两种苯磺隆分子印迹聚合物膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹是制备对某一客体分子具有预定选择性的聚合物材料过程,最初起源于Fischer的“锁钥学说”和Pauling的抗体形成学说。利用分子印迹聚合物内所形成的与模板分子相匹配的形状、孔穴大小、识别位点等,对模板分子产生的“识别效应”来实现对模板分子的选择性识别。分子印迹聚合物不仅具有类似酶和抗体的特定的识别能,而且还具有独特的化学和物理稳定性、长的使用寿命和简单的制备方法等优点,因此,它已获得广泛的应用,包括色谱固定相、模拟酶催化、固相萃取、药物传递和传感技术等。
     分子印迹膜结合了分子印迹技术和膜分离技术的优点,具有操作简便,耗能少,反应时间短,干净无污染等特点,同生物膜相比,具有很高的稳定性和机械强度,对目标分子具有高的渗透选择性和识别能
     农药残留危害已越来越引起了人们的重视,“十一五”开局的2006年,国家863计划将分子印迹技术在农药检测领域的应用作为重点技术进行支持,当前研究和加快农药快速检测方法的建立对于食品安全迫切需要也是世界各国政府和人民的共同愿望。
     本文合成了N,O-双异丁烯酰乙醇胺作交联功能单体,利用分光光度法研究了甲醇中N,O-双异丁烯酰乙醇胺和苯磺隆的结合机理,基于此,制备合成了以苯磺隆为模板分子的分子印迹膜,我们用扫描电镜观测了所制得分子印迹膜和非分子印迹膜的表面形态。我们还测定了分子印迹膜的印迹因子,并通过单分子渗透实验和多分子竞争扩散实验检验了分子印迹膜对苯磺隆、噻吩磺隆和氯嘧磺隆的选择渗透性,实验结果表明,制备的分子印迹膜对模板分子苯磺隆具有高选择性。
     通过表面引发的原子转移自由基聚合作用,合成了分子印迹纳米线膜,用扫描电镜观测了所制得分子印迹纳米线膜和非分子印迹膜的表面形态。绘制了分子印迹纳米线膜对模板分子的吸附等温线,用Scatchard图验证了分子印迹纳米线膜对苯磺隆的结合特性。通过单分子渗透实验和多分子竞争扩散实验检验了分子印迹膜对苯磺隆、噻吩磺隆、氯嘧磺隆和氯对溴的选择渗透性,实验结果表明,制备的分子印迹膜对模板分子苯磺隆具有高选择性。
     在制备分子印迹膜的过程中,省去了额外功能单体的加入和功能单体、交联剂和模板配比的优化,大大简化了理想分子印迹聚合物的制备手续,与传统的功能单体相比对模板分子具有更明显的选择性。这种识别特性有望实现建立残留快速检测的传感技术,对于建立农药残留的快速检测方法具有一定的指导意义。
Molecular imprinting is a method that can prepare polymer material with predetermined selectivity towords guest molecules. This technique camed from Fischer’s lock-and-key hypothesis and Pauling’s antibody-forming theory. Taking advantage of the shape, size, functional groups corresponding to the template molecule inside the molecularly imprinted polymer, the selectively recognization for the tribenuron-methyl was realized through for template molecule. Molecularly imprinted polymer not only has specific recognization like enzyme and antibody, but also has other advantages like specific chemical and physical stability, long working life, simple preparation methods. Consequently, it was widely applied such as chromatographic stationary phase, enzyme-micing catalysis, solid phase extraction (SPE), drug delivery system(DDS), and sensing technology.
     Molecularly imprinted membranes combine the advantages of molecular imprinting and membrane separation. It also has specialty such as simple operation, less energy, short reaction time, clean, uncontaminated, high stability, good mechanical properties, high permselectivity and recognization capability compared with biological membrane.
     The hazard of pesticide residual has aroused more and more people’s attention. In the year 2006, the beginning of Eleventh Five-year Plan, molecular imprinting technique as a key program applied in the field of pesticide detection has been supported by National 863 Plan. At present it is a urgent need for food security to research and improve rapid detection method, and also a common desire for governments and people.
     In this paper, N,O-bismethacryloyl ethanolamine was synthesized as crosslinking monomer, then the binding mechanism between N,O-bismethacryloyl ethanolamine and tribenuron-methyl in methanol was studied with UV-visible spectrophotometer. Based on this study, using tribenuron-methyl as template molecule, molecularly imprinted membrane was prepared. Then, morphologies of the resultant polymeric membrane or the control membrane were visualized with scanning electron microscopy (SEM), and the imprinting factor was also detected. The membrane permselectivity for tribenuron-methyl, thifensulfuron-methyl and chlorimuron-ethyl was tested with separate experiments and competitive diffusion experiments. These results showed that the molecularly imprinted membrane exhibited higher transport selectivity for the template molecule tribenuron-methyl.
     Then, molecularly imprinted nanowire membrane was prepared through surface-initiated atom transfer radical polymerization (ATRP), and the morphologies of the prepared molecularly imprinted nanowire membrane and the control membrane was observed. The adsorption isotherm of the molecularly imprinted nanowire membrane toward the template molecule was drawed, and the associated property of the molecularly imprinted nanowire membrane toward tribenuron-methyl was confirmed using Scatchard equation. The membrane permselectivity for tribenuron-methyl, thifensulfuron-methyl, chlorimuron-ethyl and BCIA was tested with separate experiments and competitive diffusion experiments. These results showed that the olecularly imprinted membrane exhibited higher transport selectivity for the template molecule tribenuron-methyl.
     In the process of preparing molecularly imprinted membrane, the preparation procedure was simplified greatly by ignoring the optimum ratio of functional monomer/cross-linker, and the optimum ratio of functional monomer/template. Utilization of NOBE alone often provides molecularly imprinted polymers with higher affinity toward templates than those of incorporating a functional monomer. This selective identification feature will help to develop sensor technique in rapid detection of tribenuron-methyl residual, and it is of some guiding significance for settling rapid detection method of pesticide residual.
引文
陈长宝,周杰,吴春辉.分子印迹技术研究进展.化学研究与应用, 2006, 18(8): 896-902.
    成国祥,张立永,傅聪.种子溶胀悬浮聚合法制备分子印迹聚合物微球.色谱, 2002, 20: 102-107.
    冯溶.苯磺隆的反相液相色谱分析.农药, 2002, 41(3): 23.
    郭天瑛,张丽影,郝广杰等.单分散N-苯甲氧羰基-L-色氨酸表面分子印迹聚合物的手性拆分.分析化学, 2004, 32: 705-709.
    郭洪声,何锡文,邓昌辉.药物扑热息痛分子模板聚合物的选择性富集与识别特性研究.高等学校化学学报, 2000, 21(3): 363-367.
    高吉刚,陈长宝,周杰.新型长侧链双羧基功能单体N-(p-乙烯基苄基)-N,N-二[2-(3-羧基)乙基]胺的合成及其对牛血清白蛋白印迹识别的应用.化学学报, 2008, 66 (9): 1067 -1073.
    高吉刚,周杰,曲祥金.植物激素吲哚乙酸分子模板聚合物的分子识别特性.分析化学, 2003, 31: 1173-1177.
    赖家平,何锡文,郭洪声,梁宏.分子印迹技术的回顾、现状与展望.分析化学, 2001, 29: 836-844.
    卢春阳,马向霞,何锡文等.邻香草醛分子印迹聚合物膜的制备及其透过选择性质的研究.化学学报, 2005, 63(6): 479-483.
    史瑞雪,郭成海,邹小红等.分子印迹技术研究进展.化学进展, 2002, 14(3): 182-191.
    王华芳,何锡文,张玉奎. 3-氨基苯硼酸为功能单体在壳聚糖上印迹牛血清白蛋白的研究.高等学校化学学报, 2008, 29 (4): 726-730.
    王雪莉.苯磺隆的高效液相色谱法测定.农药科学与管理, 2004, 26(7): 4-5.
    武利庆,王晶.分子印迹聚合物预组装体系计算机模拟计算机与应用化学, 2007, 24 (8): 1009-1013.
    吴文镶.印迹技术及应用.廊坊师范学院学报, 2002, 20 (4): 11-15.
    张淑琼,庄峙厦,王小如.分子印迹SiO2纳米管膜的制备及其生化分离应用.高等学校化学学报, 2004, 25 (6): 1028 -1030.
    周杰,何锡文.分子模板聚合物在分析化学中的应用.分析测试学报, 1998, 17: 87-91.
    周艳梅,李丽清,张成丽.以锌原卟啉为功能单体的分子印迹聚合物对胞嘧啶的识别作用.化学研究, 2007, 18 (4): 59-61.
    张国庆,杨更亮,范子琳.氨基比林原位分子印迹柱的制备及其在水中的结合性质.分析化学, 2005, 33(10): 1393-1396.
    左言军,余建华,黄启斌.分子印迹纳米膜的制备及其在检测神经性毒剂沙林中的应用.分析化学, 2003, 31(7): 769-773.
    Aherne A, Alexander C, Payne M J, et al. Bacterial-Mediated Lithography of Polymer Surfaces. J am Chem Soc, 1996, 118: 8771-8772.
    Alexandre R, Norihiko M. Towards molecularly imprinted polymers selective to peptides and proteins. Biochimicaet Biophysica Acta, 2001, 1544: 255-266.
    Bagginai C, Giuardi G, Giovnnaoli C, et al. A molecularly imprinted polymer for the pesticide bentazone. Anal. Comm., 1999, 36: 263-266.
    Bastide J, Cambon J P, Breton F, et a1. The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides. Anal Chem Acta, 2005, 542 (1): 97-103.
    Betra D, Shea K J. Novel trifunctional building blocks for fluorescent polymers. J.Org. Lett. 2003, 21: 3895-3898.
    Bjarnason B, Chimuka L, Ramstrom O. On line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Anal Chem, 1999, 71: 2152-2156.
    Chen C B, Chen Y J, Zhou J, Wu C H. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid. Anal. Chim. Acta., 2006, 569: 58-65.
    Chianella I, Lotierzo M, Piletsky S A, et al. Rational design of a polymer specific for microcystin-LR using a computational approach. Anal. Chem., 2002, 74: 1288-1293.
    Chianella I, Piletsky S A, Tothill I E, et a1. MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosensors and Bioelectronics, 2003, 18: 119-127.
    Crescenzi C, Bayoudh S, Cormack P A G, et al. Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectromietry. Anal Chem, 2001, 73: 2171-2189.
    Cristallini C, Ciardelli G, Barbani N, et al. Acrylonitrile acrylic acid copolymer membrane imprinted with uric acid for clinical uses. Macromol Biosci, 2004, 4(1): 31-38.
    Delsney T P, Mirsky V M, Ulbricht M, et al. Chemosensors based on molecularly imprinted polymers. Anal Chim Acta. 2001, 435: 157-162.
    Dichey F H. The preparation of specific adsobents. J. Proc. Natl. Acad. Sci., USA, 1949, 35: 277 -299.
    Dong W G, Liu Z, Li Y Z, et al. A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer. Anal . Chim. Acta., 2005, 542: 186-192.
    Fischer E. Synthese dermannose und lavulose. Ber-Dtsch. Chen Ges. 1890, 23: 799-805.
    Gao B J, An F Q, Zhu Y. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles. Polymer, 2007, 48: 2288-2297.
    Gao D, Zhang Z, Wu M, et al. A surface functional monomer-directing srategy for highly dense imprinting of TNT at surface of silica nanoparticles. J . Am. Chem. Soc. 2007, 129: 7859-7866.
    Gudrun B, Jurgen H, Heike P, et al. Gas phase detection of explosives such as 2 ,4 ,6-trinit rotoluene by molecularly imprinted polymers. Analytica Chimica Acta, 2007, 591: 49-56.
    Haginaka J, Takekira H, Hosoya K. Molecularly imprinted uniform-sized polymer for (S)-naproxen selectively modified with hydrophilic external layer. J. Chromatogr. A. 1999, 849: 331-339.
    Hinke E, Staude E. Streaming potential of microporous membranes made from homogeneously functionalized polysulfone. J Appl Polym Sci, 1991, 42: 2951-2958.
    Hiratani H, Alvarez-Lorenzo C. The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems. Biomaterials, 2004, 25(6): 1105-1113.
    Immer F, Francesa L, Antalet T, et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal Chem 2000, 72: 3934-3941.
    Jiang N, Chang X J, Zheng H, et al. Selective solid-phase extraction of nickel(Ⅱ) using a surface-imprinted silica gel sorbent. Analytica Chimica Acta, 2006, 577: 225-231.
    Kensaku M, Michie T, Toyoshi S. Footprint Catalysis. XI. molecular footprint cavities imprinted with chiral amines and their chiral molecular recognition. Bull. Chem. Soc. Japn. 1994, 67: 1078-1084.
    Kobayashi T, Wang H Y, Fujii N. Molecularly imprinted membranes of polyacrylonitrile copolymers with different acrylic acid segments. Analytical Chimica Acta, 1998, 365: 81-88.
    Kobayashi T, Murawaki Y, Reddy P S, et al. Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance. Anal. Chim. Acta., 2001, 435: 141-149.
    Kobayashi T, Reddy P S, Ohta M, et al. Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: charge transfer interaction as recognition origin. Chem Mater, 2002, 14: 2499-2505.
    Kochkodan V, Weigel W, Ulbricht M, et al. Thin layer molecularly imprinted microfiltration membranes by photofunctionalizatio. Anaylyst, 2001, 126: 803-809.
    Koehkodna V, Weigel W, Ulbricht M, et al. Molecularly imprinted composite membranes for selective binding of desmetryn from aqueous solutions. Desalination, 2002, 149: 323-328.
    Kubo T, Matsumoto H, Shiraishi F, et al. Selective separation of hydroxy polychlorinated biphenyls (HO-PCBs) by the structural recognition on the molecularly imprinted polymers: Direct separation of the thyroid hormone active analogues from mixtures. Anal. Chim. Acta., 2007, 589: 180-185.
    Kugimiya A, Takeuchi T. Application of indoleacetic acid-imprinted polymer to solid phase extraction. Anal. Chim. Acta. 1999, 395: 251-255.
    Lu C H, Zhou W H, Han B, et al. Surface imprinted core-shell nanoparticles for sorbent assays. Anal . Chem. 2007, 79: 5457-5461.
    Lu Y K, Yan X P. An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution. Anal . Chem., 2004, 76: 453-457.
    Martha S V, David A S. Molecular imprinting made easy. J. Am. Chem. Soc., 2004, 126 : 7827 -7833.
    Martha S V, David A S. Enhanced enantioselectivity of molecularly imprinted polymer formulated with novel cross-linking monomers. Macromolecules, 2003, 36, 5105-5113.
    Masque N, Maere R M, Bomrll F, et al. Synthesis and evaluation of a molecularly imprinted polymer for selective on-line solid-phase extraction of 4-nitrophenol from environmental water. Anal. Chem., 2000, 72: 4122-4126.
    Matsui J, Okada M, Tsuruoka M, et a1. Solid-phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor.Anal. Commun., 1997, 34: 85-87
    Mena M L, Martinez-Ruiz P, Reviejo A J, et al. Spectrophotometric determination of piroxicam and tenoxicam in water samples. Anal. Chim. Acta., 2002, 451: 297-304.
    Newcomb M, Helgeson R C, Cram D J. Enantiomeric differentiation in transport through bulk membranes. J Am Chem Soc, 1974, 96: 7367-7369.
    Nishino H, Huang C S, Shea J K. Selective protein capture by epitope imprinting. Angew. Chem. Int. Ed. 2006, 45: 2392-2396.
    Panasyuk T L, Mirsky V M, Piletsky S A, et al. Elect ropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors. Anal. Chem. 1999, 71: 4609-4613.
    Pauling L J A. Theory of the structure and process of formation of antibodies. J. Am. Chem. Soc. 1940, 62(3): 2643 - 2657.
    Piletsky S A, Alcock S, Turner A P F. Molecularly imprinting : at the edge of the third millennium. Trends in Biotechnology, 2001, 19(1): 9-12.
    Piletsky S A, Matuschewski H, Schedler U, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules, 2000, 33: 3092-3098.
    Piletsky S A, Karim K, Piletska E V, et al. Recognition of ephedrine enantiomers by MIPs designed using a computational approach. Analyst., 2001, 126: 1826-1830.
    Puoci F, Garreffa C, Iemma F, et al. Molecularly imprinted solid phase extraction for detection of sudan I in food matrices. Food Chemistry, 2005, 93(2): 349-353.
    Ramstrom O, Anderson I, Mosbach K. Recognition sites incorporating both pyridinyl and carboxyfunctionalities prepared by molecular imprinting. J. Org. Chem., 1993, 58(26): 7562-7564.
    Reddy P S, Kobayashi T, Abe M, et al. Molecular imprinted nylon-6 as a recognition material of amino acids. Eur. Polym. J., 2002, 38: 521-529.
    Reddy P S, Kobayashi T, Fujii N. Recognition characteristics of dibenzofuran by molecularly imprinted polymers made of common polymers. Eur. Polym. J., 2002, 38: 779-785.
    Schmidt R H, Mosbach K, Haupt K. A simple met hod for spin-coatingmolecularly imprinted polymer films of cont rolled thickness and porosity. Adv. Mater., 2004, 16: 719-722.
    Sellergren B, Andersson L. Molecular recognition in macroporous polymer prepared by a substrate analogue imprinting strategy. J. Org. Chem., 1990. 55: 3381-3383
    Sellergren B, Lepisto M, Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and Chromatographic studies on the nature of recognition. J. Am. Chem. Soc., 1988, 110: 5853-5860.
    Sergeyeca T A, Piletsky S A, Brovko A A. et al. Selective recognition of atrazine by molecularly imprinted polymer membranes: Development of conductometric sensor for herbicides detection. Anal. Chim. Acta., 1999, 392: 105-111.
    Sergeyeva T A, Piletsky S A, Brovko A A, et al. Conductimtric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst., 1999, 124: 331-334.
    Sergeyeva T A, Piletsky S A, Brovko A A, et al. Development of conductometric sensor for herbicides detection. Anal. Chim. Acta, 1999, 392: 105-111.
    Shi Y, Zhang J H, Shi D, et al. Selective solid- phase extraction of cholesterol using molecularly imprinted polymers and its application in different biological samples. Journal of Pharmaceutical and Biomedical Analysis, 2006, 42(5): 549-555.
    Silvestri D, Cristallini C, Ciardelli G. Molecularly imprinted bioartificial membranes for the selective recognition of biological molecules. J. Biomater. Sci.(polymed), 2005, 16: 397-410.
    Sreenivasan K. Synthesis and evaluation of a molecularly imprinted polyurethane-poly (HEMA) semi-interpenetrating polymer networks as membrane. J. Appl. Polym. Sci., 1998, 70: 19-22.
    Subrahmanyam S, Piletsky S A, Piletska E V, et al. Bite and switch approach using sensing computationally designed molecularly imprinted polymersfor sensing of creatinine. Biosens. Bioelectron., 2001, 16: 631-637.
    Su H J, Wang Z X, Tan T W. Adsorption of Ni2+ on the surface of molecularly imprinted adsorbent from Penicillium chysogenum mycelium. Biotechnol. Lett., 2003, 25(12): 949-953.
    Sulitzky C, Ruckert B, Hall A J, et al. Grafting of molecularly imprinted polymer films on silica support s containing surface-bound free radical initiators. Macromolecules, 2002, 35: 79-91.
    Takaomi K, Wang H Y, Takahiro F, et al. Molecular imprinted membranes prepared by phase inversion of polyacrylonitrile copolymers containing carboxylic acid groups. ACS Symposium Series, 1998, 703(1): 188-201.
    Takeuchi T, Fukuma D, Matsui J, et al. Combinatorial molecular imprinting: An approach to synthetic polymer receptors. Anal. Chem, 1999, 71: 285-290.
    Tan T, Cheng P. Adsorption of metal ion on penicillin mycelium. Applied Biochemistry and Biotechnology. 2003, 104(2): 119-126.
    Tan T, He X, Du W. Adorption behavior of metal ion on imprinting chitosan resin. J. Chemical Technology and Biotechnology. 2001, 6(2): 191-195.
    Ulbricht M. Membrane separations using molecularly imprinted polymers. J. Chomatogr. B, 2004, 804 (1): 113-125.
    Vaihnger D, Landfester K, Krauter I. Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation. Macromol. Chem. Phys., 2002, 203: 1965-1973.
    Vlatakis G, Andersson L I , Muller R , Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature (London) 1993, 361: 645-647.
    Wang H J, Yang H H, Wang X R, et al. Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J. Am. Chem. Soc. 2006, 128: 15954-15955.
    Wang H Y, Xia S L, Sun H, et al. Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracilrecognition and permselective binding. J. Chromatogr. B, 2004, 804: 127-134.
    Wei X, Li X, Husson S M. Surface molecular imprinting by atom transfer radical polymerization. Biomacromolecules, 2005, 6: 1113-1121.
    Whitcombe M J, Rodriguez M E, Villar P. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc., 1995, 117: 7105-7111
    Wulff G.. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl., 1995, 34: 1812-1832.
    Wulff G, Minark M J. Template imprinted polymers for HPLC separation of racemates. Liquid Chromatography, 1990, 13(15): 2987-3000.
    Wulff G, Sahan A, Zabrocki K. Enzyme-analongue built polymers and their use for the resolution of racemates. Tetrahedron. Lett., 1973, 14 (44): 4329 -4332
    Wulff G., Vesper W. Preparation of chromatographic sorbents with chiral cavities for racemic resolution. J. Chromatorg., 1978, 167: 171-186.
    Wu L Q , Sun B W, Li Y Z, et al. Study properties of molecular imprinting polymer using a computational approach. Analyst, 2003, 128: 944-949.
    Wu L Q, Li Y Z. Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches. Journal of Molecular Recognition, 2004, 17: 567-574.
    Xia S L,Wang H Y, Sun H, et al. Preparation of molecular imprinted copolymer membrane for uracil recognition. Chinese. Chem. Lett., 2003, 14: 794-796.
    Xia S L, Sun H, Wang H Y. et al. Ion complex membranes of acrylonitrile copolymers having methacrylic acid and amphiphilic quaternized ammonium groups for uracil molecular imprinting. Adv in Tech of Mat and Mat Proc J, 2003, 8(2): 260-267.
    Yang H H, Zhang S Q, Tan F, Zhuang Z X, Wang X R. Surface molecularly imprinted nanowires for biorecognition. J. Am. Chem. Soc. 2005, 127: 1378-1379.
    Ye L, Cormack Peter A G, Mosbach K. Molecular imprinting on micro gel spheres. Anal. Chem. Acta., 2001, 435: 187-196.
    Yoshikawa M, Izumi J, Kitao T. Novel membrane materials having EEE derivatives as a chiral recognition. Eur. Polym. J., 2001, 37: 335-342.
    Zhang M G, Mullens C, Gorski W. Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors. Anal. Chem. 2007, 79(6): 2446-2450.
    Zhu Q Z, Degelmann P, Niessne R, et al. Selective trace analysis of sulfonylurea herbicide. Environ. Sci. Technol., 2002, 36: 5411-5420.
    Zhu X, Yang J, Su Q, et al. Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. J. Chromatogr. A, 2005, 1092: 161-169.