基于变几何桁架机构的宏-微机器人及其控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宏-微机器人是指一个小的机械手附在一个大的机械手的末端,大的机械手以地面作为参考,称为宏机械手(Macro Manipulator),小的机械手以大的机械手为参考,拥有完全的自由度,称为微机械手(Micro Manipulator),通过宏机械手实现机器人的运动范围,通过微机械手实现机器人高速精确的运动,宏机械手、微机械手构成宏-微机器人系统,协同完成机器人高性能的作业。变几何桁架机构是包含一些可伸缩杆件的静定桁架,这些可伸缩杆件可以改变机构的构形。变几何桁架机构有十分好的刚度重量比,理论上每个构件都是二力杆,不传递弯矩和扭矩,并可设计为可折叠的机构,变几何桁架机器人机构比串联型机器人机构有更好的刚度,这些特性使得变几何桁架机构具有广阔的应用前景。本课题以变几何桁架宏-微机器人为主要研究对象,对机器人的位置分析、运动学、实现避开障碍物的轨迹规划、智能控制及其系统设计开发等进行了较全面、深入的研究。
     本论文对Abhara混沌神经网络进行适当地简化,建立了相应的混沌神经网络模型,并应用该模型对冗余度变几何桁架(TT-VGT)机器人的位姿正解进行训练学习,进而利用Lyapunov函数进行了机器人的位姿反解,较好地解决了冗余度机器人位姿反解中存在多解的问题;提出了七重四面体变几何桁架机器人的工作空间分析的解析方法,该方法以曲面分析为基础,引入了数字—符号处理技术,依据位置正解的递推公式,由计算机自动推导出工作空间边界曲面的解析曲面方程,并描绘出了机器人工作空间边界曲面的投影视图及截面曲线图,与数值方法相比,解析方法更精确更有效;根据DSP的并行体系结构、专用的硬件乘法器、高速运算能力、芯片成本低等特点,结合冗余度变几何桁架机器人运动学计算的特点,提出采用多个TMS320F206DSP芯片进行机器人轨迹规划并行计算的方案,实验结果反映出该方案的实时性和准确性;提出了基于立体视觉进行障碍物距离检测,通过视觉反馈,采用多种图象处理方法进行分析,及时调节机器人末端运动轨迹,并根据冗余度变几何桁架机器人的机构特点提
    
     四川大学博士学位论文
    出了相应的u据,以实现实时避障溅u的根:提出了修正四面体机构单
    元重叠构成冗余度变几何析架机器人机构的狠,避免了在机构中出现同悯
    铰,为实现变几何析架机器人的加I+朋跳了腿,在分析了冗余度变几
    何析架机器人机构的几何特征的基石肛上,建立了间接位置分析的约束方程组,
    应用结式消元法进行捎元求解,解决了七重修正四面体机器人的间接位置分析
    @题。
     提出了朋多4TMS3W06 DSP芯片,将冗余度变几何析架趴器人的轨迹
    规划计算与关节运动控策uM的方案,在程序设计中采用了多种技巧以优化计
    算,实现了冗余度变几何斡撩朗m渠人的实时控帘人应用邓擅红P神经网络 树
    机器人运动学进行正解和反解,通过增加关节角变化最小的约束条件,定义了优
    化的目标函数,将正解中得到栩闲bV准可比矩陌J甲于机镁UU巨动学逆解,有效
    地解决了冗余度机器人的逆运动学解存在不确定性的问题,建立了冗余度瓤何
    格架机器M钻级筛赅型,该模型运动具有良好的稳定性和懈性;提出了娜
    器人任务所要求的位置和力进行混合,并绷BP神经网络进行冗余度变几何析
    架机器人的动力学逆解,得¥临岸疖驱动力矩,输入机器人,根据机器人的运动
    误差,定义了力地置混合系数的求解方程,有效地简化了冗余度机器人的逆动
    力学求解,从而提高了力啦置u的实时性和准确性:提出了采用直接
    MRA神经网络自涅迹℃器MN4的方案,建立了趴鼎UU九态模
    型,推导出自适应粥纬修署去,并对又淙遁@Jw沛挝尉以梁儿仇迹蹦嘶了仿真,
    结果表明,该方案控帘误差较小,稳定性较好;觑蹦神经网淑印M对机器
    人逆动力学模型进行辨识,提出了将整个动力学模型系统分为三个子系统,分别
    采用三个D们系统对广义质量矩阵、向心力及哥氏力矩阵和孰矩阵进行学习,
    求解了冗余度变几伺析架机器人的逆动力学问题,建立了冗余度变几何析架机器
    人的逆动力学模型,并在交流伺服电机驱动的四重四面体变几何析架权器人上实
    现了u,赐差较小,收敛速度快。
     根据八面体变川咐铀鸵糯队的特点,采用微分的方法,结u的由
    压电陶瓷驱动的j腼…删的运动学进行了研究,硼了微
    动机器人的逆运动学方程,其转换矩阵均为常数矩阵;运用摄颠由巾晒谰变
    几何析架微动机器人进行了误差分析,叙了八面体变几何析架微动机器人的
    
     四J;!大学博士学位论文
     位姿误差模型,该模型形式简单,适用范围广泛;采用控【d川器人目标空间转
     换矩阵的方法,通过对八面体变几何析架微动机器人几点位姿的标定,从而补
     偿其误差,达到提高机器人位姿精度的目的。
     对压电陶瓷的特性进行了分析,并针对其位移非线性、迟滞和蠕变等特性,
     提出了利用澈屯优化方法对压电陶瓷微位移器的PID控钻归以元参数整定,在获
     手 得了优化的PID参数后,?
A M wt is anaCtal at the tiP of a hag driPulator The large ooc is
    had on the groun and is called tnacro WPulatOL The sInall one with fiJll DOF is
    nd on the ~ one and is canot bo -- Sucn bo or pe can be
    re~ as wt Wtwta pe By use Of ar ~ta the
    -- can mov widely; by use of bo --r, the driPulatOr can move
    mpally and aCCW The InaCIO-ndrm ndPUlatOr SyAn can rtrm the high
    tw ed. A vedabe tw the mWsrn (VGWh is a-statically
    wt truSS tha has for medilied tO N som tUnnber of vtriabe length
    links. vGWi haV vny gOod the tD weigh ndos, and no wt moments or
    tomp can be nd at the joints. MoIeOVer they can be deded to be
    coWe. be cW Inak VGTMs hav very vaSt potential apPlitalons.
    As a robo ndghaton VGT -- be high the ha Anal
    twPulAn. The disPaCeInen ProbleIn. ldneInallcs, wieCtory pltw fOr obstacle
    avodanCe, and intelligen contIDl SySteIn of macrowhcro mpatD pe be
    on vahable -- truss are the forly and pe in this
    diwton.
    By tw the AM dris netal netWOIk(W, the Proper bo nd
    -th for wrGT ~atOrs is ds. Based on the CN'N, the fotw
    poAnon PIOblem of M wtwt variabe geOtw to
    ruGD is tIaind by use of the tw function. the inVeISe solution ofpohoon
    for redundan TTVGT ~ators is obtw. So the Problem of multi soludOnS in
    inare pose talcul- fOr ch rmGT -- is solved ~ Then,
    W M fOr H analySis of 7zelled twn variable mp
    tw twPulatOrs is PIDpoed The ntnneric-Symbolic teCtw is haded. The
    mtw H for is wt on ch analyS ed can be ed to dha the
    analytical tw of H H ler aUtOrnaticall on the COrnPUter
    nd on the -- fonnthe or ed pe analyS. be Proch
    and edon curv ~ of wOW boUndaIy ch are drawn. Compe wh
    
    
    P
    the nUmerital method the Ntal metha is mofe actw and efficient Accordin
    tO for of H wt' W M multiPle devie, high ~
    calculation and low coSt ~ of DSP, and the thethe of Wdan n-VGT
    N the Hl traeCtory Plannin calcMn based on multi DSP chiPS fOr
    ds ThVGT rnaniPators is all out w ed indita tha mis
    method is tealthe and aCCtal. The solution tO avoid obStaCles for n-VGT
    twuIamrs ler on sterevision for wte deteCtion is ~. theugh the
    vision edack by use of wiage PrDCeSSing, the thek of mAnPulatOrs is adjUSted in
    the' W ID the chaIactere of TTM m~ato StrUCtUre, the criterion is
    ~. A new ch ed eeu is nut he. fu for avta the.
    conCentri fetlock needed in TTVGT StrUCtUre, and is USeful fOr TTVGT macwi
    and aPPlitalon de the analsis of the TT-VGT StrUCtUre, the driCt eqwt for
    M POsition H are ehabIished, for on alH Won methed, a
    wtc aPPIDaC for the inare ~acemen analySis Of 7-celled meded
    tetIahedID VGTM is Propoed.
    The PaIalle1 apmp Plwt calcWn and contolling solution bo on
    mulh DSP chiPs fOr redUndan TTVGT tnanhalatOrs is pIeSented. and the alls fOr
    Mg calculallon are aPPlied in PIDW; the realdrie cothel for redUndan
    TTNGT InaniPUlators is dried ouL TwO BP netal netwIks are ed for driematics
    solution and invrse ldneInacs soution. By debo the opthal object function,
    alOng with wt the Man oorm Ofoint velocities, the posinon conII'Ol modl
    W on tWo BP nend netwoIks fOr redUndan ThNGT twPulators is establisAn.
    The hmpd contIDl M fOr POsitiOn and foI'Ce is Put fotw. Bed on BP neural
    tw, the inare lerc soution and the join driven toIqUeS are obtained.
    Accothe tO the position ny the hthed erefficient of fOrce and posinon is defined.
    The hybod contIDl methed is mere ndtrie and acctal. The neural adaPtwe
    contrOller based on tat ar is ~ The State modl of twPUIatOrs is
    Mlished, and apve cothel methed is haced. The triulallon restilt indicates
    that this He coniml methed is more accot and hable. The inVerse boc
    medl is investigated nd on hay neuIal netwIk SyStem, then solndons of inverse
    twc model PrOblern can be obtained fOr the ffo tirn. Based on aboVe inVerse
    
    r
    Mc iMon USing netal H a theldng contIDl fOr TT-VGT
    Wators driven by AC serv motors is dried Ou.
    wt to the StnJCtUIe Of wt We pe tu (OVGD, nd
    on foral coeffidri mtw the SyInbolic solutiOnS fOr the inVeISe kintws of
    ovor Anere twPulato driven by the riedectric chc rezn are derived anu
    the for
引文
1 Chen Huitang, Jiangping, Zhu Wenghong, Wang Yuejuang. Comparative Study of D D Robot Control Algorithms for Trajectory Tracking. Proc of the 12th IFAC Triennial World Congress. 1993: 157-160
    2 Khatib O. Reduced Effective Inertia in Macro-mini Manipulator Systems. In fifth Int Symp on Robotics Research. 1990:279-284
    3 Sharon A., Hogen N., Hardt D E, High Bandwidth Force and Inertia Reduction U sing a Macro/Micro Manipulator System. In Proc IEEE Int. Conf on Robotics and Automation. 1988: 126-132
    4 Salisbury JK., Abramowitz JD. Design and Control of a Redundant Mechanism for Small Motion. In Proc IEEE Int. Conf on Robotics and Automation. 1985: 323-328
    5 Yoshikawa T., Hosoda K., Doi T., Murakami H. Quasi-static Trajectory Tracking Control of Flexible Manipulator by Macro-micro Manipulator System. In Proc IEEE Int. Conf on Robotics and Automation. 1993:210-214
    6 K. Miura H., Furuya. and K. Suzuki. Variable Geometry Truss and Its Application to Deployable Truss and Space Crane Arm. Acta. Astronautic. 1985. 12(7)
    7 李鲁亚,张启先,冗余自由度机器人研究,机器人 1991.13(6):29-33
    8 李鲁亚,兀余自由度机器人控制研究.北京航空航天大学博士学位论文 1994.
    9 R. I. Alizade, N. R. Tagiyev, J. Duffy. A Forward and Reverse Displacement Analysis of An In-Parallel Spherical Manipulator. MMT. 1994. 29(1):125-137
    10 Rockwell International. Development of Deployable Structures for Large Space Platform Systems. Interim Report. 1982. Vol. 1 SSD. 82-01211
    11 D. B. Warmaar, Chew. Conceptual Design of Deployable-Foldable Truss Structures using Graph Theory. Proceedings on ASME Mechanism Conference. 1990: 107-123
    12 段阳.变几何桁架机器人的运动学分析.成都科技大学硕士学位论文.1994
    13 V. Arun, C. F. Reinholtz, L. T. Watson. Enumeration and Analysis of Variable Geometry Truss Manipulators. Proceedings on ASME Mechanisms Conference. 1990: 93-98
    14 M. Griff, J. Deffy. A forward Displacement Analysis of a Class of Stewart Platforms. J. of Robotic Systems. 1989. 6(6): 703-720
    15 姚进,房海蓉.Forward Displacement Analysis of the Decahedral Variable Geometry Truss Manipulators Robotics and Autonomous Systems. 1995 (15): 173-178
    
    
    16 徐礼钜,段阳.组合十面体变几何桁架机器人的直接位置分析.机械.1997,24(1):7-9,16
    17 徐礼钜,林光春.十二面体变几何桁架机器人位置正解分析的符号解.机械科学与技术 2000.19(5).703-704,708
    18 雷勇,徐礼钜.基于TMS320F206DSP的冗余度TT-VGT机器人运动学求解.电子技术应用.2001.12:67-69
    19 雷勇,徐礼钜.基于混沌神经网络的冗余度TT-VGT机器人运动学求解.机器人.2002.7
    20 C. F. Reinholtz, D. Gokhale. Design and Analysis of Variable Geometry Truss Manipulators. Virginia Polytechnic Institute & State University. Masters Thesis. 1989
    21 姚进.Inverse Kinematic Analysis of Dodecahedral Variable Geometry Truss Manipulators. 2nd Asian Conf. on Robotics and Its Application. 1994
    22 Xu L J, Tian G Y, Duan Y. Inverse kinematic analysis for triple-octahedron variable-geometry truss manipulators. Journal of Mechanical Engineering Science, 2001, 215(2): 247-251
    23 于鹏,黄成祥,徐礼钜.八面体变几何桁架机器人工作空间分析的解析法.机械传动.2001,25(4):5-7
    24 李立,陈永.并联型机器人动力学建模的符号-数学方法.机械工程学报.1994,30(3):77-84
    25 R. Sarma, S. N. Krauler, V. Ruramurti. The Dynamic Equations of Motion and Actuation Scheme for the Tetrahedron Based Variable Geometry Truss Manipulator. Robotics. Spatial Mechanisms. and Mechanical System. ASME. 1992
    26 徐礼钜,吴江.基于神经网络的冗余度TT-VGT机器人的运动学求解.机器人.1999,21(6):449-454
    27 杨随先.变几何桁架机器人机构的研究.四川大学博士学位论文.1996.12
    28 徐礼钜,吴江.冗余度变几何桁架机器人动力学计算.中国机械工程.2001,12(6):697-699,717
    29 Xu LiJu., Fan ShouWen, Li Hong. Analytical model mthod for dynamics of N-celled tetrabedron-tetrahedron variable geometry truss manipulators. Mechanism and Machine Theory, 2001, 36 (11): 1271-1279
    30 吴江,徐礼钜,雷勇.冗余度四面体变几何桁架机器人的动力学规划.机械传动.2000,24(2):4-6
    
    
    31 G. S. Chirikjian, J. W. Bardick. Theory and Application of Hyper-Redundant Robotic Mechanisms. Proceedings 8th World Congress on Theory Machines and Mechanisms. Pracue. 1991
    32 吴江,徐礼矩.冗余自由度TT-VGT机器人的最优轨迹规划.机械科学与技术.2000,19(3):375-376
    33 徐礼钜,吴江.基于BP神经网络的冗余度TT-VGT机器人轨迹规划.中国机械工程.2000,11 (7):811-813
    34 吴江,徐礼钜.基于遗传算法的冗余度TT-VGT机器人的避障规划.机械传动.1999,23 (4):6-8
    35 Iberall T. A Ballpark Approach to Modeling Human Prehension. IEEE Conf. On Neural Networks. 1987. 4:535-544
    36 Guez A., Ahmad Z. Accelerated Convergence in the Inverse Kinematics via Multilayer Feedforward Network. International Joint Conference on Neural Networks. 1989. Vol. 2: 341-344
    37 徐礼钜,雷勇,吴江.基于神经网络的冗余度四面体变几何桁架机器人位置控制.机械科学与技术.Vol.No.2001.20(2):166-168
    38 雷勇,徐礼钜.基于TMS320F206DSP的冗余度TT-VGT机器人的轨迹控制.电气传动.2002.2:22-25
    39 Nearchou A. Solving the Inverse Kinematic Problem of Redundant Robots Operating in Complex Environments via a Modified Genetic Algorithm. J. of Mechanism and Machine Theory, Vol. 3, No. 2, pp. 110-121, 1998.
    40 雷勇,徐礼钜,吴江.基于神经网络的冗余度四面体变几何桁架机器力/位置混合控制.第十二届全国机构学学术研讨会.仪器仪表学报.已被采纳
    41 Leahy M. Neural Network Payload Estimation for Adaptive Robot Control. IEEE Trans. Neural Network. 1991. 2(1):93-100
    42 Miller W T. Realtime Dynamic Control of an Industrial Manipulator Using a Neural Network Based Learning Controller. IEEE Trans on Robotics and Automation. 1990. 6(1):19
    43 雷勇,徐礼钜.冗余度TT-VGT机器人的神经网络自适应控制.电子技术应用.2002.11
    44 徐礼矩,吴江.基于模糊神经网络的冗余度变几何桁架机器人自适应控制.机器人.2000.22(6):495-500
    45 雷勇,徐礼钜,吴江.基于模糊神经网络的冗余度TT-VGT机器人位置控制.电工技术学报.已录用
    
    
    46 雷勇,徐礼钜,涂国强.基于混沌PID的压电陶瓷微位移器控制.第十三届全国机构学学术研讨会 2002.8,杭州
    47 Khatibo. Inertial properties in robotics manipulation: An object-level frame work [J]. J. of Robotics Research. 1995. 14(1):19-36.
    48 Yoshikawa T., Harada K., Mats. A. Hybrid position/force control of Flexible Macro-micro Manipulator Systems. [J]. IEEE Trans. on Robotics and Automation. 1996. 12 (4): 633-640
    49 Yim W., Singh S N. Nonlinear inverse and predictive end point trajectory control of Flexible Macro-micro Manipulators [A]. Gertler J J. The 13th Triennial World Congr. [C]. San Fracisco: IFAC. 1996. 97-102.
    50 Kokotovic P V. Application of singular perturbation techniques to control problems [J]. SIAM Review. 1984. 26(4): 501-550.
    51 Raibert M H. Crai j J. Hybrid Position/Force Control of Manipulator. Trans. ASME Journal of Dynamic System. Measurement and Control. 1981. 103 (2): 126-133
    52 Hogen N. Impedance Control: An Approach to Manipulation. Parts 1-3. Trans. ASME Journal of Dynamic System. Measurement and Control. 1985. 107 (1): 1-24
    53 Sharon A., Hardt DE. Enhancement of Robot Accuracy Using End point Feedback and Macro-micro Manipulator System. American Control Conference. 1984: 1836-1842
    54 Eppinger S D., Seering W P. On Dynamic Models of Robot Force Control. In Proc. IEEE Int. Conf. On Robotics and Automation. 1986: 29-34
    55 Mills J K. Stability and Control Aspects of Flexible Link Robot Manipulators During Constrained Motion Tasks. J. Robot System. 1992. 9(7): 933-953
    56 Fowler H C., Eppinger S D. Bandwidth Performance of a Direct Drive Manipulator Under Joint Torque and Endpoint Force Control. In Proc. IEEE Int. Conf. On Robotics and Automation. 1991: 230-237
    57 Nagai K., Yoshikawa T. Impedance Control of Redundant Macro-micro Manipulators. In Proc IEEE/RSJ/GI Int. Conference on Intelligent Robots and Systems. 1994: 1438-1445
    58 Yoshikawa T., Hosoda K, Doi T. Murakami H. Dynamic Trajectory Tracking Control of Flexible Manipulator by Macro-micro Manipulator System. In Proc. IEEE Int.. conf. On Robotics and Automation. 1994: 1804-1809
    59 Narikiyo T., Nakane H., Akuta T., Mohri N. Saito N. Control System Design for Macro/Micro Manipulator with Application to Electrodischarge Machining. In Proc. IEEE/RSJ/GI Int. Conference on Intelligent Robots and Systems. 1994: 1454-1460
    
    
    60 Kobayashi B., Tatsuno J., Ito S. Kuroda A. Micro-macro Manipulator with Haptic Interface-2nd Report: Control By Using Vitual Mode. Proc. Of IEEE International Workshop on Robot and Human Communication. 1994: 130-133
    61 陈启军,王月娟等.基于奇异摄动的宏-微机器人控制方法.同济大学学报(自然科学版).2001,29(7):805-810
    62 陈启军,王月娟等.运动学补偿的宏-微机器人连续轨迹控制研究.控制理论与应用.2001,18(1):12-16
    63 陈启军,王月娟.基于宏-微机器人的不连续轨线的跟踪.机器人.2000.22(5):337-343
    64 王文利,南仁东等.控制FAST馈源的宏-微机器人系统.机器人.2000,22(6):446-450
    65 陈启军,王月娟.激光作业的宏-微机器人及其控制系统.机器人.1999,21(2):128-133
    66 陈启军,王月娟.宏-微机器人:概念,动态,控制及几点算法.机器人.1998,20(4):315-320
    67 (美)付京逊等著,机器人学:控制、传感技术、视觉、智能,中国科学技术出版社,1989,10
    68 张成新,余跃庆.基于绝对坐标的柔性机器人逆动力学建模和轨迹跟踪.机械科学与技术(西安).2002,21(1):10-12,15
    69 J. Bosco MBEDE, Xinhan HUANG, and Min WANG. Robust Fuzzy and Recurrent Neural Network Motion Control among Dynamic Obstacles for Robot Manipulators, ICRA 2000-IEEE International Conference on Robotics and Automation, San Francisco (USA), Vol. 3, pp. 2136-2145, April 22-28, 2000.
    70 W. M. Yun, Y. G. Xi. Optimum Motion Planning for Robots Using Genetic Algorithms. Robotics and Automation. 1996
    71 张伟.基于神经网络的机器人位姿逆解,机器人.1997.19(2):151-154
    72 Ziauddin Ahmad, Allon Guez. On the Solution to the Inverse Kinemtics Problem. IEEE Journal of Robotics and Automation. 1990
    73 周双林,邹慧君.平面闭链五杆机构柔性工作空间的研究机械工程学报.2000,36(11):10-15
    74 周学才,李卫平,李强.开放式机器人通用控制系统.机器人.1998.1
    75 TEXAS INSTUMENTS. TMS320C2xx User's Guide. 1997
    76 任晓林,胡光锐,徐雄.基于混沌神经网络的语音识别方法.上海交通大学学报.1999.12(4):1517-1520
    77 Arbihara K., Takabe T., Toyoda M. Chaotic neural networks[J]. Phys Lett A. 1990. 144: 333-340
    
    
    78 Bryson A E., Denham W. Asteepest-ascent method for solving optimum programming problem [J]. App Mech. 1962. 29 (2): 247-257
    79 Jain. S. and Kramer. S. N. Aforward and Inverse Kinematics Solution of Variable Geometry Truss Robot Based an N-Celled Tetrabedron-Tetrahedron Truss. Trans. Of ASME. J. of Mechanical Design. Vol. 112. No. 1. 1990: 16-22
    80 吴江.冗余自由度变几何桁架机器人的研究.四川大学博士学位论文.2000
    81 雷勇,徐礼钜,吴江.基于BP神经网络的冗余度TT-VGT机器人位置控制的实现.四川大学学报(工程版).2000.32(1):115-118
    82 左爱秋等.基于立体视觉的六自由度平台位姿检测基础研究.中国机械工程.2000.11 (7):814-816
    83 张明路,彭商贤.一种基于多组传感器信息移动机器人的避障方法.自动化学报.1998.24 (5):671-674
    84 刘鸿飞,张策.机器人操作机弹性动力学分析新方法.北京科技大学学报.1994,16(3):274-279
    85 Seguchi. Y., Tanaka. M. Dynamic Analysis of a Truss-Type Flexible Robot Arm. JSME Int. J. Series. C. Vol. 33. No. 2 (1990). P. 183-190
    86 Masao TANAKA. Configuration Control of the Truss-Type Parallel Manipulator by the Modular Neural Network. JSME International Journal Series. C. 1992
    87 Toshio FUKUDA, Takashi KURIHARA, Takanori SHIBATA, Masatoshi TOKITA and Toyokazu MITSUOKA. Application of Neural Network Based Servo Controller to Position. Force and Stabbing Control by Robotic Manipulator. JSME International Journal. Series Ⅲ. Vol. 2. 1991. 34(2): 303-309
    88 陈恳等.并联微操作手的运动学分析.中国机械工程.1998.7(9):57-59
    89 李长友,李德锡.机器人操作手工作空间中的奇异曲面[J].机器人,1988,10(2):13-19.
    90 李国栋,陈宁新.机器人工作空间的界限面及其位置奇异曲面的代数求解方法[J].机器人.1988.10 (6):25-31
    91 陈宁新.Workspace analysis of robot arm using differential geometry-Part Ⅰ: A general theory [A]. ASME Paper[C]. 1986. 86-DET-164
    92 陈宁新.Workspace analysis of robot arm using differential geometry-Part Ⅱ: Workspace analysis of 3R. 4R. 5R and 6R robot arm [A]. ASME Paper[C]. 1986. 86-DET-165
    
    
    93 徐礼钜,范守文.机器人奇异曲及工作空间界限面分析的数字-符号法.机械科学与技术.2000,19(6):861-863,884
    94 张玉茹.机器人机构与闭环机构的运动特性研究[D].北京航空学院博士学位论文.1987
    95 付金元,陈永.基于解析模型法的机器人动力学建模自动生成软件系统.机械工程学报.1991.27(2):31-36
    96 陈永,严静.同伦迭代法及应用于一般6-SPS并联机器人机构正位置问题.机械科学与技术(西安).1997.16(2):189-194
    97 梁崇高,荣辉.一种Stewart平台型机械手位移正解.机械工程学报.1991.27 (2):26-30
    98 李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究.机械科学与技术.1999.18(1):41-43
    99 孙立宁等.微动机器人运动学分析的基础研究.仪器仪表学报.1998.19(5):464-470.
    100 李嘉,王纪武等.基于广义几何误差模型的微机器人精度分析.机械工程学报.2000,36 (8):20-24
    101 毕树生,王守杰,宗光华.串并联微动机构的运动学分析.机器人.1997,19(4):259-264
    102 安辉.哈尔滨工业大学工学博士学位论文.1994
    103 卞振娥.机器人的位姿标定及其误差补偿.机器人.1991.13(1):36-42
    104 阎华等.机器人位姿误差建模方法综述.机床与液压.2000.1:3-5
    105 潘仲明等.精密车床直线运动误差检测、补偿中的压电微动伺服机构.中国仪器仪表学会湖南省仪表学会论文集.中国仪器仪表过程检测会议.长沙.1986:21-24
    106 王晓慧.超精密加工中圆度、圆柱度随机误差补偿研究.哈尔滨工业大学工学博士学位论文.1994
    107 New Comb C V. Improving the linearity of piezoelectric ceramic actuators. Electronics Letters. 1982. 18(11):442-443