规模化肉鸡场主要免疫抑制性疫病的分子流行病学调查及传播特点分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网状内皮增生症病毒(Reticuloendotheliosis virus, REV)、马立克氏病病毒(Marek’s disease virus, MDV)、鸡传染性贫血病病毒(Chicken anemia virus, CAV)和J亚群白血病(Avian leukosis virus subgroup J)是目前鸡群中常见的免疫抑制性病毒。这些病毒除不同程度的引起机体发生原发感染之外,更严重的是以继发感染的形式出现,致使家禽的免疫系统受到损害,引起机体免疫功能下降,导致疫苗免疫效果降低。根据近年的报道,种鸡和商品鸡均存在这些病毒的感染,并存在不同程度的共感染;发病鸡群新城疫等抗体水平明显偏低的原因多数是由于鸡群感染免疫抑制性病毒所致;种鸡群感染并垂直传播给商品鸡,间接引起了商品鸡群30日龄左右免疫能降低,死亡率上升。因此,免疫抑制性疾病是目前养鸡业的潜在威胁,给养鸡业造成了巨大的经济损失。
     1. REV、ALV、MDV和CAV在山东省肉鸡群中感染状况的调查
     从山东省潍坊、青岛、泰安三个地区30个疑似免疫抑制性疾病感染鸡群中采集948只鸡的脾脏,用组织DNA直接斑点杂交方法检测各样品中REV、MDV、CAV的感染状况。同时采集各个鸡只的泄殖腔棉拭子,用酶联免疫吸附试验检测禽白血病病毒p27抗原。结果表明:所有鸡场中ALV感染率(52.7 %)最高,其次为REV(46.3%)。各地区都存在非常严重单独感染和混合感染,并且感染率从种鸡到商品鸡呈递增趋势。潍坊地区ALV发病最频繁,REV在青岛地区感染率最高。REV、MDV、ALV和CAV的广泛传播和多重感染是当前山东省各鸡场条件性致病菌发病率高、家禽生产性能下降的重要原因。
     2.由疫苗污染所致规模化鸡场免疫抑制性疾病的垂直传播
     用间接免疫荧光检测出山东某规模化AA祖代鸡场所用的疫苗中有两株疫苗感染REV,一株感染ALV-J。该祖代鸡下属父母代鸡场和商品鸡场所用疫苗没有出现这种现象。随即采集该祖代鸡场的27周龄祖代鸡及其所生产的19日龄父母代鸡胚、25周龄父母代鸡及其所生产的19日龄商品代鸡胚、1日龄商品鸡和30日龄商品鸡的脾脏样品,采用斑点杂交方法调查各代次鸡群中REV、MDV、CAV的感染状况,同时用酶联免疫吸附试验检测各样品中ALV-J抗体阳性率。结果表明:祖代种鸡中REV、ALV-J分别为13.1%和10.8%,未出现MDV、CAV感染,其所生产的19日龄父母代鸡胚REV感染率为11.3%;父母代鸡中REV、CAV、ALV-J分别为16.2%、10.8%和21.6%,30日龄商品鸡中这三种病毒的检出率分别为34.6 %、14.1%和42.3 %;父母代鸡所生产的商品代鸡胚中REV、CAV的检出率分别为24.5%和14.2%,REV和CAV的共感染率为11.3%。在父母代鸡中存在REV和ALV-J的共感染(13.5%)以及REV和CAV的共感染(8.1%);二重感染在商品鸡中也很严重REV+ALV-J (26.9%)、REV+CAV(9.0%)、CAV+ALV-J(11.5%)。鸡群这几种病毒单独感染和混合感染的感染率从父母代种鸡到商品鸡呈增长趋势。可见REV和ALV-J在祖代种鸡、父母代鸡再和商品鸡中的广泛传播与祖代鸡厂接种污染这两种病毒的疫苗有关,然后在鸡群中垂直传播。
     3. AA肉种鸡内源性类ALV-J gp85基因及其抗原表位的分析
     利用ALV-J gp85基因两侧的序列片段为引物,从山东潍坊某肉种鸡场送检的7日龄肉种鸡的基因组中完整地扩增了内源性类ALV-J gp85基因。利用ALV-J env基因特异性引物不能扩增出长度为2.2kbp的目的片段,用ALV-J特异性单抗JE-9做间接免疫荧光检测,也呈现阴性反应。这种内源性类ALV-J gp85基因与已报道的禽内源性反录病毒EAV-HP序列的同源性为85.6 %~93.8%。所得到的内源性类ALV-J gp85基因与外源性ALV-J毒株HPRS-103、SD07LK1、NX0101的同源性分别为93.8%、91.8%、91.7%。并且与外源性ALV-J gp85基因具有相似的Jameson-Worlf抗原表位优势。这种内源性类gp85基因很可能与肉雏鸡早期感染ALV-J后所呈现的免疫耐受现象有关。
Reticuloendotheliosis virus (REV), Marek’s disease virus (MDV), Chicken anemia virus (CAV) and Avian leukosis virus subgroup J (ALV-J) were the major immunosuppressive virus in current chicken flocks. These immunosuppressive virus can cause primary infection in different extent. Even more, these virus can make other pathogens easily infected, and then make chicken immunity descend, chicken body immunosuppressive and effect of vaccine fall. Current reports showed that these virus existed in the investigated chicken flocks and Co-infections were serious. The infections of immunosuppressive virus were the main causation for descent or failure of the function of the NDV vaccines. The breeder flocks were infected by them and then the 1d chicken flocks were infected vertically which made the death rate of 30d commercial chicken flocks increase. So infections of immunosuppressive virus were the potential menace to poultry industry at present, and bring mass economic loss for poultry industry at present.
     1. Epidemic Investigation of infection of REV, ALV, MDV and CAV in meat-type flocks in Shandong province
     The tissues samples were collected from 948 birds in 30 chicken flocks wich suspected to be infected by immunodepressive virus in Weifang, Qingdao and Taian of Shandong province. The DNA was extracted for hybridizationin Dot-blot with probes of Reticuloendotheliosis virus (REV), Marek’s disease virus (MDV) and Chicken anemia virus (CAV). At the same time, we investigated Avian leukosis virus subgroup p27-shedding in cloaca swabs from collected birds using ELISA method. The result indicated that these virus existed in the investigated chicken flocks and co-infections were serious. Single infection and co-infection increased by degrees from broiler breeders to commercial chicken in diseased farms. Weifang was detected as the region where occur ALV frequently most of all. The checkout ratios of REV in Qingdao Region is higher than other regions. The result indicated that existing in wide range and co-infection of REV, MDV, ALV and CAV in chickens are the important causations for high incidence opportunistically pathogenic diseases and descent of poultry production performance in Shandong province.
     2. Vertical Transmission of Immunosuppressive diseases in large-scale AA Broiler Breeder caused by Contaminated Vaccines
     The Indirect immunofluorescence analysis (IFA) was applied to check vaccines which have been vaccinated to grandparent generation breeding birds in one large-scale AA broiler breeder company of Shandong province. There are two vaccines contaminated by REV and one contaminated by MDV used in grandparent generation broiler breeders according to indirect immunofluorescence analysis. This phenomenon didn’t appear in vaccines used in their corresponding broiler parent flocks and commercial flocks. The tissues samples of 27 weeks grandparent generation breeding birds and their 19 days incubating embryos, 25 weeks broiler parent flocks and their corresponding 19 days incubating embryos, 1 days and 30 days commercial chicken were randomly collected. To detect REV, MDV and CAV by dot-blot hybridization with tissue-extracted DNA as the templates. At the same time, serum were collected from all birds for investigating the infection of Avian leukosis virus subgroup J (ALV-J) using ELISA method. The checkout ratios of REV and ALV-J in the grandparent generation breeding birds were 13.1% and 10.8%, not occur infection of MDV and CAV, the checkout ratios of REV in their 19 days incubating embryos was 11.3%. The infection rate of REV、CAV and ALV-J were 16.2%、10.8% and 21.6% in broiler parent flocks, and in the 30 days commercial chicken the infection rate of REV、CAV and ALV-J were 34.6 %、14.1% and 42.3 %. In 19 days incubating commercial embryos, the infection rate of REV、CAV were 24.5% and 14.2%, the dual infection of this two virus were 24.5%. Dual infection of REV+ALV-J(13.5%) and REV+CAV (8.1%) was occured in the broiler parent flocks. Dual infection in the 30 days commercial chicken were serious: REV+ALV-J (26.9%), REV+ CAV(9.0%), CAV+ALV-J(11.5%). The checkout ratios of single infection and dual infection increased by degrees from broiler breeders to commercial chicken. The results indicated that REV and MDV transmit widespread in this broiler breeders may originally come from routine vaccines contaminated by REV or MDV, and then transmisted generation by generation in chicken flocks.
     3. Analysis of Avian Endogenous ALV-J gp85-like Gene and it’s Epitope in AA Meat-type Broiler Breeder
     primers corresponding to the nucleotide sequences flanking the ALV-J gp85 gene were used to amplify the intact endogenous gp85-like gene from 7 days AA meat-type broiler breeder collected in Weifang region Shandong province. The isolate strain was negative reaction in polymerase chain reaction with specific primers of ALV-J env gene and gave nothing reaction in indirect fluorescence antibody assay(IFA)with ALV-J specific monoclonal antibody JE-9. The endogenous ALV-J gp85-like gene had 85.6% to 93.8% homology with the Endogenous avian retrovirus haemangiopericytoma (EAV-HP) sequences have been reported. The endogenous ALV-J gp85-like elements demonstrated 93.8%, 91.8% and 91.7% identical to strain HPRS-103、SD07LK1、NX0101 ALV-J. Antigenic index analysis indicated that ALV-J gp85-like of meat-type broiler breeder was highly similar to that of exogenous ALV-J. The endogenous ALV-J gp85-like gene may play a important role in immunological tolerance of chick after infected with ALV-J.
引文
[1] BW卡尔尼克等.禽病学. 1991.第9版.高福,刘文军主译.北京:北京农业大学出版社, 334-381.
    [2]成子强,赵心,郝永清,等.应用ELISA方法调查鸡骨髓细胞瘤病[J].中国家禽, 2002, 24(6): 9-10.
    [3]崔治中,孟珊珊,姜世金,等.我国白羽肉用型鸡群中CAV、REV和REOV感染状况的血清学调查[J].畜牧兽医学报, 2006,37(2):152-157.
    [4]丁家波,崔治中,于立娟,等.含有禽网状内皮组织增生病病毒基因组片段的天然重组禽痘病毒的研究[J].微生物学报, 2004, 44(5): 588-592.
    [5]杜岩,崔治中,秦爱建,等.鸡的J亚群禽白血病病毒的分离和部分序列分析[J].病毒学报, 2000, 16(4): 341-346.
    [6]高明超,陈静,张志等.国外禽痘病毒疫苗自然重组株整合序列的研究[J].中国预防兽医学报, 2008, 30(1): 26-29.
    [7]郭桂杰. J亚群禽白血病病毒蛋鸡分离株SD07LK1全基因组核苷酸序列的比较分析[D].山东农业大学硕士论文, 2009, 18-19.
    [8]郭桂杰,孙淑红,崔治中. J亚群禽白血病病毒蛋鸡分离株SD07LK1全基因组核苷酸序列的比较分析[J].微生物学报, 2009,49(3):400- 404.
    [9]姜北宇,刘日焕,郑世兰,等.鸡传染性腺胃炎病原的分离鉴定[J].中国兽医科技, 2000, 30(2): 3-5.
    [10]姜世金,孟珊珊,崔治中,等.我国自然发病鸡群中MDV、REV和CAV共感染的检测[J].中国病毒学, 2005, 20(2): 164-167.
    [11]李艳,崔治中,孙淑红.黄羽肉鸡J亚群白血病病毒的致病性及分子进化分析.病毒学报, 2007, 23(3): 207-211.
    [12]李延鹏,崔治中.一株鸡传染性贫血病毒野毒株致病性及其全基因组序列比较[J].微生物学报, 2007, 47(5): 894-898.
    [13]李怡.病毒入胞机制及其作为抗病毒药物靶点的研究进展[J].国际病毒学志, 2006, 13(1): 19-22.
    [14]李新苍.鸡免疫抑制性病毒的PCR检测方法优化及分子流行病学调查[D].山东农业大学硕士论文, 2006, 25-26.
    [15]蒋玲艳,韦平,李莉萍,等.鸡传染性贫血病毒与其他免疫抑制性病毒的混合感染[J].中国兽医学报, 2006, 26(6): 591-593.
    [16]秦爱建,崔治中, Lee L,等.抗J亚群禽白血病病毒囊膜糖蛋白特异性单克隆抗体的研制及其特性[J].畜牧兽医学报, 2001, 32: 556-562.
    [17]王建新,崔治中,张纪元,等. J亚群禽白血病病毒与禽网状内皮组织增生病病毒共感染对肉鸡生长和免疫功能的抑制作用[J].中国兽医学报, 2003, 23(3): 211-213.
    [18]杨玉莹. J亚群禽白血病病毒研究进展[J].中国病毒学, 2003, 18(1): 93-97.
    [19]杨玉莹,秦爱建,顾玉芳,等.鸡内源性类J亚群禽白血病病毒gp85基因的克隆及分析[J].病毒学报, 2005, 21(1): 54-59.
    [20]殷震,刘景华.动物病毒学[M].第2版.北京:科学出版社, 1997, 870-885.
    [21]张志,崔治中,姜世金.从J亚群禽白血病肿瘤中检测出禽网状内皮组织增生症病毒[J].中国兽医学报, 2004, 24(1): 10-13.
    [22]张艳萍,刘长军,施维松,等.一株鸡马立克氏病毒的分离鉴定及其主要致病基因分析[J].中国预防兽医学报, 2008, 30(2): 109-112.
    [23]赵文明,丁家波,崔治中.网状内皮组织增生病病毒不同毒株LTR基因的分析[J].上海交通大学学报(农业科学版), 2001, 1(1): 13-15.
    [24]庄国庆. MDV与REV感染肉鸡时的相互作用和MDV重组野毒株的研究[D].山东农业大学硕士论文, 2006, 14-16
    [25] Abdul-Careem M F, Hunter B D, Sarson A J, et al. Host re-sponses are induced in feathers of chickens infected with Marek's disease virus[J]. Virology, 2008, 370(2): 323-332.
    [26] Allan G M, Phenix K Y, Todd D, et al. Some biological and physico- chemical properties of porcine circovirus. J Vet Med B, 1994, 41: 17-26.
    [27] Bagust T J and Dennet D P. Reticuloendotheliosis viruses: experimental infection of poultry and immunofluorescent identification of Australianisolates[J]. Aust. Vet. J. 1977, 53: 506-508.
    [28] Bagust T J, Crimes T M, Ratnamohan N. Experimental infection of chickens with an Australian strain of reticuloendotheliosis Virus, 3 Persistant infection andtransmission by the adult hen[J]. Avian Dis, 1981, 25: 374-394.
    [29] Bagust T J, Fenton S P, Reddy M R. Detection of subgroup J Avian leucosis virus infection in Australian meat-type chickens[J]. Australian Veterinary Journal, 2004, 82(11): 701-706.
    [30] Baigent S J, Smith L P, Nair V K. Vaccinal control of Marek's disease: Current challenges, and future strategies to maximize protection[J]. Vet Immuno Immunopathol, 2006, 112(1-2): 78-86.
    [31] Bai J, Howes K, Payne L N, et al. Sequence of host-range determinants in the env gene of a full-length, infectious proviral clone of exogenous avian leukosis virus HPRS-103 confirms that it represents a new subgroup (designed J) [J]. J Gen Virol, 1995, 76: 181-187.
    [32] Bauer G and Temin H M. Specific antigenic relationships between the RNA-dependent DNA polymerases of avian reticuloendotheliosis viruses and mammalian type C etroviruses[J]. J Virol. 1980, 34: 168-177.
    [33] Bendheim U. A neoplastic disease in turkeys following fowlpox vaccination[J]. Rec. Med. Vet. 1973, 30: 35-41.
    [34] Benson S J, Ruis B, Fadly A M, et al. The unique envelope gene of the subgroup J avian leukosis virus derives from ev/J provirus, a novel family of avian endogenous viruses[J]. J Virol, 1998, 72: 10157-10164.
    [35] Brown K, Browning G F, Scott P C, et al. Full-length infectious clone of a pathogenic Autralian isolate of chicken anemia virus. Aust Vet, 2000, 78(9): 637-640.
    [36] Boerkoel C F, Kung H J. Transcriptional interaction between retroviral long terminal repeats (LTRs): mechanism of 5’LTR suppression and 3’LTR promoter activation of c-myc in avian B-cell lymphomas[J]. JVirol, 1992, 66: 4814-4823.
    [37] Bova C A, Olsen J C and Swanstrom R. The avian retrovirus env gene family: molecular analysis of host range and antigenic variants. Journal of Virology. 1988, 62: 75-83.
    [38] Bruhn S, Bruckner L, Ottiger H P. Application of RT-PCR for the detection of avian reovirus contamination in avian viral vaccines[J]. J Virol Methods, 2005, 123(2): 179-186.
    [39] Calvert J G, Nazerian K, Witter R I, et al. Fowlpox virus recombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizing antibodies and reduces viremia in chickens[J]. J. Virol, 1993, 67: 3069–3076.
    [40] Chai N, Bates P. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus[J]. Biol Sci/Microbil, 2006, 103(14): 5531-5536.
    [41] Chen P Y, Cui Z Z, Lee L F, et al. Serologic difference among nondefection reticuloendotheliosis virus[J]. Arch Virol. 1987,93:233-246.
    [42] Chesters P M, Howes K, Petherbridge L, et al. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively[J]. Journal of General Virology, 2002 October, 83(10): 2553-2561.
    [43] Cindy S J, Kek H C, et al. Further evaluation of a multiplex PCR for differentation of Salmonella paratyphia from other Salmonella[J]. JpnJ Infect Dis, 2008, 61: 313-314.
    [44] Coffin J M. Structure of the retroviral genome. RNA tumor viruses. In R. Weiss, N. Teich, H. Varmus and J. Coffin[M]. Molecular Biology of Tumor Viruses, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 1982. 261-368.
    [45] Cui Z Z, Du Y, Zhang Z, et al. Comparison of Chinese field strains of Avian Leukosis subgroup J Viruses with prototype strain HPRS-103 andUnited States strains[J]. Avian Dis, 2003, 47: 1321-1330.
    [46] Cui Z Z, Lee L F, Silva R F, et al. Monoclonal antibodies against avian reticuloendotheliosis virus; identification of strain-specific and strain common epitopes[J]. J. Immunol, 1986, 136: 4237-4242.
    [47] Cui Z Z, Lee L F, Smith E J, et al. Monoclonal-antibody-mediated enzyme-linked immunosorbent assay for detection of reticuloendotheliosis viruses[J]. Avain Diease, 1988, 32:32-40.
    [48] Cui Z, Sun S, Wang J. Reduced serologic response to New castle Disease Virus in broiler chickens exposed to a Chinese field strain of subgroup J Avian Leukosis Virus[J]. Avian Diseases, 2006, 50: 191-195.
    [49] Daniel E, Volodymir S, Deborah C. Melder et al. The Receptor for the subgroup C avian sarcoma and leukosis viruses is related to mammalian butyrophilins, members of the immunoglobulin superfamily[J]. J Virol, 2005, 79 (16): 10408-10419.
    [50] Fadly A M, Garcia M C. Detection of reticuloendotheliosis virus in live virus vaccines of poultry [J]. Dev Bio (Basel ), 2006, 126: 301-305.
    [51] ]Fadly A M, Witter R I, Smith E J, et al. An outbreak of lymphomas in commercial broiler breeder chickens vaccinated with a fowlpox vaccine contaminated with reticuloendo theliosis virus. Avian Pathol, 1996, 25: 35-47.
    [52] Fukuchi K, Sudo M, Lee Y S, et al. Structure of Marek’s virus DNA: Detailed restriction enzyme map[J]. J Virol, 1984, 51: 102-109.
    [53] Garcia M, El-Attrache J, Riblet S M, et al. Development and application of reverse transcriptase nested polymerase chain reaction test for the detection of exogenous avian leukosis virus[J]. Avian Diseases, 2003, Jan-Mar, 47(1): 41-53.
    [54] Geerligs H, Quanz S, Suurland B, et al. Efficacy and safety of cell associated vaccines against Marek's disease virus grown in a continuous cell line from chickens[J]. Vaccine, 2008, 26(44): 5595-5600.
    [55] Gelderblom H S, Kling R, Lurz I, et al. Morphological characterizationof chicken anemia agent (CAA). Arch Virol, 1989, 109: 115-120.
    [56] Gingerich E, Porter R E, Lupiani B, et al. Diagnosis of myeloid leukosis induced by a recombinant avian leukosis virus in commercial white leghorn egg laying flocks. Avian Diseases, 2002 Jul-Sep, 46(3): 745-748.
    [57] Guillermo Z, Sunny Cheng, et al. Detection and Characterization of Avian Leukosis Virus in Marek's Disease Vaccines. Avain Diease, 2006, 50(2): 209?215.
    [58] Guillermo M, Zavala. G. An overview of myeloid leukosis in meat-type chickens [J]. Techinical News, Special Technical Bulletin, 1998, 1: 1-4.
    [59] Hoop R K. The use of immunofluorescence and immunopero xidase staining in srudying the pathogenesis of chicken anemia agenet in experimentally infected chickens[J]. Avian Pathol, 1992, 20: 349-355.
    [60] Jackson C A, Dunn S E, Smith D I, et al. Proventriculitis 'nakanuke' and reticuloendotheliosis in chickens following vaccination with herpesvirus of turkey (HVT) [J]. Aust Vet. J. 1977, 53: 457-459.
    [61] Jackwood D J, Spalding B D, Sommer S E. Real-time reverse transcriptase-polymerase chain reaction detection and analysis of nucleotide sequences coding for a neutralizing epitope on infectious bursal disease viruses [J]. Avian Dis, 2003, 47: 738-744.
    [62] Jackwood D J, Sommer S E. Molecular studies on suspect very virulent infectious bursal disease virus genomic RNA samples[J]. Avian Dis, 2005, 49: 246-251.
    [63] Karel A S, Zheng X. Specific and nonspecific immune responses to Marek's disease virus[J]. Devel Comp Immunol, 2000, 24: 201-221.
    [64] Kim Y, Gharaibeh S M, Stedman N L, Brown T P. Comparison and verification of quantitative competitive reverse transcription polymerase chain reaction (QC–RT-PCR) and real time RT-PCR for avian leukosis virus subgroup J[J]. J Viro, 2002 Apr, 102 (1-2): 1-8.
    [65] Lee L F, Lupiani B, Silva R F, et al. Recombinant Marek’s disease virus (MDV) lacking the Meq oncogene confers protection against challengewith a very virulent plus strain of MDV[J]. Vaccine, 2008, 26(15): 1887-1892.
    [66] Legoff J, Bouhlal H, Gresenguet G, et al. Real-Time PCR quantification of genital shedding of herpes simplex virus (HSV) and human immunodeficiency virus (HIV) in women coinfected with HSV and HIV [J]. Clin Microbiol. 2006, 44(2): 423-432.
    [67] McNulty M S. Chicken anemia agent:a review[J]. Avian Pathology, 1991, 20: 187-203.
    [68] McNulty M S et al. Preliminary characteri-zation of isolates of chicken anemia agent from the United Kingdom. Avian Patho, 1990, 119: 67-73.
    [69] Meehan B M, Todd J L. Creelan, et al.Characterization of viral DNAs from cells infected with chicken anemia agent: Sequence analysis of the cloned replicative form and transfection capabilities of cloned genome fragments[J]. Arch Virol, 1992, 124: 301-319.
    [70] Mickael C S, Jackwood D J. Real-time RT-PCR analysis of two epitope regions encoded by the VP2 gene of infectious bursal disease viruses[J]. J Virol Methods, 2005, 128: 37-46.
    [71] Nakamura K, Ogiso M, Tsukamoto, et al. Lesions of bone and bone marrow in myeloid leucosis occurring naturally in adult broiler breeders [J]. Avian Diseases, 2000, 44(1): 215-221.
    [72] Natesan S, Kataria J M, Dhama K, et al. Biological and molecular characterization of chicken anaemia virus isolates of Indian origin[J]. Virus Research, 2006, 118: 78-86.
    [73] Noteborn M H, Boer G F, Roozelaar D J, et al. Characterization of cloned chicken anemia virus DNA that contains all elements for the infectious replication cycle[J]. J Virol, 1991, 65: 3131-3139.
    [74] Payne L N, Brown S R, Bumstead N, et al. A novel subgroup of exogenous avian leucosis virus in chickens[J]. Journal of General Virology, 1991, 72: 801-807.
    [75] Payne L N, Fadly A M. Leucosis/sarcoma group in diseases of poultry(10thed)[J]. Iowa State University Press. 1997, 414-446.
    [76] Payne L N. HPRS-103: a retrovirus strikes back. The emergence of subgroup J avian leucosis virus[J]. Avian pathology, 1998, 27: 36-45.
    [77] Peter M Chesters, Lorraine P Smith, Venugopal Nair. E(XSR) element contributes to the oncogenicity of Avian leukosis virus (subgroup J) [J]. Journal of General Virology, 2006, 87: 2685-2692.
    [78] Peters M A, Lin T L, Wu C C. Real-time RT-PCR differentiation and quantitation of infectious bursal disease virus strains using dual-labeled fluorescent probes[J]. J Virol Methods, 2005, 127: 87-95.
    [79] Phaml H M, Konnail S, Usui1 T, et al. Rapid detection and differentiation of Newcastle disease virus by real-time PCR with melting-curve analysis[J]. Arch Virol, 2005, 150: 2429-2438.
    [80] Purchase H G, Ludford C, Nazerian K, et al. A new group of oncogenic viruses: reticuloendotheliosis, chick syncytial, duck infectious anemia, and apleen necrosis viruses[J]. J Natl Cancer Inst 1973, 51: 489-499.
    [81] Qin A, Lee L F, Fadly A M. Development and characterization of monoclonal antibodies to subgroup J avian leukosis. Avian Dis., 2001, 45: 938-945.
    [82] Qing G, Michael T, McManus T N, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription[J]. PNAS, 2003, 100(3): 2718-2723.
    [83] Raue R, Mazaheri A. Real-time RT-PCR based on genome segment B for the detection of infectious bursal disease virus[J]. Archiv Fur Geflugelkunde, 2003, 67: 22-27.
    [84] Reed L J. and Muench H. A simple method of estimating fifty percent end points [J]. Am. J. Hyg, 1938, 27: 493-497.
    [85] Sacco M A, Venugopal K. Segregation of EAV-HP ancient endogenous retroviruses within the chicken population[J]. J Virol, 2001, 75: 11935-11938.
    [86] Sadeghi M R, Ghorashi S A, Ghaemmaghami S S, et al. Diagnosis of Marek's disease virus in broiler chickens by histopathology and nested-PCR in Iran[J]. J Clin Virol, 2006, 36(Sup3): S25.
    [87] Smith E J, Solomon J J and Witter R L. Complement-fixation test of reticuloendotheliosis viruses: limits of sensitivity in infected avian cells[J]. Avain Diease, 1977, 21: 612-622.
    [88] Smith E J, Williams S M, Fadly A M. Detection of avian leukosis virus subgoup J using the polymerase chain reaction[J]. Avian Disease, 1998, 42: 375-380.
    [89] Smith L M, Toye A A, Bumstead N, et al. Novel endogenous retroviral sequences in the chicken genome closely related to HPRS-103 (subgroup J) avian leukosis virus[J]. J Gen Virol, 1999, 80: 261-268.
    [90] Silva R F, Fadly A M, Hunt H D. Hypervariability in the envelop genes of subgroup J avian leukosis viruses obained from different forms in the unites states [J]. Virol, 2000, 272: 106-111.
    [91] Silva R F, Fadly A M, Taylor S P. Development of a polymerase chain reaction to differentiate avian leukosis virus (ALV) subgroups: detection of an ALV contaminant in commercial Marek's disease vaccines[J]. Avian Diseases, 2007, 51(3): 63-76.
    [92] Simionatto S, Lima-Rosa C A, Binneck E, et al. Characterization and phylogenetic analysis of Brazilian chicken anemia virus[J]. Virus Genes, 2006, 33: 5-10.
    [93] Sreedevi B, Jackwood D J. Real-time RT-PCR detection and sequence analysis of the VP2 hypervariable region of Indian vvIBDV isolates[J]. Avian Dis, 2007, 51: 750-757.
    [94] Stedman N L, Brown T P. Body weight suppression in broilers naturally infected with avian leukosis virus subgroup J. Avian Diseases. 1999, 43 (3): 604-610.
    [95] Sun S H, Cui Z Z. Epidemiological and pathological studies of subgroup J avian leukosis virus infectious in chinese cocal“yellow”chicken[J].Avian Pathol, 2007, 36: 221-226.
    [96] Tan J, Cooke J, Clarke N, et al. Optimization of methods for the isolation of Marek's diseas viruses in primary chicken cell cultures[J]. J Virol Meth, 2008, 147(2): 312-318.
    [97] Taylor S P. The effect of acetone on the viability of chicken anemia agent. Avian Diseases, 1992, 36: 53-754.
    [98] Theilen G H, Zeigel R F, and Twiehaus M J. Biological studies with REV (strain T) that induces reticuloendotheliosis in turkeys, chickens and Japanese quail[J]. J Natl Cancer Inst. 1966, 37: 731-743.
    [99] Thompson K D, Fischer R G, Luecke D H. Determination of viremie period of avian reticuloendotheliosis virus(strain T) in chickens and virus viability in Triatoma infectans (KLUG) (Hemiptera; Reduviidae). Avian Dis, 1986, 12: 354-360.
    [100] Todd D J, Creelan L, Mackie D P, et al. Purification and biochemical characterization of chicken anemia agent[J]. J. Gen Virol, 1990, 71: 819-823.
    [101] Venugoal K, Smith L M, Howes K, Payne L N. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in env gene[J]. Journal of General Virology, 1998, 79: 757-766.
    [102] Witter R L, Salter D W. Vertical transmission of reticuloendoth-eliosis virus in breeder turkeys[J]. Avian Dis, 1989, 33: 226-235.
    [103] Xu B, Dong W, Yu C, et al. Occurrence of avian leukosis virus subgroup J in commercial layer flocks in China[J]. Avian Pathol, 2004, 33(1): 7-13.
    [104] Yuasa N T, Taniguchi and Yoshida I. Isolation and some properties of an agent inducing anemia in chicks[J]. Avian Dis, 1979, 23: 366-385.
    [105] Zhang H M, Larry D B, Fadly A M. Development of an endogenous virus-free line of chickens susceptible to all subgroups of avian leukosis virus[J]. A vian Dis, 2008, 52(3): 412-418.