弧焊机器人运动位姿精度与焊缝图像处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧焊机器人运动位姿精度是反映机器人性能的一个重要指标,也是确保机器人能正常工作、实现高精度焊接要求的保证。本文以南阳二机石油装备(集团)有限公司生产的实际需要为目的,研制了针对石油井架、箱体等大型结构件进行焊接的弧焊机器人,并对所研制的弧焊机器人从误差建模分析、协调运动轨迹精度评价、几何参数误差的标定以及焊缝轨迹跟踪等方面进行了系统研究,主要内容如下:
     (1)针对石油井架、箱体等大型结构件焊缝多、形式相对单一的特点,详细分析了采用机器人焊接所需实现的功能组合方案,优选了弧焊机器人本体设计方案,试制了机器人样机,构建了弧焊机器人运动学模型,采用“小位移摄动法”建立了弧焊机器人位姿误差模型。
     (2)针对弧焊机器人主要完成空间直线焊缝焊接工作的实际,分析了弧焊机器人协调直线运动的算法原理,在此基础上用“最小二乘拟合法”拟合空间直线焊缝,并采用实际轨迹的最小二乘拟合线与指令轨迹的偏差来评价机器人协调运动轨迹精度,确定了相应的评价指标,为弧焊机器人系统协调运动轨迹精度评价提供依据。采用双目视觉测量方法测得机器人各关节几何参数误差,对相应误差进行了补偿。
     (3)设计了两种焊缝跟踪系统:一种是接近传感器焊缝跟踪系统,该系统结构简单、操作方便,不受电弧烟尘和飞溅的影响,但对有凸台等附加构件的箱体则无法进行跟踪;为此,又设计了基于双目立体视觉的焊缝跟踪系统,为解决焊缝跟踪系统图像处理问题,提出了基于互信息的焊缝图像处理技术,并尝试使用GPU作为焊缝图形处理器以提高图像处理的速度和质量。
     (4)为加快互信息的计算,提出利用熵的最大化原则来分割图像,使得分割后的图像包含原图像更多的细节信息,从而保证分割后的二值图像与二值模板的互信息和原来的灰度图像与灰度模板的互信息具有相似的分布。对互信息匹配的算法进行了改进,改进后的算法减少了GPU临时变量需求,提高了图像匹配的速度和质量。
The movement pose accuracy of arc welding robot is an important indicator to reflectthe performance of the robot, as well as the guarantee for the robot's normal operation andmeeting the requirements on high-accuracy welding. With meeting the practical needs ofproduction of Nanyang RG Petro-machinery (Group) Co., Ltd. as the purpose, this paperdevelops an arc welding robot for welding of large structural parts like oil derrick, tankand etc., and performs systematic research on the arc welding robot developed fromaspects such as error modeling analysis, accuracy evaluation on coordinated movementtrack, calibration of geometric parameter error and welding seam tracking, etc. The majorefforts are as follow:
     (1) According to the features of large structural parts like oil derrick, tank andetc. that the welding seams are of large number and relatively unitary forms, this paperanalyzes in detail functional combinations need to be realized for welding by robot; andselected from many combinations the body design of Arc Welding Robot and makes aprototype of the robot,and builds a robot kinematic model and performs kinematicsimulation; and builds a Arc Welding Robot pose error model by using "smalldisplacement perturbation method", and deduces the error calculus formula for hand poseof the robot.
     (2) According to the fact that Arc Welding Robot mainly performs welding of spatialline welding seams, this paper analyzes the arithmetic principle of coordinated linemovement of arc welding robot, fits spatial line welding seams with "least squares fittingmethod" on its basis, and uses the deviation between the least squares fitting of the actualtrack and the instructive track to evaluate the accuracy of coordinated movement track ofthe robot; relative evaluation indicators are also determined to provide criterion for theaccuracy evaluation of coordinated movement track of the arc welding robot system,thebinocular stereo visual measurement method is used to measure the geometric parametererror of all articulations of the robot, and corresponding error are compensated. The resultshows that after error compensation, the accuracy of the movement track of the robotgreatly improves.
     (3) According to the practical situation of welding production, two welding seamtracking systems are designed. One is proximity sensor welding seam trackingsystem. This system is of simple construction and convenient operation and will not beinfluenced by arc flue dust and splash; however, it is not able to track for tanks withadditional components like protruding platform. So, another welding seam trackingsystem based on binocular stereo vision is designed, and in order to solve the problem ofimage processing of the welding seam tracking system, an image processing technologybased on mutual information is presented.
     (4) To accelerate the calculation of mutual information, this paper presents to use theprinciple pf maximization of entropy to subdivide images, making the subdivided imagescontain more details of the original image, consequently the mutual information betweenthe subdivided binary image and the binary template and the mutual information betweenthe original gray level image and the gray level template have similar distribution. Boththeory and welding test prove that the algorithm presented in this paper can effectivelyguarantee that the welding seam tracking is real-time and accurate.
引文
[1] 熊有伦.机器人学.北京:机械工业出版社,1993
    [2] 蔡自兴.机器人学.北京:清华大学出版社,2000
    [3] 世界最新机器人统计数据.机器人技术与应用,2001(1):6-10
    [4] 林尚扬.我国机械制造业中焊接机器人的应用现状与发展趋势(上).机械工人,1999(5):3-5
    [5] 林尚扬.我国机械制造业中焊接机器人的应用现状与发展趋势(下).机械工人,1999(6):3-4
    [6] http://nvidia.e-works.net.cn/document/200901/article7425, htm
    [7] 张晓光,林家骏.X射线检测焊缝的图象处理与缺陷识别.华东理工大学学报,2004,30(2):199-202
    [8] Li Qiang, Zhang Bo. A Fast Matching Algorithm Based on Image Gray Value. Journal of Software, 2006, 17(2): 216-222
    [9] Song Yi, Cui Pingyuan, Ju Hehua. A Computational Optimization Method of the SSD and NCC Algorithms of the Stereo Matching. 计算机工程与应用, 2006, 2: 45-48
    [10] 杨静,丘江,刘波.MSEA及其在模板匹配中的应用.光子学报,2001,4:451-454
    [11] 邵平,杨路明,黄海滨等.基于积分图像的快速模板匹配.计算机科学,2006,33,(12):225-29
    [12] 刘继敏,王伟,史忠植.一个新的变形模板匹配方法.计算机学报,1999,4:359-363
    [13] 张培,吴亚锋.AAM反向合成匹配算法及其性能分析.计算机工程及应用,2007,43(18):47-50
    [14] P.A. vandenelsen, E. J. D. Pol, M. A. Viergever, et al. Medical image matching - a review of classification. IEEE Engineering in Medical and Biology, 1993, 12(1): 26-39
    [15] Anandr, Jamess, Duncan. Matching Point Features Using Mutual Information. IEEE Transactions on Medical Imaging, 2001, 2(6): 110
    [16] 李玲玲,李翠华,曾晓明等.基于Harris-Affine和SIFT特征匹配的图像自动配准.华中科技大学学报,2008,36(8):13-16
    [17] Efficient Belief Propagation for Early Vision by Pedro F. Felzenszwalb and Daniel P. Huttenlocher in, International Journal of Computer Vision, 2006, 70(1)
    [18] Stereo Matching Using Belief Propagation. Jian Sun, Nan-Ning Zheng, Senior Member, IEEE, and Heung-Yeung Shum, Senior Member, IEEE, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7)
    [19] 李建明,万单领,何荣盛等.一种基于GPU加速的图像颜色传递算法.大连理工大学学报,2008,3:287-291
    [20] 李元宗,阎慕良.工业机器人机构的误差分析和空间尺寸链.太原工业大学学报,1984,3:65-72
    [21] 周学才,张启先,郑时雄.一种新的机器人机构距离误差模型及补偿算法.机器人,1991,13(1)
    [22] 黄真.机器人手臂误差分析及误差传递函数.In 15th ISIR,1985,2:873-878
    [23] 彭商贤,张平,唐蓉城.装配机器人位姿误差分析.机器人,1988,2(1)
    [24] 王兴海,安永辰.机器人运动误差和动力误差模型.机器人,1987,1(1)
    [25] 孔宪文,韩永国等.机器人手部运动误差分析.机器人,1993,15(3)
    [26] 徐卫良,张启先.机器人误差分析的蒙特卡洛方法.机器人,1988,2(4)
    [27] 王如彬.机构运动学的随机过程分析与精度的失效模型.机器人,1991,13(3)
    [28] 黄真,孔宪文.机器人机构的误差位形模量的概念及在精度分析和综合中的应用.机器人,1993,15(6)
    [29] 黄家贤.机构精度通用新算法的推导及应用举例.机器人,1995,17(6)
    [30] 刘密英,黄家贤,叶琪根.机械结构与系统精度通用计算法及其应用.机器人,1992,14(4)
    [31] 龙宇蜂,吕江清.机器人结构参数最优公差及关节最佳运动误差.机器人,1989,3(6)
    [32] 周远清.智能机器人系统.北京:清华大学出版社,1989
    [33] 毛鹏军,黄石生,李阳.焊接机器人技术发展的回顾与展望.焊接,2001(8):6-9
    [34] 陈佩云.我国工业机器人的发展现状.机器人技术与应用,2001(1):2-5
    [35] 潘际銮.焊接手册第一卷-焊接方法与设备.北京:机械工业出版社,1992
    [36] 龚振邦.机器人机械设计.北京:电子工业出版社,1995
    [37] Karan Branko, Vukobratovic, Miomir. Calibration and accuracy of manipulation robot models-an overview. Mechanism & Machine Theory, 1994, 29(3): 479-500
    [38] 黄宇中,胡宇方.机器人机构精度研究的进展.机器人,1989,3(6):53-57
    [39] 刘密英,黄家贤,叶琪根.机械结构与系统精度通用计算法及其应用.机器人,1992,14(4):18-23
    [40] 石则昌,刘深厚.机构精确度.北京:高等教育出版社,1995
    [41] Nikiforov S. O., Markhadaev B. E. Industrial robot accuracy models. Soviet Engineering Research, 2004, 9(9): 21-27
    [42] Negrean. luliu, Vuscan. loan, Forgo, Zoltan. Inverse modelling of the kinematical errors of industrial robots. IFFF International Conference on Intelligent Engineering Systems, 1997:135-140
    [43] Zhuang Hanqi, Roth. Zvi S. Note on singularities of the MCPC model. Robotics and Computer-Integrated Manufacturing, 1996, 2:169-171
    [44] Zhou Xuecai, Zhang Qixian, Gruver William A., Guo Gongliang. Distance and positioning accuracy for robotic manipulators. IEEE International Conference on Intelligent Robots and Systems, 1994, 2:1399-1404
    [45] Liu JianP, Sadler J. P. Use of positioning error functions in robot calibration. 23rd Biennial Mechanisms Conference American Society of Mechanical Engineers, Design Engineering Division, 1992, 72(3) : 229-236
    [46] A. Kumar, K. J. Waldron. Numerical ploting of surfaces of positioning accuracy of manipulators. Mechanical and Machine Theory, 1981, 16(4): 361-368
    [47] A. Kumar. Positioning Accuracy of Manipulators with Encoder Equipped Joints. Proc. of Symposium on Robotics Research and Advanced Application ASME, 1982: 765-771
    [48] A. Kumar, S. Prakash. Analysis of mechanical errors in manipulators. Proceeding of the sixth world congress on theory of machines and mechanisms, 1985:960-964
    [49] Chi-haur Wu. A kinematic CAD tool for the design and control of a robot manipulator. The International Journal of Robotics Research, 1984, 16(1): 58-67
    [50] 陈明哲,张启先.工业机器人误差分析.北京航空学院学报,1984.2
    [51] K. Sugimoto, T. Okada. Compensation of Positioning Errors Caused by Geometric Deviations in Robot System. Robotics Research-The Second International Symposium, 1985:231-236
    [52] 徐卫良.机器人机构误差建模的摄动法.机器人,1988,3(6):39-44
    [53] 陈昌敏,黎庶慰.机器人精度测试装置的误差分析.全国首届机器人学术讨会,1987.6:159-166
    [54] R. N. Vaishnav, E. B. Magrab. A general procedure to evaluate robot positioning errors. The International Journal of Robotics and Research, 2003, 6(1): 59-74
    [55] Greenway Bryan. On the money: The Importance of Robot Accuracy Is Increasing as Applications Become more Sophisticated. Robotics W orld, 1999, 17(5): 44-49
    [56] Simeon Thierry, Leroy Stephane, Laumond Jean-Paul. Path Coordination for Multiple Mobile Robots: A Resolution-Complete Algorithm. IEEE Transactions on Robotics and Automation, 2002, 18(1): 42-49
    [57] Cook George E, Andersen Kristinn, Zein sabattou Aaleh, Fernandez Kenneth R. Multiple-robot Programming for Coordinated Motion, End-efector Calibration, and Part Localization. Conference Record-IAS Annual Meeting. New York, 1989: 1669-1674
    [58] Intenational Organization for Standardization. Manipulating Industrial Robots: Performance Criteria and Related Test Methods, ISO9283:1990(E)
    [59] 中国机械工业标准汇编-工业机器人卷.北京:中国标准出版社,1998
    [60] Becker S. E Development of Mechanics Performance Standards for Robots. National Burcau of standards/U, s. Navy Workshop on Robot standards, 1985:6-7
    [61] 陈虹,工业机器人运动精度及测试方法的研究.哈尔滨工业大学.硕士学位论文.1997
    [62] 宋月娥,何广忠,吴林等.弧焊机器人协调运动精度的评价方法.焊接,2002(4):8-11
    [63] 马培荪,张新辉.工业机器人运动误差的概率分析.上海交通大学报,1993,27(1):57-63
    [64] Harb S. M, Burdekin M. Systematic Approach to Identify the Error Motion of an N-degree of Freedom Manipulator. International Journal of Advanced Manufacturing Technology, 1994, 9(2): 126-133
    [65] Ziegert, P. Datseris. Basic Considerations for Robot Calibration. Proceeding of the 1988 IEEE International Conference on Robotics and Automation., 1988: 932-938
    [66] C. A. Edwards, R. L. Galloway. A single-point calibration technique for a six degree-of-freedom articulated arm. IJRR, 1994,13(3): 189-198
    [67] Goswami A., Quaid A., Peshkin M. Identifying robot parameters using partial pose information. IEEE Control Systems Magazine, 1993,13(5): 6-14
    [68] Toyama S. , Hatae S. Identification and compensation of mechanical errors for a SCARA robot. Journal of the Japan Society of Precision Engineering, 1992, 58(6) : 999-1004
    [69] Renders J. , Rossignol E. , Becquet M. , Hanus R. Kinematic calibration and geometrical parameter identification for robots. IEEE Transactions on Robotics and Automation, 1991, 7(6): 721-732
    [70] Zhuang Hanqi, Roth Z. S. , Wang Kuanchih. Robot calibration by mobile camera systems. Advances in Instrumentation-American Society of Mechanical Engineers, Dynamic Systems and Control Division, 1991, 30: 65-72
    [71] Ishii M. Kinematic model and calibration of a robot manipulator. Advanced Robotics, 1991, 5(3): 337-347
    [72] Tunstel E. , Yra N. Computer generation of geometrical error equations applicable for improvement of robots' positioning accuracy. Robotics and Autonomous Systems, 1991, 7(1): 3-26
    [73] Kim, D. H. , Cook. Identification and compensation of robot kinematic parameter for positioning accuracy improvement. Robotica, 2001, 9(1): 99-105
    [74] Robinson P. , Orzechowski P. , James P. W. , Smith C. Automated robot calibration system. IEEE International Symposium on Industrial Electronics, 1997,1: 285-290
    [75] Vonder H, Hans J., Husson R, Wolf D. Automatic calibration method for a multisensor system: Application to a mobile robot localization system. Pro-IEEE International Conference on Robotics and Automation, 2004, 4: 3141-3146
    [76] Bacakoglu H. , Kamel M. S. Three-step camera calibration method. IEEE Transactions on instrumentation and Measurement, 1997, 46(5): 1165-1172
    [77] Zhao Dongbo, Xiong Youlun. Autonomous kinematic calibration for robot with force senso. Proceedings of SPIE. The International Society for Optical Engineering, 1995: 598-602
    [78] Legnani G , Mina C. , Trevelyan J. Static calibration of industrial manipulators: design of an optical instrumentation and application to SCARA robots. Journal of Robotic Systems, 1996,13(7): 445-460
    [79] Roning J. , Korzun A. Method for industrial robot calibration. Proceedings-IEEE International Conference on Robotics and Automation, 1997,4: 3184-3190
    [80] Ravi K., Basu A. Active technique for piecewise calibration of robot manipulators. IEEE International Conference on Intelligent Robots and Systems, 1995, 1: 501-506
    [81] Zak G , Benhabib B. , Fenton R. G , Saban. Application of the weighted least squares parameter estimation method to the robot calibration. Journal of Mechanical Design, Transactions Of the ASME, 1994,116(3): 890-893
    [82] Zhuang Hanqi, Roth Z. S. , Wang Kuanchih. Robot calibration by mobile camera systems. Advances in Instrumentation-American Society of Mechanical Engineers, Dynamic Systems and Control Division, 1991, 30: 65-72
    [83] Kim, D. H. , Cook, K. H. , Oh J. H. Identification and compensation of robot kinematic parameter for positioning accuracy improvement. Robotica, 1991, 9(1) :99-105
    [84] Bacakoglu H. , Kamel M. S. Three-step camera calibration method. IEEE Transactions on instrumentation and Measurement, 1997,46(5): 1165-1172
    [85] Zak G , Benhabib B. , Fenton R. G , Saban I. Application of the weighted least squares parameter estimation method to the robot calibration. Journal of Mechanical Design, Transactions Of the ASME, 1994,116(3): 890-893
    [86] Omodei A, Legnani G, Adamini R, Tiboni M. Three methodologies for the Calibration of industrial manipulators: experimental results on a SCARA robot. Jounral of Robotic System, 2000,17(6): 291-307
    [87] Renders J. M, E. Rossignal, M. Becquet, R. Hanus. Kinematic calibration and geometrical parameter identification for robots. IEEE transactions on robotics and automation, 1991, 7: 721-731
    [88] M. Abderrahim, A. R. Whittaker. Kinematic model. Identification of industrial manipulator. Robotics and computer integrated manufacturing, 2000, 16:1-8
    [89] Robert John Horing. A comparison of identification techniques for robot calibration[D]. Master dissertation, Case Western Reserve Uniiversity, 2003
    [90] William K. Veitschegger, Chi-Haur Wu. Robot Calibration and Compensation. IEEE Journal of Robotics and Automation, 1988, 4(6): 643-656
    [91] 卞振娥.机器人的位姿标定及其误差补偿.机器人,1991,13(1):36-43
    [92] 蔡鹤皋,张超群,吴伟国.机器人实际几何参数的识别与仿真.中国机械工程,1998,9(10):11-14
    [93] 安永植,安永辰.机器人位姿误差校正方法.哈尔滨工业大学学报,1993,25(1):77-82
    [94] 阎华,刘桂雄,郑时雄.基于嫡不确定性概念的机器人位姿精度理论(一)评价指标体系的建立.光学精密工程,1999,7(1):64-69
    [95] 胡守仁.神经网络导论.北京:国防科技大学出版社,1997
    [96] Hanqi Zhuang, Roth Z. S. , Fumio H. Optimal Design of Robot Accuracy Compensators. IEEE Transactions on Robotics and Automation, 1993, 9(6): 854-857
    [97] 夏凯,陈崇端,洪涛等.补偿机器人定位误差的神经网络.机器人,1995,17(3):171-176
    [98] Zhuang Hanqi, Roth Z. S. Method for kinematic calibration of Stewart platforms. Journal of Robotic Systems, 2003, 10(3): 391-405
    [99] Mirman C. R., Gupta K. C. Compensation of robot joint variables using special Jacobian matrices. Journal of Robotic Systems, 2002, 9(1): 113-137
    [100] Zhang Jianguo, Zeng Xiaoyu, Xu Hongfu, Xiao Jin. Analysis of error compensation for two-arm curing robot. Proceedings of SPIE. The International Society for Optical Engineering, 1996, 2644:504-510
    [101] Zhang Qiuju, Zhao Viding, Mao Junhong, Lin Qijun. Method of fuzzy self-learning error compensation and its application in positional error compensation Journal of Xi'an Jiaotong University, 1995, 29(2): 67-72
    [102] Ji Zhiming. Sequential roundof for improving robot position accuracy. 21 st Annual Design Automation Conference American Society of Mechanical Engineers, Design Engineering Divisi on, 2005, 82(1) 937-942
    [103] Zhong Xi., Lewis J. M., Rea H. Neuro-accuracy compensator for industrial robots. IEEE International Conference on Neural Networks, 2004, 5:2797-2802
    [104] 俞时伟.一种基于视觉传感的焊缝跟踪系统的研究.广州:华南理工大学硕士 学位论文,1998
    [105]高向东.机器人焊缝跟踪智能控制.广州:华南理工大学博士学位论文,1997
    [106]张绍彬,候文考,胡绳荪,赵家瑞.非接触式超声传感焊缝跟踪研究.机械工程学报,1996,1
    [107]胡绳荪.Fuzzy-P控制超声波传感埋弧焊焊缝的跟踪系统.焊接学报,1998,19(4):104-109
    [108]王伟,邹奇仕,朱六妹等.视觉传感焊缝跟踪技术的发展状况及实施方案探讨.电焊机,2002(5):1-8
    [109]何方殿,王克争,苏勇.视觉传感器焊接跟踪系统的研究和发展.电焊机,1993(4):8-13
    [110] D. Lakov. Adaptive Robot under Fuzzy Control. Fuzzy Sets and System, 1985, 17: 1-8
    [111] S. Murakami, F. Takemoto. Weld-Line Tracking Control of Arc WeldingRobot Using Fuzzy LogicC ontroller. Welding Journal, 2004, 4:60-66
    [112]]Nayak, A. Ray. An Integrated System for Intelligent Seam Tracking inRobotic Welding: Part Ⅰ-Conceptual and Analytical Development. IEEE, International Conference on Robotics and Automation, 2000:1892-1897
    [113] Y. S uga, M. Naruse, T. Tokiwa. Application of Neural Network to Visual Sensing of Weld Line and Automatic Tracking in Robot Welding. Welding in the World, 1999, 34:275-282
    [114] S. Riko, J. Karel. Trajectory Tracking Neural Network C ontroller for A Robot Mechanism and Lyapunov Theory of Stability. Proc. of the IEEE Int. Conf. On Intelligent Robotics and System. Germany, 2003
    [115] H. B. Smartt. Intelligent Sensing and Control of Arc Welding. Int. Trends in W elding Science and Technology, Proc. of 3rd Conf. On Trendsin Welding Research, U. S. A., 1995
    [116] 陈强,潘际銮,大岛健司.焊接过程的模糊控制.机械工程学报,1995,3(4):86-91
    [117] 张华,陈强.基于焊缝CCD图象模式特征的焊缝轨迹识别.机械工程学报,2006,22(6):31-36
    [118] 赵家瑞,张绍彬,侯文考.用空气超声传感实现弧焊焊缝跟踪.石油工程建设,1994(6):1-4
    [119] 蒋鹏飞,John.D.Wood.用声发射传感器的焊缝跟踪控制研究.电焊机,1994(4):4-8
    [120] 宋永伦,苏强,张果戈.焊缝视觉跟踪模糊控制器的研究.华南理工大学学报,1997(2):1-7
    [121] 梁明,王国荣,石永华等.焊缝自动跟踪系统中的智能控制.电焊机,2000(8):17-20
    [122] 高向东,黄石生,余英林.计算机视觉在焊缝跟踪控制中的应用.控制理论与应用,2001,18(1):26-29
    [123] 毛鹏军,张慧,黄石生.计算机视觉及其在焊接中的应用.电焊机,2002(4):1-4
    [124] 黄石生,钱迎雪.基于ART人工神经网络的焊缝跟踪检测算法.机械工程学报,2005,30(2):93-97
    [125] 孙孝纯.MZ-1000埋弧焊机自动跟踪系统性能的研究.电机,1993(5):12-15
    [126] 范国强,周精宝.埋弧螺旋焊管外焊缝自动跟踪装置.焊管,1996(2):29-32
    [127] 萧波,黄从达.具有遥控监视功能的焊缝自动跟踪图像处理系统.焊接技术,1994(1):17-21
    [128] 徐继友,朱耆样.小波变换在图像边缘提取中的应用.光电工程,2004,25(4):28-33
    [129] 徐卫良.机器人机构误差建模的摄动法.机器人,1988,3(6):39-44
    [130] IGRIP Online Documentation. Deneb Robotics Inc, 1999
    [131] Mangold V. L.. Robotic Arc Welding System Design. Welding Journal, 1989, 68 (11):25-31
    [132] Yuji Sugitani. CAD/CAM Welding in Steel Bridge Panel Fabrication. Industrial Robot, 1994, 21 (6): 22-29
    [133] Greenway Bryan. On the money: The Importance of Robot Accuracy Is Increasing as Applications Become more Sophisticated. Robotics Word, 1999, 17(5): 44-49
    [134] Simeon Thierry, Leroy Stephane, Laumond Jean-Paul. Path Coordination forMultiple Mobile Robots: A Resolution-Complete Algorithm. IEEETransactions on Robotics and Automation, 2002, 18(1): 42-49
    [135] 宋月娥,弧焊机器人系统协调运动精度及离线编程标定技术研究.哈尔滨:哈尔滨工业大学博士学位论文,2002
    [136] Pierce, M. F. A Guide to Robotic Arc Welding Positioners. Welding Journal, 1985, 64(9): 28-30
    [137]Linda G.Shapiro George C.Stockman.计算机视觉.北京:机械工业出版社,2005
    [138] Rusinkiewicz S, Hall-Holt O, Levoy M. Real-Time 3D Model Acquisition ACM Transactions on Graphics. Graph, 2002, 21(3): 438-446
    [139]吴立德.计算机视觉.上海:复旦大学出版社,1993
    [140]张建中.孔-轴装配机器人视觉制导关键技术研究.南京:东南大学博士学位论文,2006
    [141] De A, Parle D. Real time seam tracking system for automated fusion arc welding. Science and Technology of Welding and Joining, 2003, 8(5): 340-346
    [142] Ge Jingguo, Zhu Zhengqiang, He Defu, etal. A vision - based algorithm for seam detection in a PAWprocess for large - diameter stainless steel pipes. International Journal of Advanced Manufacturing Technology, 2005, 26: 1006-1011
    [143]高向东,黄石生.基于视觉传感的焊缝跟踪控制系统.焊接技术,2000,29(1):1-3
    [144] Ichiro Mcasaki. Vision guider robot system for arc welding. Robot Vision, 1983, 19(8): 7-34
    [145] Sun Lixin, Dai Shijie, Image processing in multichannel welding seam tracking based on the line structured light. Transactions of the China Welding Institution, 2002,23(3): 53-55