并联机器人精度分析与综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从并联机器人的典型结构Stewart平台出发,对并联机器人的精度分析和综合问题进行了系统的研究。
    运用并联机器人输入输出微分关系,建立了机器人输出位姿误差正解的数学模型。提出了并联机器人位姿误差正解的分析方法。该正解模型的建模方法亦适用于其他并联机器人及空间机构的误差分析;对于6-SPS Stewart 平台一类机构及其演化构型,给定各结构参数误差,应用此正解模型可直接得出并联机构输出位姿误差,从理论上为定量分析各结构参数误差对输出位姿误差的影响提供前提条件。
    全面分析了结构参数和位姿参数对输出位姿误差的影响问题,研究了不同参数下奇异位形和机器人位姿正负偏差最大值出现的位置,结合对位姿正负偏差最大值的控制,提出了结构参数合理取值以有效避开误差敏感区的可行方法。
    根据并联机器人输出位姿误差的特点,提出了影响因子分析法。研究发现:位姿误差影响因子曲线存在极大值区域和相对稳定区间,应用影响因子分析法,可清晰地反映出结构参数几何奇异性的位置及变化趋势。研究发现: 6-3单三角平台和3-3双三角平台的影响因子较接近,且二者均远小于Stewart平台。研究结果可直接用于并联机器人的结构设计
    建立了并联机器人动平台输出位姿精度综合的数学模型,提出了基于原始误差等效作用原理和影响因子加权法实现机构精度综合的可行方法;揭示了原始误差等效作用原理的合理使用条件,以及影响因子加权法在并联机器人的结构设计中的作用。结果还表明:影响因子加权法对并联机器人的精度设计具有明确的指导意义。实例分析进一步验证了本文所建立的精度综合方法的有效性和必要性。
Based on the typical structure—Stewart platform, this dissertation deals systematically with the error analysis and synthesis of parallel manipulators.
    The forward kinematics error model for the pose error analysis of the end effector has been formulated in terms of the differential relationship of robot and close-loop vectors of a parallel manipulator. For 6-SPS Stewart platform and its relevant configurations, the pose errors of the end effector can be directly obtained when the structural parameters and errors are given. The modeling method can also be used to the accuracy analysis of other parallel manipulators and spatial mechanisms.
    The effects of structure and pose parameters on the pose errors of the end effector is analyzed. The positions where uncertain configurations and the maxim deviations of the pose occur have been determined. Under the control of the maxim deviations, reasonable structure parameters, which are not sensitive to the pose errors, can be obtained.
    A new method—influence factor analysis is put forward according to the characteristics of the pose errors of parallel manipulators. Applying the method, the position of geometrical singularity and the changing trend can be uncovered. The influence factors of 6-3 and 3-3 Stewart platform are found to be approximate and both are far from one of the 6-6 Stewart platform. This results will provide a guideline in the design, manufacturing and assembly of the parallel manipulators.
    The accuracy synthesis model has been formulated by means of the error theory. Based on the principle that primary errors exert the same effects on the driven member and the concept--influence factors of the pose errors, two methods for pose error synthesis of parallel manipulators have been presented. The numerical examples indicate the necessity and effectiveness of the methods.
引文
A.Hara, K.Sugimoto. Synthesis of parallel micromanipulators.Transactions of the ASME,1989,111:34~39
    Alizade R. I. And Tayev N.R., A forward and reverse displacement analysis of a 6-DOF in-parallel manipulator, Mechanism and Machine Theory, 1994, 29(1),115-124
    Behi F., Kinematic analysis for a six-degree–of-freedom 3-PRPS parallel mechanism, IEEE J. of Robotics and Automations,1988, 4(5), 561-565
    Bhaskar D,Mruthyunjaya T. A Canonical Formulation of the Direct Position Kinematics Problem for a General 6-6 Stewart Platform. Mechanism and Machine Theory, 1994, 29(6): 819~827
    Biswas A, Kinzel G L. Optimal tolerance and clearence of allocation in mechanisms to minimize manufacturing cost. Proc. of DETC98: ASME Design Engineering Technical Conference, Atlanta, GA, Sep. 1998: 13~16
    Boudreau R,Turkkan N. Solving the Forward Kinematics of Parallel Manipulators with a Genetic Algorithm. Journal of Robotic Systems, 1996, 13(9): 111~125
    Broderick P L, Cipra R J. A method for determining and correcting robot position and orientation errors due to manufacturing. J. of Mechanisms, Transmissions, and Automation in Design, 1988, 3(110): 3~10
    Bruyninckx H. Forward Kinematics for Hunt-Primrose Parallel Manipulators. Mech. Mach. Theory , 1999, 34: 657~664
    Cai G. Q., Development and study of a new kind of 3-DOF tripod, Annals of the CIRP, 1999, 48(1),333-336
    Carlo., Direct position analysis of the Stewart platform mechanism, Mech. Mach. Theory, 1990, 25(6), 463-477
    Charles C, Nguyen, Zhen-Lei Zhou, Sami S. Efficient Computation of Forward Kinematics and Jacobian Matrix of a Stewart Platform-Based Manipulator. IEEE Proc. of the Southeast Conf’91. Williamsburg,1991:869~874
    Charles W, Wampler. Forward Displacement Analysis of General Six-In-Parallel SPS(Stewart) Platform Manipulators Using Soma Coordinates. Mechanism and Machine Theory, 1996, 31(3):331~337
    Choon seng Yee, Kah-bin Lim. Forward Kinematics Solution of Stewart Platform Using Neural Networks. NEUROCOMPUTING, 1997,16: 333~349
    
    Clavel R.,DELTA, a fast robot with parallel geometry, Proc. Of the Int. Symp. On Industrial Rob., Switzerland, 1988, 91-100
    Cleary K. and Arai T., A prototype parallel manipulator: kinematics construction, software, workspace results and singularity analysis, IEEE Int. Conf. On Robotics and Automation, 1991, 566-571
    Creveling C M. Tolerance design--- A handbook for developing optimal specifications. Massachusetts:Addison-Wesley Inc., York, 1997
    Dasgupta B., A canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform, Mech. Mach. Theory, 1994, 29(6), 819-827
    Dunlop G. R. and Jones T. P., Position analysis of a two DOF parallel mechanism – the Canterbury tracker, Mech. Mach. Theory, 1999, 34(4), 599-614
    Fichter E.F., A Stewart platform-based manipulator: general theory and practical construction, J. Robot. Res., 1986,Vol.5, No.2, 157-182
    Fuan Wen, Chonggao Liang. Displacement analysis of the 6-6 stewart platform mechanism. Mechanism and Machine Theory,1994,29(4):547~557
    Gadallah M H, EIMaraghy H. The tolerance optimization problem using a system of experimental design. Advances in Design Automation, 1994, 169: 251~269
    Geng Z J, Haynes L S. A "3-2-1" kinematic configuration of a Stewart platform and its application to six degree of freedom pose measurements. Robotics & Computer-Integrated Manufacturing, 1994, 11(1): 23~34
    Geng Z J, Haynes L S. Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform. Robotics Computer-Integrated Manufacturing, 1992, 9(6): 485~495
    Griffis M. and Duffly J., A forward displacement analysis of a class of Stewart platform, J. Robotic Systems, 1989, 6(6), 703-720
    Gupta K.C. and Roth B., Design consideration for manipulator workspace, Trans. Of ASME, J. Mech. Des., 1982, 104(4), 704-712
    Han S. Kim, Yong J. Choi, The kinematics error bound analysis of the Stewart platform. J. of Robotic Systems, 2000, 17(1): 63~73
    Hao F. and Mccarthy J. M., Conditions for line-based singularities in spatial platform manipulator, J. Robotic Research 1998, 15(1), 43-55
    Henzold G. Handbook of geometric tolerance---Design, Manufacturing and Inspection. New York:John Wiley and Sons, Inc., 1995
    Hoffman P. Analysis of tolerances and process inaccuracies in discrete part manufacturing. Computer Aided Design, 1982, 14(2): 83~88
    H.H.S.Wang , B.Roth . Position Errors Due to Clearances in journal Bearings. Transactions of the ASME, 1989,111:315~320
    
    Hudgens J. C. and Tesar D., A fully-parallel six degree-of freedom micromanipulator: kinematic analysis and dynamic model, Proc. 20th Biennal ASME, Mechanisms Conf. Trends and Development in Mechanisms Machines and Robotics, 1988, 15(3), 29-37
    Hunt K H, Primrose E J F. Assembly Configurationsof Some Parallel-actuated Manipulators. Mech. Mach. Theory, 1993, 28(1):31~42
    Hunt K H., Kinematics Geometry of mechanisms, Clarendon Press, Oxford, 1978
    Hunt K H, Structural kinematics of in-parallel-actuated robot-arms, ASME J. Mech. Trans. Auto. Des., 1983,Vol.105, No.4,705-712
    Husty M L. An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms. Mechanism and Machine Theory, 1996, 31(4):365~380
    Innocenti C, Parenti-Castelli V. Direct Position Analysis of the Stewart Platform Mechanism. Mech. Mach. Theory, 1990, 25(6): 611~621
    Innocenti C, Parenti-Castelli V. A Novel Numerical Approach to the Closure of the 6-6 Stewart Platform Mechanism. Fifth Int. Conf. On Robots in Unstructed Enviroments, 91 ICAR, 1991: 851~855
    Iurascu C C, Park F C. Geometric Algorithm for closed chain kinematic calibration. Proc. of ICRA, Seoul, Korea, 1999: 1757~1762
    Jae Won Jeong, Soo Hyun Kim, Yoon Keun Kwalk. Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose. Mechanism and Machine Theory,1999,34(1):825~841
    Jean Pierre Merlet. Direct kinematics of parallel manipulators. IEEE Trans. on Robotics and Automation, 1993, 9(6): 842~846
    Jianmin Zhu , Kwun-Lon Ting . Uncertainty analysis of planar and spatial robots with joint clearances. Mechanism and Machine Theory,2000,35:1239~1256
    John M, David M. Closed-loop kinematic calibration of the RSI 6-DOF hand controller. IEEE Trans. on Robotics and Automation, 1995, 11(3): 352~359
    Joon Hyun Jang, Soo Hyuan Kim, Yoon Keun Kwalk. Calibration of geometric and non- geometric errors of an industrial robot. Journal of Robotica,2001,19:311~321
    K.C.Gupta . Measures of positional Error for a Rigid Body. Transactions of the ASME,1997,119:346~348
    Khalil W, Besnard S. Self calibration of Stewart-Gough parallel robots without extra sensors. IEEE Trans. on Robotics and Automation, 1999, 15(6): 1118~1121
    Kim J., Park F. C. and Lee J. M., Anew parallel mechanism machine tool capable of five-face machining, Annals of the CIRP, 1999, 48(1),337-340
    
    Ku D. M., Direct displacement analysis of a Stewart platform mechanism, Mech. Mach. Theory,1999, 34(3), 453-465
    Kumar V., Characterization of workspaces of parallel manipulators, Trans. Of ASME. J. Mech. Des., 1992, Vol.114, 368-375
    Kwun-Lon Ting , Jianmin Zhu , Derek Watkins . The effects of joint clearances on position and orientation deviation of linkages and manipulators. Mechanism and Machine Theory,2000,35:391~401
    Laperriere L, Lafond P. Tolerance analysis and synthesis using virtual joints. Global Consistency of Tolerance, Proc. of the 6th CIRP Int. Seminar on Computer-Aided Tolerancing, 1999: 405~415
    Lintott A B, Dunlop G R. Calibration of a parallel topology robot. Proc. of the 6th ISRAM, Montpellier, 1996, 429~434
    Lintott A B, Dunlop G R. Geometric modeling of general parallel mechanisms for calibration purposes. Kluwer Academic Publishers, Advances in Robot Kinemitics: Analysis and Control, 1998:175-184
    Masory O, Jiehua Y. Measurement of pose repeatability of Stewart platform. J. of Robotic System, 1995,12(12): 821~832
    Masory O, Wang J, Zhuang H. Kinematic modeling and calibration for a Stewart platform. Advanced Robotics, 1997, 5: 519~539
    Masory O, Wang J, Zhuang H. On the accuracy of a Stewart platform-PartⅡ kinematic calibration and compensation. Proc. of IEEE Int. Conf. on Robotics and Automation, 1993, 1: 725~731
    McAree P R, Daniel R W. A Fast, Robust Solution to the Stewart Platform Forward Kinematics. Journal of Robotic Systems, 1996, 13(7): 407~427
    M.Choubey, A.C.Rao. Synthesizing linkages with minimal structural and mechanical error based upon tolerance allocation. Mechanism and Machine Theory,1982,17(2):91~97
    Merlet J. P. An Algorithm for the Forward Kinematics of General Parallel Manipulators. Proc. Int. Conf. Adv. Robot.. Italy, 1991:1131~1135
    Merlet J. P., Parallel manipulators, Part I: theory, design, kinematics, dynamics and control, Research Report 646, INRIA, France,1987
    Merlet J. P., Singular configurations of parallel manipulators and Grassmsnn geometry, J. Robotic Research, 1989, 8(5), 45-56
    M.Raghavan. The stewart platform of general geometry has 40 configurations.Transactions of the ASME,1993,115:277~280。
    Nanua P, Waldron K J, Murthy V. Direct Kinematic Solution of a Stewart Platform. IEEE Transactions on Robotics and Automation, 1990, 6(4): 438~444
    Ota H. Forward kinematic calibration method for parallel mechanism using pose
    
    
    data measured by a double ball bar system. Invited Speech of CIRP Workshop, Paris, 2001
    Patel A. J., Ehmann K. F., Volumetric error analysis of a stewart platform-based machine tool, Annals of the CIRP, 1997, 46(1): 287-290
    Paul R P. Robot Manipulator: Mathematics, Programming, and Control. The MIT Press,1982.
    Peter Vischer, Reymond Clavel. Kinematic calibration of the parallel argos mechanism. Journal of Robotica,2000,18:589~599
    P.L.Broderick ,R.JCipra . A Method for Determining and Correcting Robot Position and Orientation Errors Due to Manufacturing. Transactions of the ASME,1988,110:3~10.
    Rasim I.Alizade, Nazim R.Tagiyev, Joseph Duffy. A forward and reverse displacement analysis of an in-parallel spherical manipulator. Mechanism and Machine Theory,1994,29(1):125~137
    Rauf A, Kyu J. Fully autonomous calibration of parallel manipulators by imposing position constraints. Proc. of ICRA, Seoul, Korea, 2001: 2389~2394
    R.Boudreau, C.M.Gosselin. The synthesis of planar parallel manipulators with a genetic algorithm.Transactions of the ASME,1999,121:533~537
    R.J.Chang ,Y.L.Wang . Integration Method for Input-output Modeling and Error Analysis of Four-bar Polymer Compliant Micromachines.Transactions of the ASME,1999,121:220~228
    Ropponen T, Arai T. Accuracy analysis of a modified Stewart platform manipulator. Proc. of IEEE Int. Conf. on Robotics and Automation, 1995 (1): 521~525
    Schellekens P. Design for precision: current status and trends. CIRP Annals, 1998, 48(2): 1~30
    Shi X. and Feston R. G., Forward kinematic solution of a general 6-DOF Stewart platform based on three point position data, Proc. of the English World Congress on Theory of Machines and Mechanisms, Prague, 1991, 1015-1018
    Soons J A. On the geometric and thermal error of a hexapod machine tool. Proc. of USA-Europe Forum on Parallel Kinematic Machines, Milano, Italy, 1999: 151-169
    Sugimoto K., Kinematic and dynamic analysis of a parallel manipulators by means of motor algebra, Trans. ASME J. Mech. Transmission Automation Des., 1987,Vol.109,3-7
    T.S.LIU,J.D.WANG . A Reliability Approach to Evaluating Robot Accuracy Performance. Mechanism and Machine Theory,1994,29(1):83~94
    Wang J, Masory O. On the accuracy of a Stewart platform-PartⅠthe effect of
    
    
    manufacturing tolerance. Proc. of IEEE Int. Conf. on Robotics and Automation, Atlanda, 1993, 1: 114~120
    Wang S.M, Ehman K.F. Errors model and accuracy analysis of a six-DOF stewart platform. Manufacturing Science and Engineering,1995,2(1):519~530
    Weill R, Shani B. Assessment of accuracy of robots in relation with geometrical tolerances in robot links. CIRP Annals, 1991, 40(1): 395~399
    Willhelm R G, Lu S. Tolerance synthesis to support concurrent engineering. CIRP Annals, 1992, 41(1): 197~200
    Wittmann M. Integrated tolerance information system. Global Consistency of Tolerance, Proc. of the 6th CIRP International Seminar on Computer-Aided Tolerancing, 1999: 375~383
    Yang D. C. H. and Lee T. W., Feasibility study of a platform type of robotic manipulators from a kinematic viewpoint, Trans. ASME J. Mech. Transmission Automation Des., 1984, 106(2), 191-198
    Zhiming Ji. Analysis of design parameters in platform manipulators.Transactions of the ASME,1996,118:526~531
    Zlatanov D., Fenton R. G. and Benhabit B., Identification and classification of the singular congfigurations of mechanisms, Mechanism and Machine Theory, 1998, 33(6), 743-760
    澹凡忠,王洪波,黄真. 并联6-SPS机器人的影响系数及其应用. 机器人,1989,3(5):20~24
    祃琳, 黄田. 面向制造的并联机床精度设计. 中国机械工程, 1999, 10(10): 1114~1117
    侯琳棋,冯淑红. 基于距离精度的机器人5参数位置误差模型. 机器人技术与应用,2002,36(2):31~35
    黄家贤. 机构精度通用新算法的推导及应用举例. 机器人,1995,17(6):337~342
    黄真. 空间机构学. 北京: 机械工业出版社, 1991
    黄真, 孔令富, 方跃法. 并联机器人机构学理论与控制. 北京: 机械工业出版社, 1997
    姜 虹,王小椿,陈丽萍. 6自由度并联机器人结构参数的优化. 机械科学与技术,1999,18(3):432~434
    姜虹,王英惠,王小椿等。六自由度并联机器人结构误差的识别与修正。西安交通大学学报,1999,Vol.33(10):39-42
    金振林,高 峰. 6—SPS球平台并联机器人及其局部力和运动传递性能分析. 光学精密工程,2001,9(1):63~66
    雷源忠, 黎明. 机械工程学科前沿和优先领域的初步设想. 机械工程学科前沿及优先领域研讨会, 广州, 1999
    
    李 嘉,王纪武, 陈 恳等. 基于广义几何误差模型的微机器人精度分析. 机械工程学报,2000,36(8):20~24
    李瑞琴. 6—SPS型并联机器人机构的开发应用. 华北工学院学报. 1996,17(1):20~25
    李树军,王 玥. 一种求解6—3构型并联机器人机构位置正解的逼近算法. 机械科学与技术,2002,21(1):81~82
    李亚,3-HSS并联机床精度设计与运动学标定方法研究,博士学位论文,天津大学,2002
    梁师望. MATLAB在并联机器人运动仿真中的应用. 机电一体化,2000,6:56~57
    刘安心,杨廷力. 用连续法求一类混合链机器人机构的全部位置正解. 机器人,1995,17(3):147~152
    刘安心,杨廷力. 求一般6—SPS并联机器人机构的全部位置正解. 机械科学与技术,1996,15(4):543~546
    刘深厚,陆锡年等,空间连杆机构位置误差分析的环路增量法,机械工程学报,1991,27(2):13~20
    刘辛军,汪劲松,高 峰等. 并联机器人机构新构型设计的探讨. 中国机械工程,2001,12(12):1139~1142
    刘辛军,汪劲松,高 峰. 球坐标式3自由度并联机器人机构的运动学设计. 自然科学进展,2002,12(4):409~413
    卢小春, 刘平安. 操作手机构绝对运动精度的优化综合. 华东交通大学学报, 1997, 6(14): 1~4
    卢 强,张友良. 用蒙特卡洛法进行6腿并联机床精度综合. 中国机械工程,2002,13(6):464~467
    乔俊伟,詹永麒,王旭永. 6—SPS并联平台位置姿态误差分析. 机械科学与技术,2001,20(1):58~59
    石则昌,刘深厚.机构精确度.北京:高等教育出版社,1995
    汪劲松, 黄田. 并联机床—机床行业面临的机遇与挑战. 中国机械工程, 1999, 10(10): 1103 ~1107
    汪劲松,白杰文,高 猛等. Stewart平台铰链间隙的精度分析. 清华大学学报(自然科学版),2002,42(6):758~761
    王奇志,徐心和. 并联机器人运动学正解的实解分析. 东北大学学报(自然科学版),1999,20(4):39~31
    王奇志,徐心和. 基于符号计算研究一类6—SPS并联机器人运动学正解问题. 机器人,1999,21(2):117~121
    王玉新,王仪明,柳 杨等. 对称结构Stewart并联机器人的位置正解及构型分析. 中国机械工程,2002,13(9):734~737
    
    魏世民, 廖启征等. 6-PSS型并联机床的仿真研究. 机械设计与研究, 2001, 1,51~53
    文福安,梁崇高,廖启征. 并联机器人机构位置正解. 中国机械工程,1999,10(9):1011~1013
    熊有伦. 机器人学. 北京: 机械工业出版社, 1993
    熊有伦,尹周平,熊蔡华等.机器人操作. 武汉:湖北科学技术出版社,2002
    阎 华,刘桂雄,郑时雄. 机器人位姿误差建模方法综述. 机床与液压,2000,1:3~5
    杨廷力,金 琼,刘安心等. 基于单开链单元的三平移并联机器人机构型综合及其分类. 机械工程学报, 2002,38(8):31~36
    余晓流, 王启义, 赵明扬等. 基于测量数据反演并联机床非线性位姿误差模型. 机械工程学报, 2001, 2(37): 38~42
    余晓流,王洪光,赵明扬等. 五轴并联铣床特征参数误差灵敏度分析. 安徽工业大学学报,2001,18(3):181~184
    余晓流,赵明扬,王洪光等. 并联机床平面约束机构误差分新与建模. 东北大学学报,2001,22(1):32~35
    邹豪,王启义,余晓流等.并联Stewart机构位姿误差分析.东北大学学报,2000,21(3)301~304
    袁亚湘, 孙文瑜. 最优化理论与方法. 北京: 科学出版社, 1997
    张虎, 周云飞等. 数控机床空间误差的无模测量与补偿. 华中科技大学学报, 自然科学版, 2002, 30(1): 74~77
    赵俊伟,徐振高,范光照等. 一种串并联型机床及其误差分析. 中国机械工程,2001,12(8):861~864
    赵新华. 并联机器人运动学理论研究,博士学位论文,天津大学,2000
    赵新华,赵连玉,温殿英等. 并联机器人运动学传动性能研究. 机械设计,2002,3:12~16
    周学才,张启先:机器人位姿误差的显著性分析法,机械工程学报, 1994,30(增刊):167~175
    周学才,张启先,距离误差模型在机器人精度研究中的应用,机器人,1995, 17(1):1-6
    张署,U. Heisel. 并联运动机床. 北京:机械工业出版社. 2003
    
    
    
    攻读博士学位期间参加的
    科研项目和完成的学术论文
    参加的科研项目
    天津市自然科学基金资助项目——并联机器人传动性能分析与综合。
    天津市高等学校科技发展基金项目——并联机器人奇异位形及传动性能分析。
    天津市高等学校科技发展基金项目——高速机器人运动学理论研究。
    天津市自然科学基金资助项目——特种用途机器人的研制。
    天津市高等学校科技发展基金项目——高精度锗光楔微机控制自动测角系统研制。
    天津市自然科学基金资助项目——红外光楔偏角精度测量系统研究。
    天津市自然科学基金资助项目——并联机器人精度分析与综合。
    完成的学术论文
    Hong lin, Zhao Xinhua, Zhang Ce, “Accuracy Analysis of Stewart Platform Based on the Forward Kinematics Solution”,ISTM/2003 5th Internatinal Symposium on Test and Measurement.
    Yang Tongqiang, Tang Liwei, Song Yimin, Zhang Ce, Li Hui, Hong Lin, “Design and Analysis of the Effect for the Sound-Insulating Mantle”, ISTM/2003 5th Internatinal Symposium on Test and Measurement.
    Hong Lin, “Real-time Tracing Measurement of the Germanium Wedge Angle”, ISTM/2003 5th Internatinal Symposium on Test and Measurement.
    洪林,张策,“改进的红外光楔测量装置及应用分析”, 光电子·激光,2002年第6期。
    洪林,赵新华,张策,“并联6-SPS机构位姿误差分析”,天津理工学院学报,2004年6月。
    洪林,赵新华,张策,“双三角并联机器人精度综合”,中国兵工学会第十二届测试技术年会,北海,2004年8月。
    
    洪 林,张继东,“红外光楔偏向角的测量”,中国兵工学会第十二届测试技术年会,北海,2004年8月。
    洪林,赵新华,张策,“6-SPS并联机器人精度综合”,机械工程学报,(已初审通过)。
    洪林,赵新华,张策, “并联双三角机构精度分析”,机械科学与技术,2004年7月。
    洪林:“红外光楔检测及测量误差分析”,光学技术,2002年11月。
    洪林,赵新华,温殿英,张策: “多目标优化在机构动态特性分析中的应用”,智能化CAD/CAE学术交流研讨会,青岛,2001年8月。
    赵永杰,赵新华,洪林,“一种基于位置正解的并联机器人精度分析算法”,机械设计,2003年7月。