein kinase signaling pathways at the level of twodistinct mitogen-activated protein kinase kinases. Plant Cell,2002(14):703-711
    Chang L. and Goldman R.D.. Intermediate filaments mediate cytoskeletal crosstalk. Nat. Rev.Mol. Cell Biol.,2004(5):601-613
    Chen L., Hu W., Tan S., Wang M., Ma Z., Zhou S., Deng X., Zhang Y., Huang C., Yang G. andHe G.. Genome-Wide Identification and Analysis of MAPK and MAPKK Gene Familiesin Brachypodium distachyon. PLOS One,2012(7):e46744
    Cheng W.H., Endo A., Zhou L., Penney J., Chen H.C., Arroyo A., Leon P., Nambara E.,Asami T., Seo M., Koshiba T and Sheen J. A unique short-chain dehydrogenase/reductasein Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell,2002(14):2723-2743
    Cheong Y.H., Moon B.C., Kim J.K., Kim C.Y., Kim M.C., Kim I.H., Park C.Y., Kim J.C.,Park B.O., Koo S.C., Yoon H.W., Chung W.S., Lim C.O., Lee S.Y. and Cho M.J..BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediatespathogenesis-related gene expression by activation of a transcription factor. Plant Physiol.,2003(132):1961-1972
    Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nurnberger T., Jones J.D., Felix G. andBoller T.. A flagellin-induced complex of the receptor FLS2and BAK1initiates plantdefence. Nature,2007(448):497-500
    Citovsky V., Kapelnikov A., Oliel S., Zakai N., Rojas M.R., Gilbertson R.L., Tzfira T. andLoyter A.. Protein interactions involved in nuclear import of the Agrobacterium VirE2protein in vivo and in vitro. J. Biol. Chem.,2004(279):29528-29533
    Clark K.L., Larsen P.B., Wang X. and Chang C.. Association of the Arabidopsis CTR1Raf-like kinase with the ETR1and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA,1998(95):5401-5406
    Colcombet J. and Hirt H.. Arabidopsis MAPKs: a complex signalling network involved inmultiple biological processes. Biochem J.,2008(413):217-226
    Couee I., Sulmon C., Gouesbet G. and El Amrani A.. Involvement of soluble sugars inreactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bo.t,2006(57):449-459
    Dai Y., Wang H., Li B., Huang J., Liu X., Zhou Y., Mou Z. and Li J.. Increased expression ofMAP KINASE KINASE7causes deficiency in polar auxin transport and leads to plantarchitectural abnormality in Arabidopsis. Plant Cell,2006(18):308-320
    Das R. and Pandey G.K.. Expressional analysis and role of calcium regulated kinases inabiotic stress signaling. Curr. Genomics,2010(11):2-13
    del Pozo O., Pedley K.F. and Martin G.B.. MAPKKKalpha is a positive regulator of cell deathassociated with both plant immunity and disease. EMBO J.,2004(23):3072-3082
    Dickinson R.J. and Keyse S.M.. Diverse physiological functions for dual-specificity MAPkinase phosphatases. J. Cell Sci.,2006(119):4607-4615
    Ding H., Zhang A., Wang J., Lu R., Zhang H., Zhang J. and Jiang M.. Identity of anABA-activated46kDa mitogen-activated protein kinase from Zea mays leaves: partialpurification, identification and characterization. Planta,2009a (230):239-251
    Ding H.D., Zhang X.H., Xu S.C., Sun L.L., Jiang M.Y., Zhang A.Y. and Jin Y.G.. Induction ofprotection against paraquat-induced oxidative damage by abscisic acid in maize leaves ismediated through mitogen-activated protein kinase. J. Integr. Plant Biol.,2009b(51):961-972
    Ding X., Richter T., Chen M., Fujii H., Seo Y.S., Xie M., Zheng X., Kanrar S., StevensonR.A., Dardick C., Li Y., Jiang H., Zhang Y., Yu F., Bartley L.E., Chern M., Bart R., ChenX., Zhu L., Farmerie W.G., Gribskov M., Zhu J.K., Fromm M.E., Ronald P.C. and SongW.Y.. A rice kinase-protein interaction map. Plant Physiol.,2009c (149):1478-1492
    Djamei A., Pitzschke A., Nakagami H., Rajh I. and Hirt H.. Trojan horse strategy inAgrobacterium transformation: abusing MAPK defense signaling. Science,2007(318):453-456
    Doczi R., Brader G., Pettko-Szandtner A., Rajh I., Djamei A., Pitzschke A., Teige M. and HirtH.. The Arabidopsis mitogen-activated protein kinase kinase MKK3is upstream of groupC mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell,2007(19):3266-3279
    Droillard M.J., Thibivilliers S., Cazale A.C., Barbier-Brygoo H. and Lauriere C.. Proteinkinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions:two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett,2000(474):217-222
    Ekengren S.K., Liu Y., Schiff M., Dinesh-Kumar S.P. and Martin G.B.. Two MAPK cascades,NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance intomato. Plant J.,2003(36):905-917
    Ferrigno P., Posas F., Koepp D., Saito H. and Silver P.A.. Regulated nucleo/cytoplasmicexchange of HOG1MAPK requires the importin beta homologs NMD5and XPO1.EMBO J.,1998(17):5606-5614
    Frye C.A. and Innes R.W.. An Arabidopsis mutant with enhanced resistance to powderymildew. Plant Cell,1998(10):947-956
    Frye C.A., Tang D. and Innes R.W.. Negative regulation of defense responses in plants by aconserved MAPKK kinase. Proc. Natl. Acad. Sci. USA,2001(98):373-378
    Furuno T., Hirashima N., Onizawa S., Sagiya N. and Nakanishi M.. Nuclear shuttling ofmitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase (ERK)2)was dynamically controlled by MAP/ERK kinase after antigen stimulation in RBL-2H3cells. J. Immunol,2001(166):4416-4421
    Ge B., Gram H., Di Padova F., Huang B., New L., Ulevitch R.J., Luo Y. and Han J..MAPKK-independent activation of p38alpha mediated by TAB1-dependentautophosphorylation of p38alpha. Science,2002(295):1291-1294
    Gomi K., Ogawa D., Katou S., Kamada H., Nakajima N., Saji H., Soyano T., Sasabe M.,Machida Y., Mitsuhara I., Ohashi Y. and Seo S.. A mitogen-activated protein kinaseNtMPK4activated by SIPKK is required for jasmonic acid signaling and involved inozone tolerance via stomatal movement in tobacco. Plant Cell Physiol.,2005(46):1902-1914
    Gonzalez Besteiro M.A., Bartels S., Albert A. and Ulm R.. Arabidopsis MAP kinasephosphatase1and its target MAP kinases3and6antagonistically determine UV-B stresstolerance, independent of the UVR8photoreceptor pathway. Plant J.,2011(68):727-737
    Gonzalez Besteiro M.A. and Ulm R.. ATR and MKP1play distinct roles in response to UV-Bstress in Arabidopsis. Plant J.,2012
    Good M., Tang G., Singleton J., Remenyi A. and Lim W.A.. The Ste5scaffold directs matingsignaling by catalytically unlocking the Fus3MAP kinase for activation. Cell,2009(136):1085-1097
    Gray-Mitsumune M., O'Brien M., Bertrand C., Tebbji F., Nantel A. and Matton D.P.. Loss ofovule identity induced by overexpression of the fertilization-related kinase2(ScFRK2), aMAPKKK from Solanum chacoense. J. Exp. Bot.,2006(57):4171-4187
    Gu L., Liu Y., Zong X., Liu L., Li D.P. and Li D.Q.. Overexpression of maizemitogen-activated protein kinase gene, ZmSIMK1in Arabidopsis increases tolerance tosalt stress. Mol. Biol. Rep.,2010(37):4067-4073
    Gudesblat G.E., Iusem N.D. and Morris P.C.. Guard cell-specific inhibition of ArabidopsisMPK3expression causes abnormal stomatal responses to abscisic acid and hydrogenperoxide. New Phytol.,2007(173):713-721
    Gupta R., Huang Y., Kieber J. and Luan S.. Identification of a dual-specificity proteinphosphatase that inactivates a MAP kinase from Arabidopsis. Plant J.,1998(16):581-589
    Gupta R. and Luan S.. Redox control of protein tyrosine phosphatases and mitogen-activatedprotein kinases in plants. Plant Physiol.,2003(132):1149-1152
    Hadiarto T., Nanmori T., Matsuoka D., Iwasaki T., Sato K., Fukami Y., Azuma T. and YasudaT.. Activation of Arabidopsis MAPK kinase kinase (AtMEKK1) and induction ofAtMEKK1-AtMEK1pathway by wounding. Planta,2006(223):708-713
    Hahn A. and Harter K.. Mitogen-activated protein kinase cascades and ethylene: signaling,biosynthesis, or both? Plant Physiol.,2009(149):1207-1210
    Hardie D.G. PLANT PROTEIN SERINE/THREONINE KINASES: Classification andFunctions. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1999(50):97-131
    Hashimoto M., Negi J., Young J., Israelsson M., Schroeder J.I. and Iba K.. Arabidopsis HT1kinase controls stomatal movements in response to CO2. Nat. Cell Biol.,2006(8):391-397
    He C., Fong S.H., Yang D. and Wang G.L.. BWMK1, a novel MAP kinase induced by fungalinfection and mechanical wounding in rice. Mol. Plant Microbe Interact.,1999(12):1064-1073
    Heckman K.L. and Pease L.R. Gene splicing and mutagenesis by PCR-driven overlapextension. Nat Protoc,2007(2):924-932
    Ho CM., Hotta T., Guo F., Roberson R.W., Lee Y.R. and Liu B.. Interaction of antiparallelmicrotubules in the phragmoplast is mediated by the microtubule-associated proteinMAP65-3in Arabidopsis. Plant Cell,2011(23):2909-2923
    Ho C.M., Lee Y.R., Kiyama L.D., Dinesh-Kumar S.P. and Liu B.. Arabidopsismicrotubule-associated protein MAP65-3cross-links antiparallel microtubules towardtheir plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain.Plant Cell,2012(24):2071-2085
    Hu X., Jiang M., Zhang A. and Lu J.. Abscisic acid-induced apoplastic H2O2accumulationup-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maizeleaves. Planta,2005(223):57-68
    Huang Y., Li H., Gupta R., Morris P.C., Luan S. and Kieber J.J.. ATMPK4, an Arabidopsishomolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1throughthreonine phosphorylation. Plant Physiol.,2000(122):1301-1310
    Hwa Chi-Min and Xian-Ci Y.. The AtMKK3pathway mediates ABA and salt signaling inArabidopsis. Acta. Physiol. Plant,2008(30):277-286
    Ichimura K., Casais C., Peck S.C., Shinozaki K. and Shirasu K.. MEKK1is required forMPK4activation and regulates tissue-specific and temperature-dependent cell death inArabidopsis. J. Biol. Chem.,2006(281):36969-36976
    Ichimura K., Mizoguchi T., Irie K., Morris P., Giraudat J., Matsumoto K. and Shinozaki K..Isolation of ATMEKK1(a MAP kinase kinase kinase)-interacting proteins and analysis ofa MAP kinase cascade in Arabidopsis. Biochem. Biophys. Res. Commun.,1998(253):532-543
    Ichimura K., Mizoguchi T., Yoshida R., Yuasa T. and Shinozaki K.. Various abiotic stressesrapidly activate Arabidopsis MAP kinases ATMPK4and ATMPK6. Plant J.,2000(24):655-665
    Irigoyen J.J., Emerich D.W. and Sanchez-Diaz M.. Water stress induced changes inconcentrations of proline and total soluble sugars in nodulated alfalfa (Medkago sativa)plants. Physiol. Plant,1992(84):55-60
    Ishida H., Rainaldi M. and Vogel H.J.. Structural studies of soybean calmodulin isoform4bound to the calmodulin-binding domain of tobacco mitogen-activated protein kinasephosphatase-1provide insights into a sequential target binding mode. J. Biol. Chem.,2009(284):28292-28305
    Ishikawa M., Soyano T., Nishihama R. and Machida Y.. The NPK1mitogen-activated proteinkinase kinase kinase contains a functional nuclear localization signal at the binding sitefor the NACK1kinesin-like protein. Plant J.,2002(32):789-798
    James P., Halladay J. and Craig E.A.. Genomic libraries and a host strain designed for highlyefficient two-hybrid selection in yeast. Genetics,1996(144):1425-1436
    Jammes F., Song C., Shin D., Munemasa S., Takeda K., Gu D., Cho D., Lee S., Giordo R.,Sritubtim S., Leonhardt N., Ellis B.E., Murata Y. and Kwak J.M.. MAP kinases MPK9andMPK12are preferentially expressed in guard cells and positively regulate ROS-mediatedABA signaling. Proc. Natl. Acad. Sci. USA,2009(106):20520-20525
    Jiang J., Wang P., An G., Wang P. and Song C.P.. The involvement of a P38-like MAP kinasein ABA-induced and H2O2-mediated stomatal closure in Vicia faba L. Plant Cell Rep.,2008(27):377-385
    Jiang M. and Zhang J.. Effect of abscisic acid on active oxygen species, antioxidative defencesystem and oxidative damage in leaves of maize seedlings. Plant Cell Physiol.,2001(42):1265-1273
    Jin H., Liu Y., Yang K.Y., Kim C.Y., Baker B. and Zhang S.. Function of a mitogen-activatedprotein kinase pathway in N gene-mediated resistance in tobacco. Plant J.,2003(33):719-731
    Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S. and Hirt H.. Stress signaling inplants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc.Natl. Acad. Sci. USA,1996(93):11274-11279
    Jonak C., Ligterink W. and Hirt H.. MAP kinases in plant signal transduction. Cell Mol LifeSci.,1999(55):204-213
    Jones J.D. and Dangl J.L.. The plant immune system. Nature,2006(444):323-329
    Joo S., Liu Y., Lueth A. and Zhang S.. MAPK phosphorylation-induced stabilization of ACS6protein is mediated by the non-catalytic C-terminal domain, which also contains thecis-determinant for rapid degradation by the26S proteasome pathway. Plant J.,2008(54):129-140
    Kachroo A. and Kachroo P.. Salicylic acid-, jasmonic acid-and ethylene-mediated regulationof plant defense signaling. Genet. Eng.,2007(28):55-83
    Kanaoka M.M., Pillitteri L.J., Fujii H., Yoshida Y., Bogenschutz N.L., Takabayashi J., ZhuJ.K. and Torii K.U.. SCREAM/ICE1and SCREAM2specify three cell-state transitionalsteps leading to arabidopsis stomatal differentiation. Plant Cell,2008(20):1775-1785
    Karita E., Yamakawa H., Mitsuhara I., Kuchitsu K. and Ohashi Y.. Three types of tobaccocalmodulins characteristically activate plant NAD kinase at different Ca2+concentrationsand pHs. Plant Cell Physiol.,2004(45):1371-1379
    Katou S., Karita E., Yamakawa H., Seo S., Mitsuhara I., Kuchitsu K. and Ohashi Y.. Catalyticactivation of the plant MAPK phosphatase NtMKP1by its physiological substratesalicylic acid-induced protein kinase but not by calmodulins. J. Biol. Chem.,2005(280):39569-39581
    Katou S., Kuroda K., Seo S., Yanagawa Y., Tsuge T., Yamazaki M., Miyao A., Hirochika H.and Ohashi Y.. A calmodulin-binding mitogen-activated protein kinase phosphatase isinduced by wounding and regulates the activities of stress-related mitogen-activatedprotein kinases in rice. Plant Cell Physiol,2007(48):332-344
    Kendrick M.D. and Chang C.. Ethylene signaling: new levels of complexity and regulation.Curr. Opin. Plant Biol.,2008(11):479-485
    Kerk D., Templeton G. and Moorhead G.B.. Evolutionary radiation pattern of novel proteinphosphatases revealed by analysis of protein data from the completely sequencedgenomes of humans, green algae, and higher plants. Plant Physiol.,2008(146):351-367
    Keyse S.M.. Protein phosphatases and the regulation of mitogen-activated protein kinasesignalling. Curr. Opin. Cell Biol.,2000(12):186-192
    Kieber J.J., Rothenberg M., Roman G., Feldmann K.A. and Ecker J.R.. CTR1, a negativeregulator of the ethylene response pathway in Arabidopsis, encodes a member of the raffamily of protein kinases. Cell,1993(72):427-441
    Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., Eklof S., Till S., BogreL., Hirt H. and Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase,is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell,2000(12):2247-2258
    Kishi-Kaboshi M., Okada K., Kurimoto L., Murakami S., Umezawa T., Shibuya N., YamaneH., Miyao A., Takatsuji H., Takahashi A. and Hirochika H.. A rice fungalMAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolitesynthesis. Plant J.,2010(63):599-612
    Komis G., Illes P., Beck M. and Samaj J.. Microtubules and mitogen-activated protein kinasesignalling. Curr. Opin. Plant Biol.,2011(14):650-657
    Kong F., Wang J., Cheng L., Liu S., Wu J., Peng Z. and Lu G.. Genome-wide analysis of themitogen-activated protein kinase gene family in Solanum lycopersicum. Gene,2012a(499):108-120
    Kong Q., Qu N., Gao M., Zhang Z., Ding X., Yang F., Li Y., Dong O.X., Chen S., Li X. andZhang Y.. The MEKK1-MKK1/MKK2-MPK4kinase cascade negatively regulatesimmunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis.Plant Cell,2012b (24):2225-2236
    Kong X., Pan J., Zhang M., Xing X., Zhou Y., Liu Y., Li D. and Li D.. ZmMKK4, a novelgroup C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt andcold tolerance in transgenic Arabidopsis. Plant Cell Environ.,2011(34):1291-1303
    Koo S.C., Choi M.S., Chun H.J., Park H.C., Kang C.H., Shim S.I., Chung J.I., Cheong Y.H.,Lee S.Y., Yun D.J., Chung WS., Cho M.J. and Kim M.C.. Identification andcharacterization of alternative promoters of the rice MAP kinase gene OsBWMK1. Mol.Cells,2009a (27):467-473
    Koo S.C., Moon B.C., Kim J.K., Kim C.Y., Sung S.J., Kim M.C., Cho M.J. and Cheong Y.H..OsBWMK1mediates SA-dependent defense responses by activating the transcriptionfactor OsWRKY33. Biochem Biophys Res. Commun,2009b (387):365-370
    Koornneef M., Bentsink L. and Hilhorst H.. Seed dormancy and germination. Curr. Opin.Plant Biol.,2002(5):33-36
    Kosetsu K., Matsunaga S., Nakagami H., Colcombet J., Sasabe M., Soyano T., Takahashi Y.,Hirt H. and Machida Y.. The MAP kinase MPK4is required for cytokinesis in Arabidopsisthaliana. Plant Cell,2010(22):3778-3790
    Kovtun Y., Chiu W.L., Tena G. and Sheen J.. Functional analysis of oxidative stress-activatedmitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA,2000(97):2940-2945
    Kovtun Y., Chiu W.L., Zeng W. and Sheen J.. Suppression of auxin signal transduction by aMAPK cascade in higher plants. Nature,1998(395):716-720
    Krysan P.J., Jester P.J., Gottwald J.R. and Sussman M.R.. An Arabidopsis mitogen-activatedprotein kinase kinase kinase gene family encodes essential positive regulators ofcytokinesis. Plant Cell,2002(14):1109-1120
    Kumar K.R., Srinivasan T. and Kirti P.B.. A mitogen-activated protein kinase gene, AhMPK3of peanut: molecular cloning, genomic organization, and heterologous expressionconferring resistance against Spodoptera litura in tobacco. Mol. Genet. Genomics,2009(282):65-81
    Lai LB., Nadeau J.A., Lucas J., Lee E.K., Nakagawa T., Zhao L., Geisler M and Sack FD. TheArabidopsis R2R3MYB proteins FOUR LIPS and MYB88restrict divisions late in thestomatal cell lineage. Plant Cell,2005(17):2754-2767
    Lampard G.R., Macalister C.A. and Bergmann D.C.. Arabidopsis stomatal initiation iscontrolled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science,2008(322):1113-1116
    Le Douarin B., Pierrat B., vom Baur E., Chambon P. and Losson R.. A new version of thetwo-hybrid assay for detection of protein-protein interactions. Nucleic. Acids Res.,1995(23):876-878
    Lee J., Rudd J.J., Macioszek V.K. and Scheel D.. Dynamic changes in the localization ofMAPK cascade components controlling pathogenesis-related (PR) gene expression duringinnate immunity in parsley. J. Biol. Chem,2004(279):22440-22448
    Lee J.S. and Ellis B.E.. Arabidopsis MAPK phosphatase2(MKP2) positively regulatesoxidative stress tolerance and inactivates the MPK3and MPK6MAPKs. J. Biol. Chem.,2007(282):25020-25029
    Lee J..S., Wang S., Sritubtim S., Chen J.G. and Ellis B.E.. Arabidopsis mitogen-activatedprotein kinase MPK12interacts with the MAPK phosphatase IBR5and regulates auxinsignaling. Plant J.,2009(57):975-985
    Lee K., Song E.H., Kim H.S., Yoo J.H., Han H.J., Jung M.S., Lee S.M., Kim K.E., Kim M.C.,Cho M.J. and Chung W.S.. Regulation of MAPK phosphatase1(AtMKP1) by calmodulinin Arabidopsis. J. Biol. Chem.,2008(283):23581-23588
    Lee S.K., Kim B.G., Kwon T.R., Jeong M.J., Park S.R., Lee J.W., Byun M.O., Kwon H.B.,Matthews B.F., Hong C.B. and Park S.C.. Overexpression of the mitogen-activated proteinkinase gene OsMAPK33enhances sensitivity to salt stress in rice (Oryza sativa L.). J.Biosci.,2011(36):139-151
    LIAN W., TANG Y., GAO S., ZHANG Z., ZHAO X. and C. Z.. Phylogenetic Analysis andExpression Patterns of the MAPK Gene Family in Wheat (Triticum aestivum L.). Journalof Integrative Agriculture,2012(11):1227-1235
    Lin F., Ding H., Wang J., Zhang H., Zhang A., Zhang Y., Tan M., Dong W. and Jiang M..Positive feedback regulation of maize NADPH oxidase by mitogen-activated proteinkinase cascade in abscisic acid signalling. J. Exp. Bot.,2009(60):3221-3238
    Liu J. and Zhu J.K.. Proline accumulation and salt-stress-induced gene expression in asalt-hypersensitive mutant of Arabidopsis. Plant Physiol.,1997(114):591-596
    Liu Q. and Xue Q.. Computational identification and phylogenetic analysis of the MAPKgene family in Oryza sativa. Plant Physiol. Biochem.,2007(45):6-14
    Liu Y.. Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep.,2011
    Liu Y. and Zhang S.. Phosphorylation of1-aminocyclopropane-1-carboxylic acid synthase byMPK6, a stress-responsive mitogen-activated protein kinase, induces ethylenebiosynthesis in Arabidopsis. Plant Cell,2004(16):3386-3399
    Liu Y.K., Liu Y.B., Zhang M.Y. and Li D.Q.. Stomatal development and movement: the rolesof MAPK signaling. Plant Signal Behav.,2010(5):1176-1180
    Lu C., Han M.H., Guevara-Garcia A. and Fedoroff N.V.. Mitogen-activated protein kinasesignaling in postgermination arrest of development by abscisic acid. Proc. Natl. Acad. Sci.USA,2002(99):15812-15817
    Lu H.. Dissection of salicylic acid-mediated defense signaling networks. Plant Signal Behav.,2009(4):713-717
    Luan S. Protein phosphatases in plants. Annu. Rev. Plant Biol.,2003(54):63-92
    Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A. and Grill E.. Regulators ofPP2C phosphatase activity function as abscisic acid sensors. Science,2009(324):1064-1068
    MacAlister C.A., Ohashi-Ito K. and Bergmann D.C.. Transcription factor control ofasymmetric cell divisions that establish the stomatal lineage. Nature,2007(445):537-540
    MacRobbie E.A. and Kurup S.. Signalling mechanisms in the regulation of vacuolar ionrelease in guard cells. New Phytol.,2007(175):630-640
    Mao G., Meng X., Liu Y., Zheng Z., Chen Z. and Zhang S.. Phosphorylation of a WRKYtranscription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesisin Arabidopsis. Plant Cell,2011(23):1639-1653
    Mao P., Duan M., Wei C. and Li Y.. WRKY62transcription factor acts downstream ofcytosolic NPR1and negatively regulates jasmonate-responsive gene expression. PlantCell Physiol.,2007(48):833-842
    MAPK Group. Mitogen-activated protein kinase cascades in plants: a new nomenclature.Trends Plant Sci.,2002(7):301-308
    Marten H., Hyun T., Gomi K., Seo S., Hedrich R. and Roelfsema M.R.. Silencing of NtMPK4impairs CO-induced stomatal closure, activation of anion channels and cytosolicCasignals in Nicotiana tabacum guard cells. Plant J.,2008(55):698-708
    Meskiene I., Baudouin E., Schweighofer A., Liwosz A., Jonak C., Rodriguez P.L., Jelinek H.and Hirt H.. Stress-induced protein phosphatase2C is a negative regulator of amitogen-activated protein kinase. J. Biol. Chem.,2003(278):18945-18952
    Meskiene I., Bogre L., Glaser W., Balog J., Brandstotter M., Zwerger K., Ammerer G. andHirt H.. MP2C, a plant protein phosphatase2C, functions as a negative regulator ofmitogen-activated protein kinase pathways in yeast and plants. Proc. Natl. Acad. Sci. USA,1998(95):1938-1943
    Miao Y., Laun T.M., Smykowski A. and Zentgraf U.. Arabidopsis MEKK1can take a shortcut: it can directly interact with senescence-related WRKY53transcription factor on theprotein level and can bind to its promoter. Plant Mol. Biol.,2007(65):63-76
    Mittler R., Vanderauwera S., Gollery M. and Van Breusegem F.. Reactive oxygen genenetwork of plants. Trends Plant Sci.,2004(9):490-498
    Mizoguchi T., Ichimura K., Irie K., Morris P., Giraudat J., Matsumoto K. and Shinozaki K..Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwiseyeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBSLett,1998(437):56-60
    Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K.and Shinozaki K.. A gene encoding a mitogen-activated protein kinase kinase kinase isinduced simultaneously with genes for a mitogen-activated protein kinase and an S6ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc.Natl. Acad. Sci. USA,1996(93):765-769
    Mockaitis K. and Howell S.H.. Auxin induces mitogenic activated protein kinase (MAPK)activation in roots of Arabidopsis seedlings. Plant J.,2000(24):785-796
    Monroe-Augustus M., Zolman B.K. and Bartel B.. IBR5, a dual-specificity phosphatase-likeprotein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell,2003(15):2979-2991
    Monshausen G.B., Bibikova T.N., Weisenseel M.H. and Gilroy S.. Ca2+regulates reactiveoxygen species production and pH during mechanosensing in Arabidopsis roots. PlantCell,2009(21):2341-2356
    Morris.P.C. MAP kinase signal transduction pathways in plants. New Phytol.,2001(151):67–89
    Muller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D. and Samaj J.. ArabidopsisMPK6is involved in cell division plane control during early root development, andlocalizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasmamembrane. Plant J.,2009
    Muller S., Smertenko A., Wagner V., Heinrich M., Hussey P.J. and Hauser M.T.. The plantmicrotubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplastfunction. Curr. Biol.,2004(14):412-417
    Munnik T., Ligterink W., Meskiene I.I., Calderini O., Beyerly J., Musgrave A. and Hirt H..Distinct osmo-sensing protein kinase pathways are involved in signalling moderate andsevere hyper-osmotic stress. Plant J.,1999(20):381-388
    Mur LA., Kenton P., Atzorn R., Miersch O. and Wasternack C.. The outcomes ofconcentration-specific interactions between salicylate and jasmonate signaling includesynergy, antagonism, and oxidative stress leading to cell death. Plant Physiol.,2006(140):249-262
    Murakami-Kojima M., Nakamichi N., Yamashino T. and Mizuno T. The APRR3componentof the clock-associated APRR1/TOC1quintet is phosphorylated by a novel protein kinasebelonging to the WNK family, the gene for which is also transcribed rhythmically inArabidopsis thaliana. Plant Cell Physiol.,2002(43):675-683
    Nakagami H., Kiegerl S. and Hirt H.. OMTK1, a novel MAPKKK, channels oxidative stresssignaling through direct MAPK interaction. J. Biol. Chem.,2004(279):26959-26966
    Nakagami H., Soukupova H., Schikora A., Zarsky V. and Hirt H.. A Mitogen-activated proteinkinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J. Biol.Chem.,2006(281):38697-38704
    Naoi K. and Hashimoto T.. A semidominant mutation in an Arabidopsis mitogen-activatedprotein kinase phosphatase-like gene compromises cortical microtubule organization.Plant Cell,2004(16):1841-1853
    Nicole M.C., Hamel L.P., Morency M.J., Beaudoin N., Ellis B.E. and Seguin A.. MAP-pinggenomic organization and organ-specific expression profiles of poplar MAP kinases andMAP kinase kinases. BMC Genomics,2006(7):223
    Ning J., Li X., Hicks L.M. and Xiong L.. A Raf-like MAPKKK gene DSM1mediates droughtresistance through reactive oxygen species scavenging in rice. Plant Physiol.,2010(152):876-890
    Nishihama R., Ishikawa M., Araki S., Soyano T., Asada T. and Machida Y.. The NPK1mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation inplant cytokinesis. Genes Dev.,2001(15):352-363
    Nishihama R., Soyano T., Ishikawa M., Araki S., Tanaka H., Asada T., Irie K., Ito M., TeradaM., Banno H., Yamazaki Y. and Machida Y.. Expansion of the cell plate in plantcytokinesis requires a kinesin-like protein/MAPKKK complex. Cell,2002(109):87-99
    Oliveira R.A., Hamilton R.S., Pauli A., Davis I. and Nasmyth K.. Cohesin cleavage and Cdkinhibition trigger formation of daughter nuclei. Nat. Cell Biol.,2010(12):185-192
    Ortiz-Masia D., Perez-Amador M.A., Carbonell J. and Marcote M.J..(2007) Diverse stresssignals activate the C1subgroup MAP kinases of Arabidopsis. FEBS Lett, vol581.
    Owens D.M. and Keyse S.M.. Differential regulation of MAP kinase signalling bydual-specificity protein phosphatases. Oncogene,2007(26):3203-3213
    Parisy V., Poinssot B., Owsianowski L., Buchala A., Glazebrook J. and Mauch F..Identification of PAD2as a gamma-glutamylcysteine synthetase highlights the importanceof glutathione in disease resistance of Arabidopsis. Plant J.,2007(49):159-172
    Park H.C., Song E.H., Nguyen X.C., Lee K., Kim K.E., Kim H.S., Lee S.M., Kim S.H., BaeD.W., Yun D.J. and Chung W.S.. Arabidopsis MAP kinase phosphatase1isphosphorylated and activated by its substrate AtMPK6. Plant Cell Rep.,2011(30):1523-1531
    Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J.,Rodrigues A., Chow T.F., Alfred S.E., Bonetta D., Finkelstein R., Provart N.J., DesveauxD., Rodriguez P.L., McCourt P., Zhu J.K., Schroeder J.I., Volkman B.F. and Cutler S.R.Abscisic acid inhibits type2C protein phosphatases via the PYR/PYL family of STARTproteins. Science,2009(324):1068-1071
    Peng L.X., Gu L.K., Zheng C.C., Li D.Q. and Shu H.R.. Expression of MaMAPK gene inseedlings of Malus L. under water stress. Acta. Biochim Biophys Sin.(Shanghai),2006(38):281-286
    Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H.B.,Lacy M., Austin M.J., Parker J.E., Sharma S.B., Klessig D.F., Martienssen R., MattssonO., Jensen A.B. and Mundy J.. Arabidopsis map kinase4negatively regulates systemicacquired resistance. Cell,2000(103):1111-1120
    Pitzschke A., Djamei A., Bitton F. and Hirt H.. A major role of the MEKK1-MKK1/2-MPK4pathway in ROS signalling. Mol. Plant,2009a (2):120-137
    Pitzschke A. and Hirt H.. Disentangling the complexity of mitogen-activated protein kinasesand reactive oxygen species signaling. Plant Physiol,2009(149):606-615
    Pitzschke A., Schikora A. and Hirt H.. MAPK cascade signalling networks in plant defence.Curr. Opin. Plant Biol.,2009b (12):421-426
    Popescu S.C., Popescu G.V., Bachan S., Zhang Z., Gerstein M., Snyder M. and Dinesh-KumarS.P.. MAPK target networks in Arabidopsis thaliana revealed using functional proteinmicroarrays. Genes Dev.,2009(23):80-92
    Qiu J.L., Fiil B.K., Petersen K., Nielsen H.B., Botanga C.J., Thorgrimsen S., Palma K.,Suarez-Rodriguez M.C., Sandbech-Clausen S., Lichota J., Brodersen P., Grasser K.D.,Mattsson O., Glazebrook J., Mundy J. and Petersen M.. Arabidopsis MAP kinase4regulates gene expression through transcription factor release in the nucleus. EMBO J.,2008a (27):2214-2221
    Qiu J.L., Zhou L., Yun B.W., Nielsen H.B., Fiil B.K., Petersen K., Mackinlay J., Loake G.J.,Mundy J. and Morris P.C.. Arabidopsis mitogen-activated protein kinase kinases MKK1and MKK2have overlapping functions in defense signaling mediated by MEKK1, MPK4,and MKS1. Plant Physiol.,2008b (148):212-222
    Quettier A.L., Bertrand C., Habricot Y., Miginiac E., Agnes C., Jeannette E. and Maldiney R..The phs1-3mutation in a putative dual-specificity protein tyrosine phosphatase geneprovokes hypersensitive responses to abscisic acid in Arabidopsis thaliana. Plant J.,2006(47):711-719
    Rainaldi M., Yamniuk A.P., Murase T. and Vogel H.J.. Calcium-dependent and-independentbinding of soybean calmodulin isoforms to the calmodulin binding domain of tobaccoMAPK phosphatase-1. J. Biol. Chem,2007(282):6031-6042
    Rao K.P., Richa T., Kumar K., Raghuram B. and Sinha A.K.. In silico analysis reveals75members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res.,2010(17):139-153
    Rasmussen M.W., Roux M., Petersen M. and Mundy J.. MAP Kinase Cascades in ArabidopsisInnate Immunity. Front Plant Sci.,2012(3):169
    Ren D., Liu Y., Yang K.Y., Han L., Mao G., Glazebrook J. and Zhang S.. A fungal-responsiveMAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci.USA,2008(105):5638-5643
    Reyna N.S. and Yang Y.. Molecular analysis of the rice MAP kinase gene family in relation toMagnaporthe grisea infection. Mol. Plant Microbe Interact,2006(19):530-540
    Rodriguez M.C., Petersen M. and Mundy J.. Mitogen-activated protein kinase signaling inplants. Annu. Rev. Plant Biol.,2010(61):621-649
    Rohila J.S. and Yang Y.. Rice Mitogen-activated Protein Kinase Gene Family and Its Role inBiotic and Abiotic Stress Response. J. Integr. Plant Biol.,2007(49):751-759
    Romeis T., Piedras P., Zhang S., Klessig DF., Hirt H. and Jones J.D.. Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence ofresistance gene, elicitor, wound, and salicylate responses. Plant Cell,1999(11):273-287
    Sangwan V., Orvar B.L., Beyerly J., Hirt H. and Dhindsa R.S.. Opposite changes inmembrane fluidity mimic cold and heat stress activation of distinct plant MAP kinasepathways. Plant J.,2002(31):629-638
    Sasabe M., Boudolf V., De Veylder L., Inze D., Genschik P. and Machida Y.. Phosphorylationof a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) isinvolved in the transition to cytokinesis in plants. Proc. Natl. Acad. Sci. USA,2011a(108):17844-17849
    Sasabe M., Kosetsu K., Hidaka M., Murase A. and Machida Y.. Arabidopsis thalianaMAP65-1and MAP65-2function redundantly with MAP65-3/PLEIADE in cytokinesisdownstream of MPK4. Plant Signal Behav.,2011b (6):743-747
    Sasabe M. and Machida Y.. MAP65: a bridge linking a MAP kinase to microtubule turnover.Curr. Opin. Plant Biol.,2006(9):563-570
    Sasabe M. and Machida Y.. Regulation of organization and function of microtubules by themitogen-activated protein kinase cascade during plant cytokinesis. Cytoskeleton(Hoboken),2012(69):913-918
    Sasabe M., Soyano T., Takahashi Y., Sonobe S., Igarashi H., Itoh T.J., Hidaka M. and MachidaY.. Phosphorylation of NtMAP65-1by a MAP kinase down-regulates its activity ofmicrotubule bundling and stimulates progression of cytokinesis of tobacco cells. GenesDev.,2006(20):1004-1014
    Schmid M., Davison T.S., Henz S.R., Pape U.J., Demar M., Vingron M., Scholkopf B.,Weigel D. and Lohmann J.U.. A gene expression map of Arabidopsis thalianadevelopment. Nat. Genet,2005(37):501-506
    Schweighofer A., Hirt H. and Meskiene I.. Plant PP2C phosphatases: emerging functions instress signaling. Trends Plant Sci.,2004(9):236-243
    Schweighofer A., Kazanaviciute V., Scheikl E., Teige M., Doczi R., Hirt H., Schwanninger M.,Kant M., Schuurink R., Mauch F., Buchala A., Cardinale F. and Meskiene I.. ThePP2C-type phosphatase AP2C1, which negatively regulates MPK4and MPK6, modulatesinnate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell,2007(19):2213-2224
    Seo S., Katou S., Seto H., Gomi K. and Ohashi Y.. The mitogen-activated protein kinasesWIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobaccoplants. Plant J.,2007(49):899-909
    Seo S., Okamoto M., Seto H., Ishizuka K., Sano H. and Ohashi Y.. Tobacco MAP kinase: apossible mediator in wound signal transduction pathways. Science,1995(270):1988-1992
    Seo S., Sano H. and Ohashi Y.. Jasmonate-based wound signal transduction requiresactivation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell,1999(11):289-298
    Seo S., Seto H., Koshino H., Yoshida S. and Ohashi Y.. A diterpene as an endogenous signalfor the activation of defense responses to infection with tobacco mosaic virus andwounding in tobacco. Plant Cell,2003(15):863-873
    Shen X., Yuan B., Liu H., Li X., Xu C. and Wang S.. Opposite functions of a ricemitogen-activated protein kinase during the process of resistance against Xanthomonasoryzae. Plant J.,2010(64):86-99
    Shi J., An H.L., Zhang L., Gao Z. and Guo X.Q.. GhMPK7, a novel multiple stress-responsivecotton group C MAPK gene, has a role in broad spectrum disease resistance and plantdevelopment. Plant Mol. Biol.,2010(74):1-17
    Shi J., Zhang L., An H., Wu C. and Guo X.. GhMPK16, a novel stress-responsive group DMAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMCMol. Biol.,2011(12):22
    Shou H., Bordallo P., Fan J.B., Yeakley J.M., Bibikova M., Sheen J. and Wang K.. Expressionof an active tobacco mitogen-activated protein kinase kinase kinase enhances freezingtolerance in transgenic maize. Proc. Natl. Acad. Sci. USA,2004(101):3298-3303
    Singh R., Lee M.O., Lee J.E., Choi J., Park J.H., Kim E.H., Yoo R.H., Cho J.I., Jeon J.S.,Rakwal R., Agrawal G.K., Moon J.S. and Jwa N.S.. Rice mitogen-activated protein kinaseinteractome analysis using the yeast two-hybrid system. Plant Physiol,2012(160):477-487
    Sinha A.K., Jaggi M., Raghuram B. and Tuteja N.. Mitogen-activated protein kinase signalingin plants under abiotic stress. Plant Signal Behav.,2011(6):196-203
    Song D., Chen J., Song F. and Zheng Z.. A novel rice MAPK gene, OsBIMK2, is involved indisease-resistance responses. Plant Biol.(Stuttg),2006(8):587-596
    Song F. and Goodman R.M.. OsBIMK1, a rice MAP kinase gene involved in diseaseresistance responses. Planta,2002(215):997-1005
    Soyano T., Nishihama R., Morikiyo K., Ishikawa M. and Machida Y.. NQK1/NtMEK1is aMAPKK that acts in the NPK1MAPKKK-mediated MAPK cascade and is required forplant cytokinesis. Genes Dev.,2003(17):1055-1067
    Steinbacher S., Hof P., Eichinger L., Schleicher M., Gettemans J., Vandekerckhove J., HuberR and Benz J.. The crystal structure of the Physarum polycephalum actin-fragmin kinase:an atypical protein kinase with a specialized substrate-binding domain. EMBO J.,1999(18):2923-2929
    Suarez-Rodriguez M.C., Adams-Phillips L., Liu Y., Wang H., Su S.H., Jester P.J., Zhang S.,Bent A.F. and Krysan P.J.. MEKK1is required for flg22-induced MPK4activation inArabidopsis plants. Plant Physiol.,2007(143):661-669
    Suri S.S. and Dhindsa R.S.. A heat-activated MAP kinase (HAMK) as a mediator of heatshock response in tobacco cells. Plant Cell Environ.,2008(31):218-226
    Takahashi F., Mizoguchi T., Yoshida R., Ichimura K. and Shinozaki K..Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis.Mol. Cell,2011(41):649-660
    Takahashi F., Yoshida R., Ichimura K., Mizoguchi T., Seo S., Yonezawa M., Maruyama K.,Yamaguchi-Shinozaki K and Shinozaki K. The mitogen-activated protein kinase cascadeMKK3-MPK6is an important part of the jasmonate signal transduction pathway inArabidopsis. Plant Cell,2007(19):805-818
    Takahashi Y., Soyano T., Kosetsu K., Sasabe M. and Machida Y.. HINKEL kinesin, ANPMAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. PlantCell Physiol.,2010(51):1766-1776
    Tan BC., Joseph L.M., Deng W.T., Liu L., Li Q.B., Cline K. and McCarty D.R.. Molecularcharacterization of the Arabidopsis9-cis epoxycarotenoid dioxygenase gene family. PlantJ.,2003(35):44-56
    Tanaka H., Ishikawa M., Kitamura S., Takahashi Y., Soyano T., Machida C. and Machida Y..The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2genes, which encodefunctionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells,2004(9):1199-1211
    Teige M., Scheikl E., Eulgem T., Doczi R., Ichimura K., Shinozaki K., Dangl J.L. and Hirt H..The MKK2pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell,2004(15):141-152
    Ton J., Flors V. and Mauch-Mani B.. The multifaceted role of ABA in disease resistance.Trends Plant Sci.,2009(14):310-317
    Ulm R., Ichimura K., Mizoguchi T., Peck S.C., Zhu T., Wang X., Shinozaki K. andPaszkowski J.. Distinct regulation of salinity and genotoxic stress responses byArabidopsis MAP kinase phosphatase1. EMBO J.,2002(21):6483-6493
    Walia A., Lee J.S., Wasteneys G. and Ellis B.. Arabidopsis mitogen-activated protein kinaseMPK18mediates cortical microtubule functions in plant cells. Plant J.,2009(59):565-575
    Wang H., Ngwenyama N., Liu Y., Walker J.C. and Zhang S.. Stomatal development andpatterning are regulated by environmentally responsive mitogen-activated protein kinasesin Arabidopsis. Plant Cell,2007a (19):63-73
    Wang J., Ding H., Zhang A., Ma F., Cao J. and Jiang M.. A novel mitogen-activated proteinkinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverseenvironmental cues. J. Integr. Plant Biol.,2010a (52):442-452
    Wang M., Zhang Y., Wang J., Wu X. and Guo X.. A novel MAP kinase gene in cotton(Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmentalstresses. J. Biochem Mol. Biol.,2007b (40):325-332
    Wang W., Vinocur B. and Altman A.. Plant responses to drought, salinity and extremetemperatures: towards genetic engineering for stress tolerance. Planta,2003(218):1-14
    Wang X.J., Zhu S.Y., Lu Y.F., Zhao R., Xin Q., Wang X.F. and Zhang D.P.. Two coupledcomponents of the mitogen-activated protein kinase cascade MdMPK1and MdMKK1from apple function in ABA signal transduction. Plant Cell Physiol.,2010b (51):754-766
    Wasilewska A., Vlad F., Sirichandra C., Redko Y., Jammes F., Valon C., Frei dit Frey N. andLeung J.. An update on abscisic acid signaling in plants and more. Mol. Plant,2008(1):198-217
    Wen J.Q., Oono K. and Imai R.. Two novel mitogen-activated protein signaling components,OsMEK1and OsMAP1, are involved in a moderate low-temperature signaling pathway inrice. Plant Physiol.,2002(129):1880-1891
    Wu J., Hettenhausen C., Meldau S. and Baldwin I.T.. Herbivory rapidly activates MAPKsignaling in attacked and unattacked leaf regions but not between leaves of Nicotianaattenuata. Plant Cell,2007(19):1096-1122
    Wu T., Kong X.P., Zong X.J., Li D.P. and Li D.Q.. Expression analysis of five maize MAPkinase genes in response to various abiotic stresses and signal molecules. Mol. Biol. Rep.,2010(38):3967-3975
    Wu T., Kong X.P., Zong X.J., Li D.P. and Li D.Q.. Expression analysis of five maize MAPkinase genes in response to various abiotic stresses and signal molecules. Mol. Biol. Rep.,2011(38):3967-3975
    Xing Y., Jia W.. and Zhang J.. AtMEK1mediates stress-induced gene expression of CAT1catalase by triggering H2O2production in Arabidopsis. J. Exp. Bot.,2007(58):2969-2981
    Xing Y., Jia W. and Zhang J.. AtMKK1mediates ABA-induced CAT1expression and H2O2production via AtMPK6-coupled signaling in Arabidopsis. Plant J.,2008(54):440-451
    Xiong L. and Yang Y.. Disease resistance and abiotic stress tolerance in rice are inverselymodulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell,2003(15):745-759
    Xu J., Li Y., Wang Y., Liu H., Lei L., Yang H., Liu G. and Ren D.. Activation of MAPK kinase9induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress inArabidopsis. J. Biol. Chem.,2008(283):26996-27006
    Xu Q., Fu H.H., Gupta R. and Luan S.. Molecular characterization of a tyrosine-specificprotein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell,1998(10):849-857
    Yamakawa H., Katou S., Seo S., Mitsuhara I., Kamada H. and Ohashi Y.. Plant MAPKphosphatase interacts with calmodulins. J. Biol. Chem,2004(279):928-936
    Yamakawa H., Mitsuhara I., Ito N., Seo S., Kamada H. and Ohashi Y.. Transcriptionally andpost-transcriptionally regulated response of13calmodulin genes to tobacco mosaicvirus-induced cell death and wounding in tobacco plant. Eur. J. Biochem.,2001(268):3916-3929
    Yang JSRaY. Rice Mitogen-activated Protein Kinase Gene Family and Its Role in Biotic andAbiotic Stress Response. J. Integr. Plant Biol.,2007(49):751-759
    Yang M., Wu Z and Fields S. Protein-peptide interactions analyzed with the yeast two-hybridsystem. Nucleic Acids Res,1995(23):1152-1156
    Yang T., Chaudhuri S., Yang L., Du L. and Poovaiah B.W.. A calcium/calmodulin-regulatedmember of the receptor-like kinase family confers cold tolerance in plants. J. Biol. Chem.,2010a (285):7119-7126
    Yang T., Shad Ali G., Yang L., Du L., Reddy A.S. and Poovaiah B.W..Calcium/calmodulin-regulated receptor-like kinase CRLK1interacts with MEKK1inplants. Plant Signal Behav.,2010b (5):991-994
    Yoo S.D., Cho Y.H., Tena G., Xiong Y. and Sheen J.. Dual control of nuclear EIN3bybifurcate MAPK cascades in C2H4signalling. Nature,2008(451):789-795
    Yoshiba Y., Kiyosue T., Nakashima K., Yamaguchi-Shinozaki K and Shinozaki K. Regulationof levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol.,1997(38):1095-1102
    Yoshioka H., Mase K., Yoshioka M., Kobayashi M. and Asai S.. Regulatory mechanisms ofnitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric.Oxide.,2010(25):216-221
    Yoshioka H., Numata N., Nakajima K., Katou S., Kawakita K., Rowland O., Jones J.D. andDoke N.. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participatein H2O2accumulation and resistance to Phytophthora infestans. Plant Cell,2003(15):706-718
    Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., Liu J., Xiao Y., Liang Y. and Zhang W..Phosphatidic acid mediates salt stress response by regulation of MPK6in Arabidopsisthaliana. New Phytol.,2010(188):762-773
    Yuan B., Shen X., Li X., Xu C. and Wang S.. Mitogen-activated protein kinase OsMPK6negatively regulates rice disease resistance to bacterial pathogens. Planta,2007(226):953-960
    Zaidi I., Ebel C., Touzri M., Herzog E., Evrard J.L., Schmit A.C., Masmoudi K and Hanin M.TMKP1is a novel wheat stress responsive MAP Kinase phosphatase localized in thenucleus. Plant Mol. Biol.,2010(73):325-338
    Zhang A., Jiang M., Zhang J., Ding H., Xu S., Hu X. and Tan M.. Nitric oxide induced byhydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activatedprotein kinase cascade involved in antioxidant defense in maize leaves. New Phytol,2007a (175):36-50
    Zhang A., Jiang M., Zhang J., Tan M. and Hu X.. Mitogen-activated protein kinase isinvolved in abscisic acid-induced antioxidant defense and acts downstream of reactiveoxygen species production in leaves of maize plants. Plant Physiol,2006(141):475-487
    Zhang A., Zhang J., Ye N., Cao J., Tan M., Zhang J. and Jiang M.. ZmMPK5is required forthe NADPH oxidase-mediated self-propagation of apoplastic H2O2inbrassinosteroid-induced antioxidant defence in leaves of maize. J. Exp. Bot.,2010(61):4399-4411
    Zhang J., Shao F., Li Y., Cui H., Chen L., Li H., Zou Y., Long C., Lan L., Chai J., Chen S.,Tang X. and Zhou J.M.. A Pseudomonas syringae effector inactivates MAPKs to suppressPAMP-induced immunity in plants. Cell Host Microbe,2007b (1):175-185
    Zhang L., Xi D., Li S., Gao Z., Zhao S., Shi J., Wu C. and Guo X.. A cotton group C MAPkinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. PlantMol. Biol.,2011a (77):17-31
    Zhang L., Xi D., Luo L., Meng F., Li Y., Wu C.A. and Guo X.. Cotton GhMPK2is involvedin multiple signaling pathways and mediates defense responses to pathogen infection andoxidative stress. FEBS J.,2011b (278):1367-1378
    Zhang M., Pan J., Kong X., Zhou Y., Liu Y., Sun L. and Li D.. ZmMKK3, a novel maizegroup B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABAsignal responses. J. Plant Physiol.,2012a (169):1501-1510
    Zhang S. and Klessig D.F.. Salicylic acid activates a48-kD MAP kinase in tobacco. PlantCell,1997(9):809-824
    Zhang S. and Klessig D.F.. Resistance gene N-mediated de novo synthesis and activation of atobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl.Acad. Sci. USA,1998(95):7433-7438
    Zhang S. and Klessig D.F.. MAPK cascades in plant defense signaling. Trends Plant Sci.,2001(6):520-527
    Zhang X., Cheng T., Wang G., Yan Y. and Xia Q.. Cloning and evolutionary analysis oftobacco MAPK gene family. Mol. Biol. Rep.,2012b
    Zhang X., Dai Y., Xiong Y., DeFraia C., Li J., Dong X. and Mou Z.. Overexpression ofArabidopsis MAP kinase kinase7leads to activation of plant basal and systemic acquiredresistance. Plant J.,2007c (52):1066-1079
    Zhang Z., Wu Y., Gao M., Zhang J., Kong Q., Liu Y., Ba H., Zhou J. and Zhang Y.. Disruptionof PAMP-Induced MAP Kinase Cascade by a Pseudomonas syringae Effector ActivatesPlant Immunity Mediated by the NB-LRR Protein SUMM2. Cell Host Microbe,2012c(11):253-263
    Zhao Z., Zhang W., Stanley B.A. and Assmann S.M.. Functional proteomics of Arabidopsisthaliana guard cells uncovers new stomatal signaling pathways. Plant Cell,2008(20):3210-3226
    Zhou C., Cai Z., Guo Y. and Gan S.. An Arabidopsis mitogen-activated protein kinase cascade,MKK9-MPK6, plays a role in leaf senescence. Plant Physiol.,2009(150):167-177
    Zhou Y., Zhang D., Pan J., Kong X., Liu Y., Sun L., Wang L. and Li D.. Overexpression of amultiple stress-responsive gene, ZmMPK4, enhances tolerance to low temperature intransgenic tobacco. Plant Physiol Biochem.,2012(58):174-181
    Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J.D., Boller T. and Felix G.. Perceptionof the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediatedtransformation. Cell,2006(125):749-760
    Zong X.J., Li D.P., Gu L.K., Li D.Q., Liu L.X. and Hu X.L.. Abscisic acid and hydrogenperoxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsiblefor the removal of reactive oxygen species. Planta,2009(229):485-495