甘蓝型油菜结实相关性状分析及QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国主要的油料作物,提高油菜籽产量和含油量以增加单位面积产油量是当前油菜育种的首要目标。本研究重点分析了甘蓝型油菜主花序不同部位种子数目和重量的差别。为度量这种差别,我们分上部和下部两个区段,重点对角果粒重和角果粒数进行分析,以此衡量基因型之间花序不同部位种子粒数和粒重形成可能的差异。利用加倍单倍体(DH)群体构建的图谱,对上述结实相关性状以及单株产量等13个性状进行了QTL定位分析,同时对蛋白质含量、含油量、总硫甙含量等3个品质相关性状也分上下段进行了QTL定位和分析,主要结果如下:
     1.以SSR标记为主,构建了一张甘蓝型油菜遗传连锁图谱。该图谱共有488个标记,包含19个连锁群,全长为2956.3cM,标记间平均图距为6.06cM,与已发表的图谱有较好的一致性。
     2.所考察的株高、一次有效分枝数、分枝高度、主花序长度、角果长度(分为主花序上部和下部,以下略记为上、下)、角果粒数(上、下)、角果粒重(上、下)、主花序角果数、单株产量、千粒重等性状均表现为正态分布。性状在家系间的表型差异达到极显著水平,遗传的变异范围为42.34%~81.64%。不同地点相同性状之间(除单株角果总数外)均存在极显著正相关;同一地点不同性状之间的相关性也很明显。角果长度上部遗传高于下部,而粒数和粒重则为下部遗传高于上部。单株产量与株高、一次有效分枝数、粒数(上、下)、粒重(上、下)、主花序长度、主花序角果数呈极显著正相关,而与一次分枝高度和角果长度(上、下)相关不显著;
     3.蛋白质含量、含油量和总硫甙含量上下部位分析结果表明,各性状上下部位含量在两年间均表现出极显著差异。同一性状不同年份间亲本表现差异较大,而F1表现差异不明显,含油量受环境的影响较蛋白质含量和总硫甙含量要更大些;
     4.采用复合区间作图法对2008年和2009年所考察性状分上下部位进行QTL定位,取LOD临界值为2.5。结实相关性状共检测到QTL92个,单位点贡献率在3.66%~25.49%范围,LOD值范围为:2.51~15.61,品质相关性状共检测到QTL30个,单位点贡献率在3.93%~25.09%范围,LOD值范围为:2.54~14.44,生育期相关性状共检测到QTL26个,单位点贡献率在3.54%~17.77%范围,LOD值范围为:2.59~10.75,共计148个QTLs,分别位于不同的连锁群上,部分QTLs在2年间可以重复检测到。
Rapeseed is one of the major oil crops in China. It is the primary objective to increase oil production per unit through the improvement of yield and oil content of rapeseed in the current rapeseed breeding. This study was focused on analysis of seed numbers and weight in the lower and upper parts of the main inflorescence of Brassica napus. A genetic map was constructed with a doubled haploid (DH) population to map seed yield per plant and other related traits as well as three quality traits including protein content, oil content, and the total glucosinolate content. The main results are as follows:
     1. A genetic linkage map of Brassica napus with SSR markers mainly was constructed. The map includes 488 markers, and contains 19 linkage groups with the total length of 2956.3cM, average marker distance of 6.06cM. The constructed map is in good agreement with published maps.
     2. The following traits were examined: plant height, first branch number, branch height, length of main raceme, pod length (upper and lower section on main raceme, expressed as Upper and Lower thereafter), grain number per pod (Upper and Lower), seed weight on the main raceme (Upper and Lower), grain yield per plant, grain weight. All the traits showed a normal distribution and the phenotypic differences among genotypes reached a significant level. The heretabjilities of the traits vary in a range of 42.34%-81.64%. Except the total number of pods per plant, the correlations of the same trait at different locations as well as the correlations between different traits in the same location are significant. The heritability of upper pod length is higher than lower pod length while the lower grain number and grain weight have higher heretabilities than the upper parts. Yield per plant and plant height, first branch number, grain number (upper and lower), weight (upper and lower), the main inflorescence length of main raceme was significantly correlated with a high degree of branching and pod length (the upper and lower) were not significantly correlated;
     3. Analysis between the upper and lower parts of protein content, oil content and total glucosinolate content showed that upper and lower parts of the characters were significantly different in two years. For a same trait, two parents showed large difference in different years, but no significant difference between F1 performances. Oil content was more affected by the environment than the protein content and total glucosinolate content;
     4. Using composite interval mapping and LOD=2.5 as the critical value QTL for the upper and lower parts of pod length, seed numbers and seed weight and other related trais were investigated positioning 2008 and 2009. In total,92 QTLs were detected for above studied traits. The mapped QTL contributed to trait variation ranging 3.93%-25.09% with the LOD value range of 2.51-15.61. Total 30 QTLs were detected for quality traits, contributing to the variation of 3.93%-25.09% range with LOD values range of 2.54-14.44. Total 26 QTLs were detected for flowering date and related traits, contributing to the variation of 3.54%-17.77% with the LOD value range of 2.59-10.75. Over all 148 QTLs are located in different linkage groups and some of the QTLs can be repeatedly detected in two years.
引文
1.蔡长春,傅廷栋,陈宝元,涂金星.甘蓝型油菜遗传图谱的构建及开花期的QTL分析.中国油料作物学报,2007,29(1):128
    2.曹维荣,王超.分子标记在甘蓝遗传育种中的应用.分子植物育种,2003,1(4):547-550
    3.邓秀兰.油菜籽粒增重过程研究.江苏农业科学,1983,(10):18-21
    4.段利云,王通强,阳标仁,秦琴.甘蓝型油菜主要农艺性状的主成分和聚类分析.山地农业生物学报,2007,26(5):381-385
    5.方荣,陈学军,缪南生,陈萍,张美良.辣椒主要产量性状遗传相关研究.江西农业学报,2005,17(4):36-3
    6.费维新,陈凤祥,李强生等.甘蓝型油菜高油酸材料的正反交遗传研究.安徽农业科学,2007,35(7):1927-1929
    7.付副友.甘蓝型油菜遗传图谱的构建和品质相关性状QTL分析.[博士学位论文].重庆:西南大学图书馆,2007
    8.傅廷栋.杂交油菜的育种与利用.武汉:湖北科技出版社,2000
    9.高必军,李平,江洪.甘蓝型油菜若干农艺性状与单株产量的关系分析.生物数学学报,2007,22(1):137-144
    10.胡俊鹏.油菜三系组合性状与产量相关分析.陕西农业科学,2002,(05):4-6
    11.胡立勇,单文燕,王维金.油菜结实特性与库源关系的研究.中国油料作物学报,2002,24(2):37-42
    12.胡立勇.油菜品质形成的生理生态基础研究.武汉:华中农业大学图书馆,2004
    13.金梦阳.甘蓝型油菜遗传图谱的构建及农艺性状的QTL定位.重庆:西南大学,2006
    14.李孟良,王海涛.油菜不同部位每角粒数差异研究.安徽技术师范学院学报,2005,19(4):15-19
    15.李盂良.油菜不同部位粒重差异及种子活研究.Chinese Agricultural Science BulletinVol.23 2007(6):284-287
    16.李媛媛,沈金雄,王同华,等.利用SRAP.SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱.中国农业科学,2007,40(6):1118-1126
    17.李云昌,胡琼.选育高含油量双低油菜品种的理论与实践.中国油料作物学报,2006,28:92-96
    18.李云侠,等.甘蓝型油菜不同发育时期角果重量的遗传分析.浙江大学学报(农业与生命科学版),2009,35(1):45-50
    19.廖桂平,官春云.甘蓝型冬油菜(Brassica napus L)干物质积累、分配和转移的特性研究.作物学报,2002,28(1):52-58
    20.刘后利主编.油菜遗传育种学.北京:中国农业大学出版社,2000
    21.刘仁虎,孟金陵.MapDraw在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    22.娄延脂.甘蓝型油菜始花期的遗传分析和QTL定位.[硕士学位论文].武汉:华中农业大学图书馆,2008
    23.齐晓花,张明方.芸薹属作物分子连锁图及QTL研究进展.分子植物育种,2004,2(5):704-712
    24.钦洁.甘蓝型油菜种子油酸和亚麻酸含量的遗传及其基因定位.[硕士学位论文].武汉:华中农业大学图书馆,2009
    25.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    26.税红霞,汤天泽.油菜器官与产量关系的研究进展.安徽农学通报,2007,13(16):111-113
    27.沈溪.甘蓝型油菜角果长度性状的遗传及QTL定位.[硕士学位论文].武汉:华中农业大学图书馆,2008
    28.汤洁,戴兴临,张弢,宋来强,邹晓芬,张建模,贺芳.甘蓝型油菜与蔊菜远缘杂交选育新品系的主要农艺及产量性状研究.江西农业学报,2008,20(9):35-37
    29.田广文,徐爱遐.低芥酸油菜产量与主要农艺性状相关通径分析.陕西农业科学,2007(3),1-13
    30.田志宏,陈诗波,刘碧波,李志新.甘蓝型油菜若干生物学性状与产量的关系.湖北农业科学,2003.5:47-49
    31.王汉中.我国油菜产需形势分析及产业发展对策.中国油料作物学报,2007,29(1)1012-1015
    32.杨安中,彭春华.油菜单株产量与若干农艺性状的相关分析.安徽农学通报,2006,12(2):33-34
    33.易斌,陈伟,马朝芝,等.甘蓝型油菜产量及相关性状的QTL分析.作物学报,2006,32(5):676-682
    34.殷艳,王汉中,廖星.2009年我国油菜产业发展形势分析及对策建议.中国油料作物学报,2009,31(2):259-26
    35.张宏军.EMS处理甘蓝型油菜(Brassica napus)获得高油酸材料.中国农业科学,2008,41(12):4016-4022
    36.张建模,邹小云,宋来强,邹晓芬,熊任香.杂交油菜主要产量性状与品质性状的关系研究.江西农业学报,2006,18(6):16-20
    37.张洁夫等.甘蓝型油菜主要脂肪酸组成的QTL定位.作物学报,2008,34(1):54-60
    38.张敏,陶诗顺,黄露,姜磊,彭雅利.甘蓝型杂交油菜干物质积累、分配及其与产量关系研究.中国种业,2009,(11):51-54
    39.张书芬,傅廷栋,朱家成,等.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32(8):1135-1142
    40.张书芬,马朝芝,朱家成,王建平,文雁成,傅廷栋.甘蓝型油菜主要农艺和产量性状的杂种优势及其分离世代的分析.中国油料作物学报,2007,29(2):15-19
    41.张艳欣,张秀荣,孙建.油料作物种质资源核心收集品研究进展.植物遗传资源学报,2009,10(1):152-157
    42.张子龙.甘蓝型黄籽油菜主要营养特性及其产量和品质的形成与调控规律研究.[博士学位论文].重庆:西南大学图书馆,2007
    43.周永明,刘后利.甘蓝型油菜种子中几种主要脂肪酸含量的遗传.作物学报,1987,13(1):1-9
    44.朱宗河,郑文寅,解光胜,朱国邦.甘蓝型油菜农艺性状相关分析及F1农艺性状预测.安徽农业科学,2009,37(27):13430-14432
    45. Basten C J, Weir B S, Zeng Z B. QTLs cartographer, version 1.16. Department of Statistics, North Carolina State University, Raleigh,2002
    46. Becker J, Heun M. Barley microsatellites: allele variation and mapping. Plant Mol Biol 1995, 27:835-845
    47. Bonierdale M, Plaisted R, Tank sley S. Molecular map of the potato (Solanum tuberosum) (2n= 48). O'Brien S J. Genetic maps:Locus maps of complex genomes. Cold Spring Harbor, N Y: Cold Spring Harbor Laboratory Press,1993,688-690
    48. Bowerman P, Rogers Lew isD S. Effect of sow ing date on the yield of winter oilseed rape. Ex perim ental H usbandry,1980,36:1-8
    49. Boyko E, Kalendar R, Korzun V, Fellers J, Korol A. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes:insights into cereal chromosome structure and function.Plant Mol Biol.2002.48:767-790
    50. Carine N, Jean-Christophe A, Laurence R, et a.l Effects of altered source-sink relationships on N allo-cation and vegetative storage protein accumulation in Brassica napus L.. Plant Science, 2004,166:1007-1018
    51. Chen W,Zhang Y,Liu X. Detection of QTL for six yield-related traits in oilseed rape(Brassica napus)using DH and immortalized F2 populations. Theor Appl Genet,2007,115:849-858
    52. Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S,Liu K D. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    53. Cheung W Y, Champagne G, Hubert N, Landry B S. Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet,1997,94:569-582
    54. Degenhardt D F, Kondra Z P. The influence of seeding date and seed rate on seed yields and yield components of five genotypes of Brassica napus. Can. J Plant Sci.,1981,61:175-183
    55. Fanizza Q Lamaj F, Costantini L, Chaabane R, Grando M S. QTLs analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet,2005,111:658-664
    56. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet,1996,93:1017-1025
    57. Fu F Y, Li J N. A molecular genetic linkage map in recombinant inbred lines of Brassica napus L. using SSR and SRAP markers. The 12th International Rapeseed Congress. Science Press USA Inc,2007:289-291
    58. Gilpin BJ, McCallun JA, Frew TJ, Timmerman-Vaughan GM. A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet,1997,95:1289-1299
    59. Guan Chunyun, Wang Guohuai, Zhao Juntian. Studies on ecological characters of rape I. Preliminary studies on response of rapeseed (Brassica napus L.) to temperature and daylength. Acta Agronomica Sinica,1985,11 (2):115-120
    60. Halward T, Stalker HT, Kochert GDevelopment of an RFLP linkage map in diploid peanut species. Theor Appl Genet,1993,87:379-384
    61. Harushima Y, Yano M, Shomura A, Sato M, Shimano T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics,1998,148:479-494
    62. Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet,2006,113:497-507
    63. Jenkins P D, Leitch DM H. Effect of sowing date on the growth and yield of winter oil-seed rape (Brassica napus). J of Agric Sci Camb,1986,107:405-420
    64. Jianyi Zhao, Zoran Dimov, Heiko C. Becker, Wolfgang Ecke and Christian Mollers.Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breeding Springer Science Business Media B.V.2007.21:115-125
    65. JIN Mengyang, LI Jiana, FU Fuyou, Zhang Zhengsheng, Zhang Xuekun, Liu Liezhao. QTL Analysis of t he oil content and the hull content in Brassica napus L.. Agricultural Sciences in China,2007,6 (4):414-421
    66. Joshua A. Udall, Pablo A. Quijada, Bart Lambert, Thomas C. Osborn. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2.dentification of alleles from unadapted germplasm.Theor Appl Genet,2006,113:597-609
    67. Li Y Y, Shen J X,Wang T H,et al. QTL analysis of yield-related traits and t heir association with functional markers in Brassica napus L.. Australian Journal of Agricultural Research,2007, 58 (8):759-766
    68. Liao Guiping. Studies on expert system of Rapeseed (Brassica napus) cultivation management for high yield, high quality and high profit (Ph. D thesis). Changsha: Hunan Agricultural University.1999
    69. Lombard V, Delourme R A. Consensus linkage map for rapeseed (Brassica napus L.):const ruction and integration of three individual maps from DH population. Theoretical and Applied Genetics,2001,103 (4):491-507
    70. Lowe A J, Moule C, Trick M, et al. Efficient large scale development of microsatellites for marker and mapping applications in Brassica crop species.Theoretical and Applied Genetics, 2004,108:1103-1112
    71. Lydiate D, Sharpe A. Aligning genetic maps of Brassica napus using microsatellite markers. San Diego: CA, USA,2003:473
    72. Mark Cooper, Fred Avan Eeuwijk, Graeme L Hammer, Dean W Podlich and Carlos Messina. Modeling QTL for complex traits: detection and context for plant breeding. Plant Biology,2009, 12:231-240
    73. Mladen Radoev, Heiko C. Becker and Wolfgang Ecke. Genetic analysis of heterosis for yield and yield components in Rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics,2008(179):1547-1558
    74. Olivier Leleu,Christophe Vuylsteker,Jean-Francois Tetu,Delphine Degrande, Luc Champolivier, Serge Rambour. Effect of two contrasted N fertilizations on rapeseed growth and nitrate metabolism. Plant Physiol Bio-chem,2000(38):639-645
    75. Pablo A. Quijada, Joshua A. Udall, Bart Lambert, Thomas C. Osborn. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napuL.): 1.identification of genomic regions from winter germplasm.Theor Appl Genet,2006, 113:549-561
    76. Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ. Identification of the A and C genomes of amphidiploids Brassica napus (oilseed rape). Genome,1995,38 (6):1122-1231
    77. Parkin IA, Sharpe AG, Lydiate DJ. Patterns of genome duplication within the Brassica napus genome. Genome,2003,46(2):291-303
    78. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental Structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics Society of America,2005,171(2):765-781
    79. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111:1514-1523
    80. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet,2006,114:67-80
    81. Rao G U., Ben C A., Borovsky Y, Paran I.. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet,2003,106: 1457-1466
    82. R.Delourme,C.Falentin,V. Huteau,V. Clouet,R. Horvais,B. Gandon,S. Specel,L. Hanneton,J. E. Dheu,M.Deschamps,E. Margale,P. Vincourt,M. Renard. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet, (2006) 113:1331-1345
    83. Sun Zudong, Wang Zining, Tu Jinxing, Zhang Jiefu, Yu Fengqun, McVetty Peter,Li Genyi.An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet,2007,114 (8):1305-1317
    84. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics,2006,173:309-319
    85. Tuinstra M R. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci,1996,36:1337-1344
    86. Vuylsteke M.,Mank R.,Antonse R.,Bastiaans E.,Senior M.L.,Stuber C.W.,Melchinger A. E.,Lubberstedt T., Xia X. C.,Stamp., Zabeau M.,Kuiper M.. Two high-density AFLP linkage maps of Zea mays L: analysis of distribution of AFLP markers.Theor Appl Genet,1999,99(6): 921-935
    87. Zhao JY, Becker HC, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet,2006,113:33-38
    88. Zhao, J., H. C. Becker, D. Zhang, Y Zhang and W. Ecke(2005).Oil content in a European x Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci,45:51-59
    89. Zudong Sun, Zining Wang, Jinxing Tu,Jiefu Zhang, Fengqun Yu,Peter B.E.McVetty, Genyi Li. An ultradense genetic recombination map for Brassica nupus, consisting of 13551 SRAP markers. Theor Apel Genet,2007,114:1305-1317