大粒车前子多糖体内外消化与酵解特征体系构建及其促进肠道健康的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车前子定义为车前(Plantago asiatica L.,又称大粒车前)或平车前(Plantagodepressa Willd.)的干燥成熟种子,是传统中医用药之一。本文以江西吉安产大粒车前子为研究对象,研究车前子多糖体内外消化过程和酵解方式,及其对肠道功能的提升作用。首先通过体外研究,建立人体胃肠道消化酵解模拟系统,研究大粒车前子多糖在口腔及胃肠道中的消化过程和在人体粪便菌群中的酵解方式;模拟和探讨大粒车前子多糖肠道功能。再利用体内实验,研究车前子多糖在小鼠体内的酵解方式及其对结肠功能指标的影响,以及物理加工方式对车前子多糖肠道生理活性的影响;与此同时分析车前子多糖对小鼠体内相关肠道生理指标及菌群的影响,最后进一步通过结肠炎小鼠模型探讨车前子多糖对模型小鼠肠道功能的作用。主要研究结论如下:
     1.通过体外模拟口腔唾液,胃部和小肠消化实验研究车前子多糖的消化过程,结果发现唾液淀粉酶对车前子多糖相对分子质量没有影响,而在胃肠道消化过程中多糖受到影响。在模拟的胃、小肠消化体系中,多糖的相对分子质量发生改变,从(1,903.1±93.0) x103降低为(4.7±0.2) x103,还原糖含量从0.157±0.009mM增加为0.622±0.026mM,这表明车前子多糖相对分子质量的降低是由于糖苷键的断裂。同时,在整个模拟的消化过程中,没有检测到游离单糖,表明车前子多糖在模拟胃肠消化过程中没有产生游离单糖。这些结果能为车前子多糖的体外消化提供一些信息,并能其他多糖的消化提供参考。
     2.探讨了大粒车前子多糖体外酵解及其碳水化合物对酵解发挥的作用。车前子多糖在体外由人体粪便培养物进行酵解24h。在酵解过程中,粪便培养物的pH由6.1降为5.1,总短链脂肪酸(SCFA)、乙酸、丙酸和正丁酸的含量均显著增加。车前子多糖主要由木糖,阿拉伯糖及半乳糖醛酸组成,因此在酵解过程中,木聚糖酶、阿拉伯呋喃糖酶、木糖苷酶和葡萄糖醛酸酶的活性也都增加。酵解24h后,多糖中47.2±1.6%总碳水化合物被消耗,这其中包括阿拉伯糖(消耗42.9±1.5%)、木糖(消耗53.2±1.6%)和葡萄糖醛酸(消耗76.4±1.2%)。同时,探讨了多糖中碳水化合物的消耗与SCFA的产量间的关系。研究发现,乙酸和正丁酸的增加主要是由于多糖中葡萄糖醛酸和木糖的发酵,而丙酸的增加则主要是由于阿拉伯糖和木糖的酵解。这些结果提示车前子多糖对大肠健康的有益作用,并且其碳水化合物的组成影响其SCFA的产量。
     3.体外模拟研究车前子多糖对肠道功能的作用。结果表明,车前子多糖能显著延缓葡萄糖的扩散并对α-淀粉酶的活性有显著抑制作用,这表明车前子多糖的摄入具有潜在降低餐后葡萄糖浓度的能力。车前子多糖能抑制胰脂肪酶的活性,这能有助于降低血清中脂质的水平。车前子多糖对降低了胃蛋白酶的活性,这在一定程度上影响蛋白质的消化率。研究同时发现车前子多糖能结合并绑定胆汁酸,同时能降低可吸收的胆固醇量。这些结果表明车前子多糖对肠道功能有益。
     4.体内研究车前子多糖对小鼠结肠的影响。小鼠经口灌胃服用车前子多糖30天(剂量:0.4g/kg体重)后,研究发现车前子多糖处理组小鼠结肠内容物的总SCFA,乙酸,丙酸和正丁酸的浓度均显著高于空白组(p <0.05)。同时,在整个实验周期内多糖处理组小鼠结肠粪便含水量也显著高于空白组(p <0.05),增加结肠粪便的持水力。多糖处理组小鼠的结肠pH在灌胃周期内从7.5±0.1降低为7.2±0.1,而空白组小鼠结肠pH保持7.5±0.1不变。这些结果表明摄入车前子多糖对结肠的健康产生积极影响。
     5.体内研究车前子多糖对小鼠营养物质代谢和结肠菌群的影响。小鼠经口灌胃车前子多糖30天(剂量:0.4g/kg体重),研究发现车前子多糖的摄入能降低脂肪的表观吸收率。多糖处理组小鼠的血清总甘油三酯,总胆固醇和动脉硬化指数,以及肝脏胆固醇和总脂水平,均比空白组小鼠相应指标显著性降低(p <0.05)。同时,车前子多糖的摄入能显著缩短食物在胃肠道的通过时间(p<0.05),而这能在一定程度上影响车前子多糖对脂类代谢的作用。此外,多糖处理组的小鼠结肠菌群的多样性高于空白组。小鼠结肠中的Bacteroides sp.,Eubacterium sp.,产丁酸菌Butyrivibrio sp.,益生菌Bifidobacterium bifidum,Lactobacillus fermentum和Lactobacillus reuteri都由于多糖的摄入而增加。这些结果表明车前子多糖对脂类的代谢及结肠菌群有积极的作用。
     6.围绕物理处理方式(微波处理及高压均质处理)对车前子多糖肠道功能的作用展开研究。微波处理后,多糖的表观粘度,平均相对分子质量和粒径随着微波的处理而降低。同时,多糖中还原糖含量随着分子量的降低而增加,这表明微波处理过程中多糖的降解伴随有糖苷键的断裂。扫描电镜(ESEM)显示多糖的表观形貌从大薄片状变为小的碎片。FT-IR光谱显示微波处理并没有改变车前子多糖的主要官能团。然而,微波处理多糖后,多糖在体外酵解中的SCFA产量和微生物胞外酶(木聚糖酶,阿拉伯呋喃糖酶,木糖苷酶和葡萄糖醛酸酶)活性显著提高。同时研究发现高压均质能使得多糖粒度的下降,并使得多糖的表观形貌由大的片状结构转变为小的多孔片。FT-IR光谱显示高压均质并没有改变车前子多糖的主要结构特征。然而,高压均质处理多糖后,多糖在小鼠盲肠和结肠中总SCFA,丙酸和正丁酸的产量显著提高。这些结果表明,微波处理及高压均质能成为增加多糖附加价值的方式。
     7.研究并探讨摄入车前子多糖对患结肠炎小鼠症状的减缓作用。雌性BALB/c小鼠经饮用水服用葡聚糖硫酸钠(DSS)致结肠炎。随着DSS的摄入或在DSS摄入后,给予小鼠经口每天灌胃不同剂量的车前子多糖(0.2或0.4g/kg小鼠体重)。研究发现车前子多糖能减缓DSS引起的结肠炎症状(体重下降,粪便便血和腹泻)。多糖的摄入能抑制结肠的变短,并增加结肠组织中超氧化物歧化酶的酶活,降低髓过氧化物酶和内皮型一氧化氮合酶的酶活,增加宏观症状状态分数。同时,小鼠因患结肠炎而造成的结肠组织损害,胸腺指数下降,和C-反应蛋白水平上升均由于多糖的摄入而减缓。DSS诱导结肠炎致使的结肠组织中TNF-α,IL-1β,IL-6,MIP-2和LTB4水平的增加也都由于多糖的服用而减轻。同时,所有剂量的多糖能使得患结肠炎小鼠粪便短链脂肪酸下降减缓。荧光定量PCR(QPCR)结果表明,车前子多糖的摄入能减少患结肠炎小鼠结肠菌群中Bifidobacterium,Lactobacilli,Bacteroidaceae和Enterobacteriaceae量的降低。结果表明车前子多糖的摄入具有减缓和治疗结肠炎症状的作用。
     8.研究并探讨车前子多糖的提前摄入对患结肠炎小鼠症状的预防作用。雌性BALB/c小鼠经饮用水服用DSS致结肠炎,并在DSS服用前,小鼠经口灌胃车前子多糖(0.2或0.4g/kg小鼠体重)一周。研究发现车前子多糖的提前摄入能减缓DSS引起的结肠炎症状(包括体重下降,粪便便血和腹泻)。多糖的提前摄入能抑制结肠的变短,降低髓过氧化物酶酶活,增加宏观症状状态分数。同时,小鼠因患结肠炎而造成的结肠组织的组织损害,胸腺指数下降,结肠指数上升和C-反应蛋白水平上升均由于多糖的提前摄入而减缓。DSS诱导结肠炎致使的结肠组织促炎症细胞因子TNF-α,IL-1β,IL-6,IL-12水平和巨噬细胞炎症蛋白MIP-2水平的增加,以及抗炎症细胞因子IL-4的下降,也都由于多糖的提前服用而减轻。同时,多糖的提前摄入能使得患结肠炎小鼠粪便短链脂肪酸的下降减缓。QPCR结果表明,车前子多糖的提前摄入能减少患结肠炎小鼠结肠菌群中Bifidobacterium,Lactobacilli,Bacteroidaceae和Enterobacteriaceae量的降低,并能减缓Clostridium量的增加。结果表明车前子多糖的提前摄入具有潜在预防和减缓结肠炎症状的作用。
Plantago, including Plantago asiatica L. and Plantago depressa Willd., waswidely used in traditional Chinese medicine. The seeds of Plantago asiatica L. fromJi’an were subjected for study in this research. Digestion, fermentation and intestinalfunctions of polysaccharide from seeds of P. asiatica L. were investigated in vitroand in vivo. The saliva, gastric and intestinal digestion, and fermentation of thepolysaccharide from P. asiatica L. were simulated and analyzed. Effects of thepolysaccharide on intestinal function were evaluated. Effects of physical treatmentson physiological activities of the polysaccharide in simulated gastrointestinalenvironment were also studied. In addition, mice were given oral administration ofpolysaccharide from P. asiatica L. by gavage to investigate the effects of thepolysaccharide on mouse colon, nutrient metabolism and colon microbiota. Effectsof physical treatments on mouse physiological activities of the polysaccharide werealso studied. Researches were also focus on whether oral administration andpre-administration of the polysaccharide could acute or prevent development andcolon microbiota changes in mice with dextran sodium sulfate (DSS)-inducedexperimental colitis. Main conclusions are summarized as follows:
     1. The saliva, gastric and intestinal digestion of polysaccharide from P.asiatica L. seeds was investigated in vitro. It was found that salivary amylase had noeffect on the polysaccharide; however, the polysaccharide was influenced in latergastrointestinal digestion. A steady decrease in molecular weight (Mw) of thepolysaccharide from (1903.1±93.0) x103to (4.7±0.2) x103was observed asdigestion time increased. Meanwhile, the reducing ends were increased from0.157±0.009to0.622±0.026mM, indicating the decrease of Mw may due to thebreakdown of glycosidic bonds. In addition, there was no monosaccharide releasedthroughout the whole digestion period, suggesting that the gastrointestinal digestiondid not result in a production of free monosaccharide. These results may providesome information on the digestion of polysaccharide from P. asiatica L. in vitro, andmay contribute to the methods of studying the digestion of other carbohydrates.
     2. In vitro fermentation of the polysaccharide from seeds of P. asiatica L. andthe contribution of its carbohydrates to the fermentation were investigated in thisstudy. The polysaccharide was characterized by high contents of xylose, arabinoseand glucuronic acid, and it was subjected to human fecal cultures to be fermented invitro for24h. During fermentation, pH in fecal cultures decreased from6.1to5.1and the levels of total short-chain fatty acid (SCFA), acetic, propionic and n-butyricacids all significantly increased. Xylanase, arabinofuranosidase, xylosidase andglucuronidase activities were also improved. After24h incubation,47.2±1.6%oftotal carbohydrate in polysaccharide, including42.9±1.5%of arabinose,53.2±1.6%of xylose and76.4±1.2%of glucuronic acid, were consumed. In addition,relationship between carbohydrate consumption of the polysaccharide and SCFAproduction was also evaluated. It was found that the increase of acetic and n-butyricacid productions mainly resulted from the fermentation of glucuronic acid andxylose in polysaccharide, while the increase of propionic acid production wasprimarily due to the fermentation of arabinose and xylose. These results showed thatthe polysaccharide was physiologically active for human large bowel, and itscarbohydrate composition determined its SCFA production.
     3. Effects of polysaccharide from the seeds of P. asiatica L. on intestinalfunction were investigated in vitro. Results showed that the polysaccharide hadnotable influence on slowing down glucose diffusion and inhibiting α-amylaseactivity. These might help prolong blood glucose response and hence control thepostprandial glucose concentration. The polysaccharide could also decreasepancreatic lipase and protease activities, which may help lower the levels of serumlipids and modify protein digestibility. In addition, the polysaccharide was able tobind bile acids and may reduce cholesterol level. These results suggested that thepolysaccharide may have potential benefits for human intestinal function and mightbe used as a potential ingredient in functional food applications.
     4. Mice were given30days oral administration of polysaccharide from P.asiatica L. at the dose of0.4g/kg body weight by gavage to investigate the effects ofthe polysaccharide on mouse colon. Results showed that the concentrations of totalSCFA, acetic, propionic, and n-butyric acids in mouse colonic content of polysaccharide treated group were all significantly higher than that of control group(water)(p <0.05). In addition, moisture of mouse colonic content of polysaccharidetreated group was also notably higher than that of the control group (p <0.05)indicating the intake of polysaccharide from P. asiatica L. resulted in a strongerwater-holding capacity for colonic content throughout the experimental period.Furthermore, a decreased pH (from7.5±0.1to7.2±0.1) was observed in mousecolon of the polysaccharide treated group compared with the control group (pH from7.5±0.1to7.5±0.1). These results suggested that the intake of the polysaccharidefrom P. asiatica L. might be beneficial for the colon health.
     5. Polysaccharide from the seeds of P. asiatica L. was given via oraladministration to mice (0.4g/kg body weight,30days) to observe its effects onmouse nutrient metabolism and colon microbiota. It was found the polysaccharideintake could lower the apparent absorption of lipid. Total triglyceride, cholesterol,and atherogenic index in blood serum with total lipid and cholesterol levels in liverof polysaccharide group mice were all significantly lower than those of the controlgroup (p <0.05). Furthermore, the effect of the polysaccharide intake on mousecolon bacterial communities was investigated. Mice from the polysaccharide groupshowed a higher colon bacterial diversity than the control group. Bacteroides sp.,Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probioticsBifidobacterium bifidum, Lactobacillus fermentum, and Lactobacillus reuteriin inmouse colon were all increased after polysaccharide intake. These indicated that theintake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolismand colon microbiota.
     6. Effects of microwave irradiation on microbial SCFA production and theactivities of extracellular enzymes during in vitro fermentation of the polysaccharidefrom P. asiatica L. were investigated. It was found that the apparent viscosity,average molecular weight, and particle size of the polysaccharide decreased aftermicrowave irradiation. Reducing sugar amount increased with molecular weightdecrease, suggesting the degradation may derive from glycosidic bond rupture. Thepolysaccharide surface topography was changed from large flake like structure tosmaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, SCFA productions of thepolysaccharide during in vitro fermentation significantly increased after microwaveirradiation. Activities of microbial extracellular enzymes xylanase,arabinofuranosidase, xylosidase, and glucuronidase in fermentation culturessupplemented with microwave irradiation treated polysaccharide were also generallyhigher than those of untreated polysaccharide. In addition, physiological propertiesof homogenized and non-homogenized polysaccharide from the seeds of P. asiaticaL., such as the SCFA production were compared. High pressure homogenizationdecreased particle size of the polysaccharide, and changed the surface topographyfrom large flake-like structure to smaller porous chips. FT-IR showed that highpressure homogenization did not alter the primary structure of the polysaccharide.However, the production of total SCFA, propionic acid and n-butyric acid in cecaand colons of mice significantly increased after dieting supplementation withhomogenized polysaccharide. These results showed that microwave irradiation andhigh pressure homogenization treatment could be promising approaches for theproduction of value-added polysaccharides in the food industry.
     7. Colonic inflammation was induced in female BALB/c mice by feedingdextran sulfate sodium DSS in drinking water. Along with or after DSSadministration, mice were given polysaccharide (0.2or0.4g/kg body weight) bygavage daily. Polysaccharide administration attenuated development of symptoms(body weight loss, fecal occult blood and diarrhea) associated with colitis.Polysaccharide also blocked colon shortening, increased superoxide dismutase butsuppressed myeloperoxidase and endothelial nitric oxide synthase activities, andimproved macroscopic scores. Histological damage of colon, decrease of thymusorgan index, and increase of C-reactive protein level in mice were reduced bypolysaccharide. Increase of colonic tissue levels of TNF-α, IL-1β, IL-6, macrophageinflammatory protein2and leukotriene B4resulting from colitis were significantlydecreased after polysaccharide administration. Colitis induced decrease of fecalshort-chain fatty acid concentration was also attenuated by polysaccharide.Quantitative PCR (QPCR) results showed that polysaccharide administration couldreduce the decrease of Bifidobacterium, Lactobacilli, Bacteroidaceae and Enterobacteriaceae population sizes in colon of mice with colitis. The putativeclinical utility of the polysaccharide suggests its potential application in colitisattenuation.
     8. It was investigated whether pre-administration of polysaccharide from P.asiatica L. could prevent development and colon microbiota changes in mice withexperimental colitis. Colitis was induced in female BALB/c mice by feeding DSS indrinking water.7days before DSS administration, mice were given polysaccharidepre-administration (0.2or0.4g/kg body weight) daily. Polysaccharidepre-administration prevented colitis-induced body weight loss, fecal occult blood anddiarrhea. Polysaccharide blocked colon shortening, suppressed myeloperoxidase, andimproved macroscopic scores. Colon histological damage, decrease in thymus organindex, increase in colon organ index and serum CRP level due to colitis were allreduced by polysaccharide. The increase of colon tissue levels of pro-inflammatorycytokines TNF-α, IL-1β, IL-6, and IL-12, and macrophage inflammatory proteinMIP-2resulting from colitis were all significantly decreased, while level ofanti-inflammatory cytokine IL-4was increased. Furthermore, colitis-induced decreaseof fecal SCFA concentration was attenuated by polysaccharide. QPCR results showedpolysaccharide pre-administration could reduce the decrease of Bifidobacterium,Lactobacilli, Bacteroidaceae and Enterobacteriaceae population sizes and theincrease of Clostridium population size in colon of mice with colitis. The putativeclinical utility of the polysaccharide suggests its potential application in colitisprevention.
引文
[1] Lowe J B, Marth J D. A genetic approach to mammalian glycan function[J]. Annual Reviewof Biochemistry,2003,72(1):643~691.
    [2] Kayama H., Takeda K. Polysaccharide A of Bacteroides fragilis: Actions on Dendritic Cellsand T Cells[J]. Molecular Cell,2014,54(2):206~207.
    [3] Mao Y K, Kasper, D L, Wang B X, et al. Bacteroides fragilis polysaccharide A isnecessary and sufficient for acute activation of intestinal sensory neurons[J]. NatureCommunications,2014,4:1465.
    [4] Lin J, Chang Y J, Yang W B, et al. The multifaceted effects of polysaccharides isolated fromDendrobium huoshanense on immune functions with the induction of interleukin-1receptorantagonist (IL-1ra) in monocytes[J]. Plos One,2014. DOI:10.1371/journal.pone.0094040.
    [5] Li J S, Tang Y T, Meng X H, et al. The proliferative effects of alfalfa polysaccharides on themouse immune cells[J]. Life Science Journal.2013,10(2):868~873.
    [6] Xu Z T, Chen X P, Zhong Z F, et al. Ganoderma lucidum polysaccharides:immunomodulation and potential anti-tumor activities[J]. The American Journal of Chinesemedicine,2011,39(01):15~27.
    [7] Wu G J, Tian Y G, Xie M Y, et al. Effect of Semen plantaginis polysaccharides ondefecating function in constipated mice[J]. Food Science,2007,10:514~516.
    [8] Rakoff-Nahoum1S, Coyne1M J, Comstock L E. An ecological network of polysaccharideutilization among human intestinal symbionts[J]. Current Biology,2014,24(1):40~49.
    [9] Tseng Y H, Yang J H, Mau J L. Antioxidant properties of polysaccharides from Ganodermatsugae[J]. Food Chemistry,2008,107(2):732~738.
    [10] Ananthi S, Raghavendran H R B, Sunil A G, et al. In vitro antioxidant and in vivoanti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine BrownAlga)[J]. Food and Chemical Toxicology,2010,48(1):187~192.
    [11] Jiang H Y, Zheng G L. Studies of tea polysaccharides on lowering blood sugar of mice[J].Food Science,2004,6:042.
    [12] Castro I A, Tirapegui J, Benedicto M L. Effects of diet supplementation with three solublepolysaccharides on serum lipid levels of hypercholesterolemic rats[J]. Food Chemistry,2003,80(3):323~330.
    [13] Sonnenburg E D, Zheng H J, Joglekar P, et al. Specificity of polysaccharide use in intestinalbacteroides species determines diet-induced microbiota alterations[J]. Cell,2010,141(7):1241~1252.
    [14] Englyst H N, Cummings J H. Digestion of the polysaccharides of some cereal foods in thehuman small intestine[J]. The American Journal of Clinical Nutrition,1985,42(5):778~787.
    [15] Blanquet S, Zeijdner E, Beyssac E, et al. A dynamic artificial gastrointestinal system forstudying the behavior of orally administered drug dosage forms under various physiologicalconditions[J]. Pharmaceutical Research,2004,21(4):585~591.
    [16] Tedeschi C, Véronique Clement, Martine Rouvet, et al. Dissolution tests as a tool forpredicting bioaccessibility of nutrients during digestion[J]. Food Hydrocolloids,2009,23(4):1228~1235.
    [17] Gervais R, Gagnon F, Kheadr E E, et al. Bioaccessibility of fatty acids from conjugatedlinoleic acid-enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinalmodel[J]. International Dairy Journal,2009,19(10):574~581.
    [18] Minekus M, Marteau P, Havenaar R. Multicompartmental dynamic computer-controlledmodel simulating the stomach and small intestine[J]. Alternatives to Laboratory Animals:ATLA,1995,238~249.
    [19] Huang Y L, Chu H F, Dai F J, et al. Intestinal health benefits of the water-solublecarbohydrate concentrate of wild grape (Vitis thunbergii) in hamsters[J]. Journal ofAgricultural and Food Chemistry,2012,60(19):4854~4858.
    [20] Story J A, Kritchevsky D. Comparison of the binding of various bile acids and bile salts invitro by several types of fiber[J]. The Journal of Nutrition,1976,106(9):1292~1294.
    [21] Rose D J, DeMeo M T, Keshavarzian A, et al. Influence of dietary fiber on inflammatorybowel disease and colon cancer: importance of fermentation pattern[J]. Nutrition Reviews,2007,65(2):51~62.
    [22] Gallaher C M, Munion J, Hesslink R, et al. Cholesterol reduction by glucomannan andchitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion inrats[J]. The Journal of Nutrition,2000,130(11):2753~2759.
    [23] Dall’ Agnol R, Lino von Poser G. The use of complex polysaccharides in the managementof metabolic diseases: the case of Solanum lycocarpum fruits[J]. Journal ofEthnopharmacology,2000,71(1):337~341.
    [24] Villaume C, Sanchez C, Méjean L. β-Lactoglobulin/polysaccharide interactions during invitro gastric and pancreatic hydrolysis assessed in dialysis bags of different molecularweight cut-offs[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2004,1670(2):105~112.
    [25] Huang Y L., Tsai Y H, Chow C J, Water-insoluble fiber-rich fraction from pineapple peelimproves intestinal function in hamsters: evidence from cecal and fecal indicators[J].Nutrition Research,2014,34(4):346~354.
    [26] Dhital S, Dolan G, Stokes J R. Enzymatic hydrolysis of starch in the presence of cerealsoluble fibre polysaccharides[J]. Food&Function,2014,5:579~586.
    [27]李东晓,杨薇,张磊,等.黄芪多糖影响体虚大鼠冷感受受体TRPA1及肠道激素的研究[J].中药药理与临床,2013,29(2):69~72.
    [28]万顺康,左绍远,张翠香.螺旋藻多糖对肉仔鸡生长性能,免疫功能及生化指标的影响[J].饲料研究,2013,9:70~73.
    [29] Zahran E, Risha E, AbdelHamid F, et al. Effects of dietary Astragalus polysaccharides (APS)on growth performance, immunological parameters, digestive enzymes, and intestinalmorphology of Nile tilapia (Oreochromis niloticus)[J]. Fish&Shellfish Immunology,2014,38(1):149~157.
    [30] Howarth N C, Saltzman E, Roberts S B. Dietary fiber and weight regulation[J]. NutritionReviews,2001,59(5):129~139.
    [31] Daou C, Zhang H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention ofDiseases[J]. Comprehensive Reviews in Food Science and Food Safety,2012,11(4):355~365.
    [32] McIntyre A, Gibson P R, Young G P. Butyrate production from dietary fibre and protectionagainst large bowel cancer in a rat model[J]. Gut,1993,34(3):386~391.
    [33] Wolever T, Short-chain fatty acids and carbohydrate metabolism[C]. in: Binder H J,Cummings J H, Soergel K H,(Eds). Short chain fatty acids. Lancaster: Kluwer Academic,1994,11~19.
    [34] Venter C S, Vorster H H, Cummings J H. Effects of dietary propionate on carbohydrate andlipid metabolism in healthy volunteers[J]. American Journal of Gastroenterology,1990,85(5):549~553.
    [35]Hague A, Singh B, Paraskeva C. Butyrate acts as a survival factor for colonic epithelial cells:further fuel for the in vivo versus in vitro debate[J]. Gastroenterology,1997,112(3):1036~1040.
    [36]张美玲.两种肠道疾病中肠道菌群结构变化的分子生态学研究[D].上海交通大学生命科学技术学院,2007.
    [37] Cummings J H. Constipation, dietary fibre and the control of large bowel function[J].Postgraduate Medical Journal,1984,60(709):811~819.
    [38] Flickinger E A, Wolf B W, Garleb K A, et al. Glucose-based oligosaccharides exhibitdifferent in vitro fermentation patterns and affect in vivo apparent nutrient digestibility andmicrobial populations in dogs[J]. The Journal of Nutrition,2000,130(5):1267~1273.
    [39] Lin B, Gong J, Wang Q, et al. In-vitro assessment of the effects of dietary fibers onmicrobial fermentation and communities from large intestinal digesta of pigs[J]. FoodHydrocolloids,2011,25(2):180~188.
    [40]周梦怡,高延东,张建法. β-葡聚糖在胃肠道方面的生理学功能[J].食品工业科技,2013,34(18):366~369.
    [41] Hughes S, Shewry P, Li l, et al. In vitro fermentation by human fecal microflora of wheatarabinoxylans[J]. Journal of Agricultural and Food chemistry,2007,55(11):4589~4595
    [42] Van Craeyveld V, Swennen K, Dornez E, et al. Structurally different wheat-derivedarabinoxylooligosaccharides have different prebiotic and fermentation properties in rats[J].The journal of Nutrition,2008,138(12):2348~2355.
    [43]王菱枝,赵骏,黄灿,等.桑叶活性多糖调整小鼠肠道菌群失调的研究[J].中外健康文摘.2013,1:43~46.
    [44]梁金花,郑科文,孙立群.探讨中药黄芪多糖对溃疡性结肠炎大鼠肠道菌群失调的调整作用[J].微量元素与健康研究,2013,2:1~3.
    [45]徐凯进,李兰娟.肠道正常菌群与肠道免疫[J].国外医学:流行病学.传染病学分册,2005,32(3):181~183.
    [46] Hooper L V, Macpherson A J. Immune adaptations that maintain homeostasis with theintestinal microbiota[J]. Nature Reviews Immunology,2010,10(3):159~169.
    [47] Maynard C L, Elson C O, Hatton R D, et al. Reciprocal interactions of the intestinalmicrobiota and immune system[J]. Nature,2012,489(7415):231~241.
    [48] Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbialflora[J]. Science,2005,308(5728):1635~1638.
    [49] Hooper L V, Littman D R, Macpherson A J. Interactions between the microbiota and theimmune system[J]. Science,2012,336(6086):1268~1273.
    [50] Asquith M, Powrie F. An innately dangerous balancing act: intestinal homeostasis,inflammation, and colitis-associated cancer[J]. The Journal of Experimental Medicine,2010,207(8):1573~1577.
    [51] B ckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor thatregulates fat storage[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2004,101(44):15718~15723.
    [52] Zhang H, DiBaise J K, Zuccolo A, et al. Human gut microbiota in obesity and after gastricby pass[J]. Proceedings of the National Academy of Sciences,2009,106(7):2365~2370.
    [53] Wen L, Ley R E, Volchkov P Y, et al. Innate immunity and intestinal microbiota in thedevelopment of Type1diabetes[J]. Nature,2008,455(7216):1109~1113.
    [54] Penders J, Stobberingh E E, van den Brandt P A, et al. The role of the intestinal microbiotain the development of atopic disorders[J]. Allergy,2007,62(11):1223~1236.
    [55] Kuss S K, Best G T, Etheredge C A, et al. Intestinal microbiota promote enteric virusreplication and systemic pathogenesis[J]. Science,2011,334(6053):249~252.
    [56] Filippo C De, Cavalieri D, Paola M D, et al. Impact of diet in shaping gut microbiotarevealed by a comparative study in children from Europe and rural Africa[J]. Proceedings ofthe National Academy of Sciences,2010,107(33):14691~14696.
    [58] Arena M P, Caggianiello G, Fiocco D, et al. Barley β-Glucans-Containing Food EnhancesProbiotic Performances of Beneficial Bacteria[J]. International Journal of MolecularSciences,2014,15(2):3025~3039.
    [59]罗兰,陈光,遇常红,等.香菇多糖对微生态失调小鼠肠道菌群及免疫功能的调节作用[J].中国微生态学杂志,2013,25(1):36~38.
    [60]吴占威,胡志和,邬雄志.豆渣膳食纤维及豆渣超微化制品对小鼠肠道菌群的影响[J].食品科学,2013,34(3):271~275.
    [61] Vardakou M, Nueno Palop C, Gasson M, et al. In vitro three-stage continuous fermentationof wheat arabinoxylan fractions and induction of hydrolase activity by the gut microflora.International Journal of Biological Macromolecules,2007,41(5):584~589.
    [62] Vardakou M, Palop C N, Christakopoulos P, et al. Evaluation of the prebiotic properties ofwheat arabinoxylan fractions and induction of hydrolase activity in gut microflora.International Journal of Food Microbiology,2008,123(1):166~170.
    [63] Belobrajdic D P, Bird A R, Conlon M A, et al. An arabinoxylan-rich fraction from wheatenhances caecal fermentation and protects colonocyte DNA against diet-induced damage inpigs. British Journal of Nutrition,2001,107:1~9.
    [64] Larsbrink J, Rogers T E, Hemsworth G R, et al. A discrete genetic locus confers xyloglucanmetabolism in select human gut Bacteroidetes[J]. Nature,2014, doi:10.1038/nature12907.
    [65] Sonnenburg J L, Xu J, Leip D D, et al. Glycan foraging in vivo by an intestine-adaptedbacterial symbiont[J]. Science,2005,307(5717):1955~1959.
    [66]刘永华,王长月,何悦,等.大蒜多糖对小鼠免疫功能的影响[J].饲料研究,2013,7:86~87.
    [67] Zha X Q, Zhao H W, Bansal V, et al. Immunoregulatory activities of Dendrobiumhuoshanense polysaccharides in mouse intestine, spleen and liver. International Journal ofBiological Macromolecules,2014,64(0):377~382.
    [68] Chen X, Chen X, Qiu S, et al. Effects of epimedium polysaccharide-propolis flavone oralliquid on mucosal immunity in chickens[J]. International Journal of BiologicalMacromolecules,2014,64(0):6~10.
    [69] Hidalgo-Cantabrana C, Nikolic M, López P, et al. Exopolysaccharide-producingBifidobacterium animalis subsp. lactis strains and their polymers elicit different responseson immune cells from blood and gut associated lymphoid tissue[J]. Anaerobe,2014,26(0):24~30.
    [70] Wang W, Lu J B, Wang C, et al. Effects of Sargassum fusiforme polysaccharides onantioxidant activities and intestinal functions in mice[J]. International Journal of BiologicalMacromolecules,2013,58(0):127~132.
    [71]张磊,吴瑕,王岚,等.玉屏风散多糖类成分对免疫功能的影响[J].中药药理与临床,2006,22(1):2~4.
    [72]左涛,李学敏,曹露,等.鱿鱼墨多糖改善小鼠肠粘膜免疫及作用机制的研究[J].中国药理学通报,2013,29(8):1168~1173.
    [73]孙舒玉.黄芪多糖对S180荷瘤小鼠肠道黏膜免疫的影响[D],北京化工大学,2013.
    [74] Hou J K, EI-Serag H, Thirumurthi S. Distribution and manifestations of inflammatorybowel disease in Asians, Hispanics, and African Americans: a systematic review[J]. TheAmerican Journal of Gastroenterology,2009,104(8):2100~2109.
    [75]王玉芳,欧阳钦,胡仁伟,等.炎症性肠病流行病学研究进展[J].胃肠病学,2013,18(1):48~51.
    [76] Goh K L, Xiao S D. Inflammatory bowel disease: a survey of the epidemiology in Asia[J].Journal of Digestive Diseases,2009,10(1):1~6.
    [77] Linskens R K, Huijsdens X W, Savelkoul P H M, et al. The bacterial flora in inflammatorybowel disease: current insights in pathogenesis and the influence of antibiotics andprobiotics[J]. Scandinavian Journal of Gastroenterology,2001,36(234):29~40.
    [78]熊德鑫.现代微生态学[M].北京:中国科学技术出版社,2000.
    [79] Dickinson R J, Varian S A, Axon A T, et al. Increased incidence of faecal coliforms with invitro adhesive and invasive properties in patients with ulcerative colitis[J]. Gut,1980,21(9):787~792.
    [80] Ohkusa T, Yoshida T, Sato N, et al. Commensal bacteria can enter colonic epithelial cellsand induce proinflammatory cytokine secretion: a possible pathogenic mechanism ofulcerative colitis[J]. Journal of Medical Microbiology,2009,58(5):535~545.
    [81]潘锋,张涛,陈建永.马齿苋多糖干预大鼠溃疡性结肠炎Caspase-3Caspase-8表达的研究[J].中华中医药学刊,2010,28(8):1639~1641.
    [82]张蓉,王志鹏,刘莉,等.唐古特大黄多糖对小鼠溃疡性结肠炎细胞因子的影响[J].中国临床药理学与治疗学,2006,11(9):995~998.
    [83] Popov S V, Markov P A, Nikitina I R, et al. Preventive effect of a pectic polysaccharide ofthe common cranberry Vaccinium oxycoccos L. on acetic acid-induced colitis in mice[J].World Journal of Gastroenterology,2006,12(41):6646-6651.
    [84]侯宽昭,吴德邻,高蕴璋,等.中国种子植物科属词典[M].北京:科学出版社,1982.
    [85]太坤.中国车前研究[M].辽宁科学技术出版社,1993.
    [86] World Health Organization. WHO monographs on selected medicinal plants [M]. Geneva:World Health Organization,1999.
    [87]中华人民共和国卫生部药典委员会.中华人民共和国药典[M].北京:化学工业出版社,2012.
    [88]郑虎占,董泽宏,佘清.中药现代研究与应用(第二卷)[M].北京:学苑出版社,1997:1006~1007.
    [89]付志红,谢明勇,聂少平,等.同品种车前子中多糖含量比较[J].中国中药杂志,2004,29(6),581~582.
    [90] Fischer M H, Yu N, Gray G R, et al. The gel-forming polysaccharide of psyllium husk(Plantago ovata Forsk)[J]. Carbohydrate Research,2004,339(11):2009~2017.
    [91]王东.车前子多糖的研究[D].辽宁中医学院,2002.
    [92] Tomoda M, Yokoi M, Kazuyo I. Plant mucilages. XXIX. Isolation and characterization of amucous polysaccharide," Plantago-mucilage A," from the seeds of Plantago major var.asiatica[J]. Chemical and Pharmaceutical Bulletin,1981,29(10):2877~2884.
    [93] Singh B. Psyllium as therapeutic and drug delivery agent [J]. International Journal ofPharmaceutics,2007,334(1-2):1~14.
    [94]付志红.车前子营养与活性成分及其保健功能研究[D].南昌大学,2005.
    [95] Tomoda M, Yokoi M, Ishikawa K. Plant mucilages. XXIX. Isolation and characterization ofa mucous polysaccharide,“Plantago-mucilage A” from the seeds of Plantsgo major var.asiatica[J]. Chemical&Pharmaceutical Bulletin,1981,29(10):2877~2884.
    [96]李明红,朴桂玉,李景道.国外对车前成分的研究现概况.延边医学院学报,1995,18(2):133~137.
    [97] Braeutigam M, Franz G. Structural features of Plantago lanceolata mucilage[J]. PlantaMedica,1985,4:293~297.
    [98]殷军艺,聂少平,付志红,等.大粒车前子多糖分离、纯化及单糖组成分析[J].食品科学,2008,29(9):529~532.
    [99] Samuelsen A B, Lund I, Djahromi J M, et al. Structural features and anti-complementaryactivity of some heteroxylan polysaccharide fractions from the seeds of Plantago majorL.[J].Carbohydrate Polymers,1999,38:133~143.
    [100] Deters A M, Schroder K R, Smiatek T, et a1. Ispaghula (Plantago ovata) seed huskpolysaccharides promote proliferation of human epithelial cells (skin keratinocytes andfibroblasts) via enhanced growth factor receptors and energy production[J]. Planta Medica,2005,71;33~39.
    [101] Samuelsen A B, Cohen E H, Paulsen B S, et a1. Structural studies of a heteroxylan fromPlantago major L. seeds by partial hydrolysis, HPAEC-PAD, methylation and GC-MS,ES-MS and ESMS-MS[J]. Carbohydrate Research,1999.315:312~318.
    [102]谢小梅,付志红,谢明勇,等.精制车前子多糖对小鼠免疫功能的影响[C],第三届全国中医药免疫学术研讨会,湖南长沙,2006.
    [103] Haque A, Richardson R K, Morris E R.. Xanthan-like ‘weak gel’ rheology fromdispersions of ispaghula seed husk[J]. Carbohydrate Polymers,1993,22:223~232.
    [104] Fisher M H, Yu N, Gray G R, et a1. The gel-forming polysaccharide of psyllium husk(Plantago ovata Forsk). Carbohydrate Research,2004,339:2009~2017.
    [105]吕绍杰.日本胶凝及增稠稳定剂市场状况[N].中国食品报.2004-02-10
    [106]方积年.天然药物-多糖的主要生物活性及分离纯化方法[J].中国天然药物,2007,5:338~347.
    [107]聂少平,谢明勇.天然产物活性多糖结构与功能研究进展[J].中国食品学报,2010,10(2):1~11.
    [108]周超.车前子多糖提取纯化及其功能性质研究[D].南昌大学,2007.
    [109] Ye C L, Hu W L, Dai D H. Extraction of polysaccharides and the antioxidant activity fromthe seeds of Plantago asiatica L.[J]. International Journal of Biological Macromolecules,2011,49(4):466~470.
    [110]林力,郑剑峰,王东,栗艳彬.车前子多糖成分的提取工艺研究[J].辽宁中医杂志,2002,(4):232~233.
    [111]付志红,谢明勇,聂少平.微波技术用于车前子多糖的提取[J].食品科学,2005,26(3):151~154.
    [112]林慧霞,聂少平,殷军艺,等.大粒车前子多糖提取工艺优化及其理化性质测定[J].食品科学,2010,31(22):226~231.
    [113] Ye C L, Jiang C J. Optimization of extraction process of crude polysaccharides fromPlantago asiatica L. by response surface methodology[J]. Carbohydrate Polymers,2011,84(1):495~502.
    [114] Samuelsen A B, Lund I, Djahromi J M, et al. Structural features and anti-complementaryactivity of some heteroxylan polysaccharide fractions from the seeds of Plantago major L[J].Carbohydrate Polymers,1999,38(2):133~143.
    [115]王东.车前子多糖的研究[D].辽宁中医学院,2002.
    [116] Van Craeyveld V, Delcour JA, Courtin CM. Extractability and chemical and enzymicdegradation of psyllium (Plantago ovata Forsk) seed husk arabinoxylans[J]. FoodChemistry,2009,112(4):812~819.
    [117] Edwards S, Chaplin MF, Blackwood AD, Dettmar PW. Primary structure of arabinoxylans ofispaghula husk and wheat bran[J]. Proceedings of the Nutrition Society,2003,62:217~222.
    [118] Tomoda M, Yokoi M, Kazuyo I. Plant mucilages. XXIX. Isolation and characterization of amucous polysaccharide,"Plantago-mucilage A," from the seeds of Plantago major var.asiatica[J]. Chemical and Pharmaceutical Bulletin,1981,29(10):2877~2884.
    [119] Guo Q, Cui SW, Wang Q, Christopher Young J. Fractionation and physicochemicalcharacterization of psyllium gum[J]. Carbohydrate Polymers,2008,73(1):35~43.
    [120] Yin J, Lin H, Li J, Wang Y, et al. Structural characterization of a highly branchedpolysaccharide from the seeds of Plantago asiatica L.[J]. Carbohydrate Polymers,2012,87(4):2416~2424.
    [121]吴光杰,田颖刚,谢明勇,等.车前子多糖对便秘模型小鼠通便作用的研究[J].食品科学,2007,28(10):514~516.
    [122] Edwards C A, Bowen J, Brydon W G, et al. The effects of ispaghula on rat caecalfermentation and stool output[J]. British Journal of Nutrition,1992,68:473~482.
    [123] Marlett J A, Kajs T M, Fischer M H. An unfermented gel component of psyllium seed huskpromotes laxation as a lubricant in humans[J]. The American Journal of Clinical Nutrition,2000,72(3):784~789.
    [124] Marlett J A, Fischer M H. A poorly fermented gel from psyllium seed husk increasesexcreta moisture and bile acid excretion in rats[J]. The Journal of Nutrition,2002,132(9):2638~2643.
    [125] Marlett J A, Fischer M H. The active fraction of psyllium seed husk[J]. Proceedings of theNutrition Society,2003,62:207~209.
    [126] Washington N, Harris M, Mussellwhite A, et al. Moderation of lactulose-induced diarrheaby psyllium: effects on motility and fermentation[J]. The American Journal of Clinicalnutrition,1998,67(2):317~321.
    [127] McRorie J W, Daggy B P, Morel J G, et al. Psyllium is superior to docusate sodium fortreatment of chronic constipation[J]. Alimentary Pharmacology and Therapeutics,1998,12(5):491~497.
    [128] Marteau P, Flourie B, Cherbut C, et al. Digestibility and bulking effect of ispaghula husksin healthy humans[J]. Gut,1994,35(12):1747~1752
    [129]张今强.车前子多糖微丸缓泻制剂的研究[D].辽宁中医学院,2005.
    [130]董而博.三种车前缓泻作用的研究[J].辽宁中医杂志,1995,22(3):138.
    [131]李玉伟,李燕俊,张宏元,等.车前子壳粉对肠蠕动抑制模型小鼠小肠推进作用的研究.[J].海峡预防医学杂志,2005(2):1~3.
    [132] Leng-Peschlow E. Plantago ovata seeds as dietary fiber supplement, physiological andmetabolic effects in rats[J]. Journal of Nutrition,1991,66(2):331~349.
    [133] Prynne C J, Southgate D A T. The effects of a supplement of dietary fiber on faecalexcretion by human subjects[J]. British Journal of Nutrition,1979,41,495~503.
    [134] TomLin J, Read N W. The relation between bacterial degradation of viscouspolysaccharides and stool output in human beings[J]. British Journal Nutrition,1988,60:467~475.
    [135] Levitt M D, Furne J, Olsson S. The relation of passage of gas and abdominal bloating tocolonic gas production[J]. Annals of Internal Medicine,1996,124:422~444.
    [136] Eastwood M A, Smith A N, Brydon W G, et al. Comparison of bran, ispaghula, andlactulose on colon function in diverticular disease[J]. Gut,1978,19,1144~1147.
    [137] Kumar A, Kumar N, Vij J C, et al. Optimum dosage of ispaghula husk in patients withirritable bowel syndrome: correlation of symptom relief with whole gut transit time andstool weight[J]. Gut,1987,28,150~155.
    [138] Ashraf W, Park F, Lof J, Quigley E M. Effects of psyllium therapy on stool characteristics,colon transit and anorectal function in chronic idiopathic constipation[J] AlimentaryPharmacology&Therapeutics.,1995,9:639~647.
    [139]谢小梅,付志红.车前子多糖对小鼠阴道菌群失调的调整作用[J].辽宁中医杂志,2006,33(2):241.
    [140] Marteau P, Flourie B, Cherbut C, et al. Digestibility and bulking effect of ispaghula husksin healthy humans[J]. Gut,1994,35(12):1747~1752
    [141] Edwards C A, Bowen J, Brydon W G, et a1. The effects of ispaghula on rat caecalfermentation and stool output[J]. The British Journal of Nutrition,1992,68(2):473~482
    [142] Marlett J A, Fischer M H. A poorly fermented gel from psyllium seed husk increasesexcreta moisture and bile acid excretion in rats[J]. The Journal of Nutrition,2002,132(9):2638~2643.
    [143] Washington N, Harris M, Mussellwhite A, et al. Moderation of lactulose-induced diarrheaby psyllium: effects on motility and fermentation[J]. The American Journal of Clinicalnutrition,1998,67(2):317~321.
    [144] McRorie J W, Daggy B P, Morel J G, et al. Psyllium is superior to docusate sodium fortreatment of chronic constipation[J]. Alimentary Pharmacology and Therapeutics,1998,12(5):491~497.
    [145] Pucciani F, Ringressi M. Obstructed defecation: the role of anorectalmanometry.Techniques in coloproctology,2012,16(1):67~72.
    [146]冯娜,刘芳,郭会彩,等.车前子多糖抗炎作用机制的实验研究[J].天津医药,2012,40(6):598~601.
    [147]栗艳彬.车前子胶调血脂及降血糖作用的实验研究[D].辽宁中医学院,2004.
    [148]张宁,王素敏,车文文等.车前子多糖抑制氧化型低密度脂蛋白诱导的血管平滑肌细胞增殖及其机制[J].细胞生物学杂志,2009,31(5):683~688.
    [149] Samuelsen A B. The traditional uses, chemical constituents and biological activities ofPlantago major L.[J]. Journal of Ethnopharmacology,2000,71(1-2):1~21.
    [150] Miyase T, Ishino M, Akahori C. Phenylethanoid glycosides from Plantagoasiatica[J].Phytochemistry,1991,30(6):2015~2018.
    [151] Yu C Y, Sun Y C, Chen G. A new phenylethanoid glucoside from Plantago depressa Willd.[J]. Natural Product Research,2013,27(7):609~612.
    [152] Ravn H, Nishibe S, Sasahara M, et al. Phenolic compounds from Plantago asiatica[J].Phytochemistry,1990,29(11):3627~3631.
    [153] Nishibe S, Sasahara M, Jiao Y, et al. Phenylethanoid glycosides from Plantago depressa[J].Phytochemistry,1993,32(4):975~977.
    [154] Nishibe S, Tamayamaa Y, Sasahara M, et al. A Phenylethanoid glycoside from Plantagoasiatica[J]. Phytochemistry,1995,38(3):741~743.
    [155] Francisco A A, Elisa V A, Julio A P, et al. Hypoglycemic effect of Plantago major seeds inhealthy and alloxan-diabetic mice[J]. Proceedings of the Western Pharmacology Society,2006,49:51~54.
    [156] Kim B H, Park K S, Chang I M. Elucidation of anti-inflammatory potencies of Eucommiaulmoides bark and Plantago asiatica seeds[J]. Journal of Medicinal Food,2009,12(4):764~769.
    [157] Doan D D, Nguyen N H, Doan H K, et al. Studies on the individual and combined diureticeffects of four Vietnamese traditional herbal remedies (Zea mays, Imperata cylindrica,Plantago major and Orthosiphon stamineus)[J]. Journal of Ethnopharmacology,1992,36(3):225~231.
    [158] Sola R, Bruckert E, Valls R M, et al. Soluble fibre (Plantago ovata husk) reduces plasmalow-density lipoprotein (LDL) cholesterol, triglycerides, insulin, oxidised LDL and systolicblood pressure in hypercholesterolaemic patients: A randomised trial[J]. Atherosclerosis,2010,211(2):630~637.
    [169] Sierra M, Garcia J J, Fernandez N, et al. Therapeutic effects of psyllium in type2diabeticpatients[J]. European Journal of Clinical Nutrition,2002,56(9):830~842.
    [160] Ziai S A, Larijani B, Akhoondzadeh S, et al. Psyllium decreased serum glucose andglycosylated hemoglobin significantly in diabetic outpatients[J]. Journal ofEthnopharmacology,200,102(2):202~207.
    [161] Hannan J M A, Ali L, Khaleque J, et al. Aqueous extracts of husks of Plantago ovatareduce hyperglycaemia in type1and type2diabetes by inhibition of intestinal glucoseabsorption[J]. British Journal of Nutrition,2006,96(01):131~137.
    [162]唐永富,黄丹菲,殷军艺,等.车前子多糖对骨髓来源树突状细胞表型和吞噬功能的影响[J].食品科学,2007,28(10):517~520.
    [163]黄丹菲.植物活性多糖对小鼠树突状细胞和巨噬细胞功能的调节作用[D].南昌大学,2009.
    [164]陈一晴,聂少平,黄丹菲,等.大粒车前子多糖对RAW264.7细胞一氧化氮生成的影响[J].中国药理学通报,2009,25(8):1119~1120.
    [165]谢小梅,付志红,吴娟,等.车前多糖对小鼠免疫功能的影响[J].免疫学杂志,2009,25(3):232~233.
    [166] Rezaeipoor R, Saeidnia S, Kamalinejad M. The effect of Plantago ovata on humoralimmune responses in experimental animals[J]. Journal of Ethnopharmacology,2000,72(1-2):283~286.
    [167] Kim J H, Kang T W, Ahn Y K. The effects of plantago-mucilage A from the seedsofPlantago asiatica on the immune responses in ICR mice[J]. Archives of PharmacalResearch,1996,19(2):137~142.
    [168]袁从英,熊晨,郭会彩,等.车前子多糖抗脂质过氧化作用的研究[J].中国老年学杂志,2009,(10):1202~1203.
    [169]袁从英,张然,车文文,等.车前子多糖对大鼠肝线粒体自由基防御功能的影响[J].中国老年学杂志,2011,31(4):618~620.
    [170]张然,袁从英,冯娜,等.车前子多糖对糖尿病小鼠氧化应激的影响[J].天津医药,2011,39(3):253~255.
    [171] Thondre P, Monro J, Mishra S, et al. High molecular weight barley β-glucan decreasesparticle breakdown in chapattis (Indian flat breads) during in vitro digestion[J]. FoodResearch International,2010,43:1476~1481.
    [172] Aherne S A, Daly T, Jiwan M A, et al. Bioavailability of β-carotene isomers from raw andcooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2cell model[J]. Food Research International,2010,43:1449~1454.
    [173] Liang L, Wu X, Zhao T, et al. In vitro bioaccessibility and antioxidant activity ofanthocyanins from mulberry (Morus atropurpurea Roxb.) following simulatedgastro-intestinal digestion[J]. Food Research International,2011,46:76~82.
    [174] Oomen A G, Hack A, Minekus M, et al. Comparison of five in vitro digestion models tostudy the bioaccessibility of soil contaminants[J]. Environmental Science&Technology,2002,36:3326~3334.
    [175] Heaton K W, Marcus S, Emmett P, et al. Particle size of wheat, maize, and oat test meals:effects on plasma glucose and insulin responses and on the rate of starch digestion invitro[J]. The American Journal of Clinical Nutrition,1988,47:675~682.
    [176] Muir J, O'Dea K. Measurement of resistant starch: factors affecting the amount of starchescaping digestion in vitro[J]. The American Journal of Clinical Nutrition,1992,56:123~127.
    [177] Yin J Y, Nie S P, Zhou C, et al. Chemical characteristics and antioxidant activities ofpolysaccharide purified from the seeds of Plantago asiatica L[J]. Journal of the Science ofFood and Agriculture,2010,90:210~217.
    [178] Bj rck I, Asp N G, Birkhed D, et al Effects of processing on availability of starch fordigestion in vitro and in vivo; Extrusion cooking of wheat flours and starch[J]. Journal ofCereal Science,1984,2:91~103.
    [179] Sanz T, Handschin S, Nuessli J, et al. Effect of thickening agent and fat in custardmicrostructure upon in vitro enzymatic digestion[J]. Food Science and TechnologyInternational,2007,13:381~388.
    [180] Thorburn A W, Brand J, Truswell A. Slowly digested and absorbed carbohydrate intraditional bushfoods: a protective factor against diabetes?[J]. The American Journal ofClinical Nutrition,1987,45:98~106.
    [181] Navazesh M. Methods for collecting saliva[J]. Annals of the New York Academy ofSciences,1993,694:72~77.
    [182] Saari H, Halinen S, Ganl v K, Sorsa,T, et al. Salivary mucous glycoprotein MG1inSj gren's syndrome[J]. Clinica Chimica Acta,1997,259:83~96.
    [183] Stokes J R, Davies G A. Viscoelasticity of human whole saliva collected after acid andmechanical stimulation[J]. Biorheology,2007,44:141~160.
    [184] Van Ruth S, Roozen J. Influence of mastication and saliva on aroma release in a modelmouth system[J]. Food Chemistry,2000,71:339~345.
    [185] Asano I, Hamaguchi K, Fujii S, et al. In vitro digestibility and fermentation ofmannooligosaccharides from coffee mannan[J]. Food Science and Technology Research,2003,9:62~66.
    [186] Yoon J H, Thompson L U, Jenkins. The effect of phytic acid on in vitro rate of starchdigestibility and blood glucose response[J]. The American Journal of Clinical Nutrition,1993,38:835~842.
    [187] Minekus M, Smeets-Peeters M, Bernalier A, et al. A computer-controlled system tosimulate conditions of the large intestine with peristaltic mixing, water absorption andabsorption of fermentation products[J]. Applied Microbiology and Biotechnology,1999,53:108~114.
    [188] Salovaara S, Alminger M L, Eklund-Jonsson C, et al. Prolonged transit time through thestomach and small intestine improves iron dialyzability and uptake in vitro[J]. Journal ofAgricultural and Food Chemistry,2003,51:5131~5136.
    [189] Chen Y, Xie M Y, Nie S P, et al. Purification, composition analysis and antioxidantactivity of a polysaccharide from the fruiting bodies of Ganoderma atrum[J]. FoodChemistry,2008,107:231~241.
    [190] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical chemistry,1959,31:426~428.
    [191] Xu D J, Xia Q, Wang J J, et al. Molecular weight and monosaccharide composition ofAstragalus polysaccharides[J]. Molecules,2008,13:2408~2415.
    [192] Boettcher B, de la Lande F. Salivary and serum amylase in Australian aborigines andAustralian Whites[J]. Human Biology in Oceania,1972,1:179~186.
    [193] Kelsay J, McCague K, Holden J. Variations in flow rate, metabolites and enzyme activitiesof fasting human parotid saliva[J]. Archives of Oral Biology,1972,17:439~445.
    [194] Schneyer L H. Amylase content of separate salivary gland secretions of man[J]. Journal ofApplied Physiology,1956,9:453~455.
    [195] Ziebarth D, Spiegelhalder B, Bartsch H. N-nitrosation of medicinal drugs catalysed bybacteria from human saliva and gastro-intestinal tract, including Helicobacter pylori[J].Carcinogenesis,1997,18:383~389.
    [196] Ramasubbu N, Paloth V, Luo Y, et al. Structure of human salivary-amylase at1.6resolution: Implications for its role in the oral cavity[J]. Acta Crystallographica Section D:Biological Crystallography,1996,52:435~446.
    [197] Spector W S. Handbook of biological data.(1st ed.)[M].1956, Washington, DC: NationalAcademy of Science.
    [198] Zhang J, Kashket S. Inhibition of salivary amylase by black and green teas and their effectson the intraoral hydrolysis of starch[J]. Caries Research,1998,32:233~238.
    [199] Lebenthal E. Role of salivary amylase in gastric and intestinal digestion of starch[J].Digestive Diseases and Sciences,1987,32:1155~1157.
    [200] Schneeman B O. Gastrointestinal physiology and functions[J]. British Journal of Nutrition,2002,88: S159~S163.
    [201] Fishman M, Cooke P, Hotchkiss A, et al. Progressive dissociation of pectin[J].Carbohydrate Research,1993,248:303~316.
    [202] Rate A W, McLaren R G, Swift R S. Response of copper (II)-humic acid dissociationkinetics to factors influencing complex stability and macromolecular conformation[J].Environmental Science&Technology,1993,27:1408~1414.
    [203] Losada M, Olleros T. Towards a healthier diet for the colon: the influence offructooligosaccharides and lactobacilli on intestinal health[J]. Nutrition Research,2002,22:71~84.
    [204] Cummings J H, Macfarlane G T, Englyst H N. Prebiotic digestion and fermentation[J]. TheAmerican Journal of Clinical Nutrition,2001,73:415~420.
    [205] Li, W., Wang, Q., Cui, S., Huang, X.,&Kakuda, Y. Elimination of aggregates of(1→3)(1→4)-[beta]-D-glucan in dilute solutions for light scattering and size exclusionchromatography study[J]. Food Hydrocolloids,2006,20:361~368.
    [206] Wang Q, Huang X, Nakamura A, et al. Molecular characterisation of soybeanpolysaccharides: an approach by size exclusion chromatography, dynamic and static lightscattering methods[J]. Carbohydrate Research,2005,340:2637~2644.
    [207] Chen J, Liang R H, Liu W, et al. Degradation of high-methoxyl pectin by dynamic highpressure microfluidization and its mechanism[J]. Food Hydrocolloids,2012,28:121~129.
    [208] Harrington R, Zimm B. Degradation of polymers by controlled Hydrodynamic Shear[J].The Journal of Physical Chemistry,1965,69:161~175.
    [209] Yin J, Nie S, Fu Z, et al. Isolation and purification of polysaccharide from seeds ofPlantago asiatica L. and analysis of its monosaccharide compositions[J]. Food Science,2008,29:529~532.
    [210] Cherbut C, Salvador V, Barry J L, et al. Dietary fibre effects on intestinal transit in man:involvement of their physicochemical and fermentative properties[J]. Food Hydrocolloids,1991,5:15~22.
    [211] Damen B, Verspreet J, Pollet A, et al. Prebiotic effects and intestinal fermentation of cerealarabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structuralproperties and joint presence[J]. Molecular Nutrition&Food Research,2011,55:1862~1874.
    [212] Wong J M W, de Souza R, Kendall C W C, et al. Colonic health: fermentation and shortchain fatty acids[J]. Journal of Clinical Gastroenterology,2006,40:235~243.
    [213] Gibson G R, Probert H M, Van Loo J, et al Dietary modulation of the human colonicmicrobiota: updating the concept of prebiotics[J]. Nutrition Research Reviews,2004,17:259~275.
    [214] Stewart M L, Savarino V, Slavin J L. Assessment of dietary fiber fermentation: Effect ofLactobacillus reuteri and reproducibility of short-chain fatty acid concentrations[J].Molecular Nutrition&Food Research,2009,53: S114~S120.
    [215] Jacobs D M, Gaudier E, Van Duynhoven J, et al. Non-digestible food ingredients, colonicmicrobiota and the impact on gut health and immunity: A role for metabolomics[J]. CurrentDrug Metabolism,2009,10:41~54.
    [216] Saura-Calixto F, Pérez-Jiménez J, Touri o S, et al. Proanthocyanidin metabolitesassociated with dietary fibre from in vitro colonic fermentation and proanthocyanidinmetabolites in human plasma[J]. Molecular Nutrition&Food Research,2010,54:939~946.
    [217] Wong J M W, Jenkins D J A. Carbohydrate digestibility and metabolic effects[J]. Journalof. Nutrition,2007,137:2539S~2546S.
    [218] Masuko T, Minami A, Iwasaki N, et al. Carbohydrate analysis by a phenol-sulfuric acidmethod in microplate format[J]. Analytical Biochemistry,2005,339:69~72.
    [219] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronicacids[J]. Analytical Biochemistry,1973,54:484~489.
    [220] Bianchi F, Dall'Asta M, Del Rio D, et al. Development of a headspace solid-phasemicroextraction gas chromatography-mass spectrometric method for the determination ofshort-chain fatty acids from intestinal fermentation[J]. Food Chemistry,2010,129:200~205.
    [221] Ruiz-Perez F, Sheikh J, Davis S, et al. Use of a continuous-flow anaerobic culture tocharacterize enteric virulence gene expression[J]. Infection and Immunity,2004,72:3793~3802.
    [222] Fisher K L, Woods J P. Determination of β-glucosidase enzymatic function of theHistoplasma capsulatum H antigen using a native expression system[J]. Gene,2000,247:191~197.
    [223] Pollet A, Van Craeyveld V, Van de Wiele T, et al. In vitro fermentation of arabinoxylanoligosaccharides and low molecular mass arabinoxylans with different structural propertiesfrom wheat (Triticum aestivum L.) bran and psyllium (Plantago ovata Forsk) seed husk[J].Journal of Agricultural and Food Chemistry,2012,60:946~954.
    [224] Van Laere K M J, Hartemink R, Bosveld M. et al. Fermentation of plant cell wall derivedpolysaccharides and their corresponding oligosaccharides by intestinal bacteria[J]. Journalof Agricultural and Food Chemistry,2000,48:1644~1652.
    [225] Gulfi M, Arrigoni E, Amado R. In vitro fermentability of a pectin fraction rich in hairyregions[J]. Carbohydrate Polymers,2007,67:410~416.
    [226] Wolever T. Physiological and clinical aspects of short-chain fatty acids[M]. New York:Cambridge University Press.
    [227] Pryde S, Duncan S, Hold G, et al. The microbiology of butyrate formation in the humancolon[J]. FEMS Microbiology Letters,2002,217:133~139.
    [228] Perrin P, Pierre F, Patry Y, et al. Only fibres promoting a stable butyrate producing colonicecosystem decrease the rate of aberrant crypt foci in rats[J]. Gut,2001,48:53~61.
    [229] Rasmussen H, Dirven H, Grant D, et al. Etiology of cecal and hepatic lesions in mice afteradministration of gas-carrier contrast agents used in ultrasound imaging[J]. Toxicology andApplied Pharmacology,2003,188:176~184.
    [230] Pharmaceutiques U L. Dietary modulation of the human colonic microbiota: introducingthe concept of prebiotics[J]. Journal of Nutrition,1995,125:1401~1412.
    [231] Titgemeyer E C, Bourquin L D, Fahey G C, et al. Fermentability of various fiber sourcesby human fecal bacteria in vitro[J]. American Journal of Clinical Nutrition,1991,53:1418~1424.
    [232] Karppinen S, Liukkonen K, Aura A M, et al. In vitro fermentation of polysaccharides ofrye, wheat and oat brans and inulin by human faecal bacteria[J]. Journal of the Science ofFood and Agriculture,2000,80:1469~1476.
    [233] Olano-Martin E, Mountzouris K C, Gibson G R, et al. In vitro fermentability of dextranoligodextran and maltodextrin by human gut bacteria[J]. British Journal of Nutrition,2000,83:247~255.
    [234] Salvador V, Cherbut C, Barry J L, et al. Sugar composition of dietary fibre and short-chainfatty acid production during in vitro fermentation by human bacteria[J]. British Journal ofNutrition,1993,70:189~197.
    [235] Mortensen P B, Holtug K, Rasmussen H S. Short-chain fatty acid production frommono-and disaccharides in a fecal incubation system: implications for colonic fermentationof dietary fiber in humans[J]. Journal of Nutrition,1988:118,321~325.
    [236] McBurney M, Thompson L. Effect of human faecal inoculum on in vitro fermentationvariables[J]. British Journal of Nutrition,1987,58:233~243.
    [237] Wang B, Chemical characterization and Ameliorating effect of polysaccharide fromChinese jujube on intestine oxidative injury by ischemia and reperfusion[J]. InternationalJournal of Biological Macromolecules.2011,48:386~391.
    [238] Dall’Agnol R, Lino von Poser G. The use of complex polysaccharides in the managementof metabolic diseases: the case of Solanum lycocarpum fruits[J]. Journal ofEthnopharmacology,2000,71:337~341.
    [239] Ou S, Kwok K, Li Y, et al. In vitro study of possible role of dietary fiber in loweringpostprandial serum glucose[J]. Journal of Agricultural and Food Chemistry,2001,49(2):1026~1029.
    [240] Yokoyama W H, Hudson C A, Knuckles B E, et al. Effect of barley β-glucan in durumwheat pasta on human glycemic response[J]. Cereal Chemistry.1997,74:293~296.
    [241] Deshpande S, Sathe S, Salunkhe D, et al. Effects of dehulling on phytic acid, polyphenols,and enzyme inhibitors of dry beans (Phaseolus vulgaris L.)[J]. Journal of Food Science.1982,47:1846~1850.
    [242] Shimura S, Tsuzuki W, Kobayashi S, et al. Inhibitory effect on lipase activity of extractsfrom medicinal herbs[J]. Bioscience Biotechnology and Biochemistry,1992,56:1478~1479.
    [243] Kahlon T, Woodruff C. In vitro binding of bile acids by soy protein, pinto beans, blackbeans and wheat gluten[J]. Food Chemistry,.2002,79:425~429.
    [244] Raederstorff D G, Schlachter M F, Elste V, et al. Effect of EGCG on lipid absorption andplasma lipid levels in rats[J]. Journal of Nutritional Biochemistry.2003,14:326~332.
    [245] Searcy R L, Bergquist L M. A new color reaction for the quantitation of serumcholesterol[J]. Clinica Chimica Acta,1960,5:192~199.
    [246] Ebihara K, Masuhara R, Kiriyama S. Effect of konjac mannan, a water-soluble dietaryfiber on plasma glucose and insulin responses in young men undergone glucose tolerancetest[J]. Nutrition reports international.1981,23:577~583.
    [247] Yin J, Nie S, Li J, et al. Mechanism of interactions between calcium and viscouspolysaccharide from the seeds of Plantago asiatica L.[J]. Journal of Agricultural and FoodChemistry,2012,60:79817987.
    [248] Gourgue C M P, Champ M M J, Lozano Y. et al. Dietary fiber from mango byproducts:Characterization and hypoglycemic effects determined by in vitro methods[J]. Journal ofAgricultural and Food Chemistry.1992,40:1864~1868.
    [249] Silanikove N, Perevolotsky A, Provenza F D. Use of tannin-binding chemicals to assay fortannins and their negative postingestive effects in ruminants[J]. Animal Feed Science andTechnology,2001,91:69~81.
    [250] Annison G, Topping D L. Nutritional role of resistant starch: chemical structure vsphysiological function[J]. Annual Review of Nutrition.1994,14:297~320.
    [251] H gberg A, Lindberg J E. Influence of cereal non-starch polysaccharides on digestion siteand gut environment in growing pigs[J]. Livestock Production Science2004,87:121~130.
    [252] Mouécoucou J, Villaume C, Sanchez C, et al. Effects of gum arabic, low methoxy pectinand xylan on in vitro digestibility of peanut protein[J]. Food Research International,2004,37:777~783.
    [253] Girard M, Turgeon S L, Gauthier S F. Interbiopolymer complexing between
    [beta]-lactoglobulin and low-and high-methylated pectin measured by potentiometrictitration and ultrafiltration[J]. Food Hydrocolloids.2002,16:585~591.
    [254] Edwards C, Johnson I, Read N. Do viscous polysaccharides slow absorption by inhibitingdiffusion or convection[J]. European Journal of Clinical Nutrition.1988,42:307~312.
    [255] Han L K, Zheng Y N, Xu B J, et al. Saponins from Platycodi Radix ameliorate high fatdiet–induced obesity in mice[J]. Journal of Nutrition.2002,132:2241~2245.
    [256] Zangenberg N H, Mullertz A, Kristensen H G, et al. A dynamic in vitro lipolysis model I.Controlling the rate of lipolysis by continuous addition of calcium[J]. Journal ofPharmaceutical Sciences,2001,14:115~122.
    [257] Hu M, Li Y, Decker E A, et al. Role of calcium and calcium-binding agents on the lipasedigestibility of emulsified lipids using an in vitro digestion model[J]. Food Hydrocolloids.2010,24:719~725.
    [258] Smith J L, Roach P D, Wittenberg L N, et al. Effects of simvastatin on hepatic cholesterolmetabolism, bile lithogenicity and bile acid hydrophobicity in patients with gallstones[J].Journal of Gastroenterology and Hepatology,2000,15:871~879.
    [259] Anderson J W, Siesel A E. Hypocholesterolemic effects of oat products[M]. Plenum Press,New York,1990.
    [260] Balmer J, Zilversmi, D. Effects of dietary roughage on cholesterol absorption, cholesterolturnover and steroid excretion in the rat[J]. Journal of Nutrition,1974,104:1319~1328.
    [261] Gallaher D D, Hassel C A, Lee K J. Relationships between viscosity of hydroxypropylmethylcellulose and plasma cholesterol in hamsters[J]. Journal of Nutrition,1993,123:1732~1738.
    [262] Carr T P, Gallaher D D, Yang C H, et al. Increased intestinal contents viscosity reducescholesterol absorption efficiency in hamsters fed hydroxypropyl methylcellulose[J]. Journalof Nutrition,1996,126:1463~1469.
    [263] Story J A, Kritchevsky D. Comparison of the binding of various bile acids and bile salts invitro by several types of fiber[J]. Journal of Nutrition.1976,106:1292~1294.
    [264] Huang D F, Xie M Y, Yin J Y, et al. Immunomodulatory activity of the seeds of Plantagoasiatica L[J]. Journal of Ethnopharmacology,2009,124:493~498.
    [265] Tang Y, Huang D, Yin J, et al. Effects of Semen plantaginis polysaccharides onphenotypic and endocytosis of murine dendritic cells[J]. Food Science,2007,28:517~520.
    [266] Guidance for Industry, Bioanalytical Method Validation. US Department of Health andHuman Services, Food and Drug Administration.http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf.
    [267] Chung Y C, Hsu C K, Ko C Y, et al. Dietary intake of xylooligosaccharides improves theintestinal microbiota, fecal moisture, and pH value in the elderly[J]. Nutrition Research2007,27:756~761.
    [268] Barbour E K, Al Sharif M, Sagherian V K, et al. Screening of selected indigenous plants ofLebanon for antimicrobial activity[J]. Journal of Ethnopharmacology,2004,93:1~7.
    [269] Anderson J W, Bridges S R. Short-chain fatty acid fermentation products of plant fiberaffect glucose metabolism of isolated rat hepatocytes[J]. Experimental Biology andMedicine,1984,177:372~376.
    [270] Gamet L, Daviaud D, Denis-Pouxviel C, et al. Effects of short-chain fatty acids on growthand differentiation of the human colon-cancer cell line HT29[J]. International Journal ofCancer1992,52:286~289.
    [271] Whitehead R, Young G, Bhathal P. Effects of short chain fatty acids on a new humancolon carcinoma cell line (LIM1215)[J]. Gut1986,27:1457~1463.
    [272] Segal I, Hassan H, Walker A, et al. Fecal short chain fatty acids in South African urbanAfricans and whites[J]. Diseases of the Colon&Rectum,1995,38:732~734.
    [273] Bergman E. Energy contributions of volatile fatty acids from the gastrointestinal tract invarious species[J]. Physiological Reviews,1990,70:567~590.
    [274] Roberfroid M. Dietary fiber, inulin, and oligofructose: a review comparing theirphysiological effects[J]. Critical Reviews of Food Science and Nutrition,1993,33:103~148.
    [275] Hayakawa K, Mizutani J, Wada K, et al. Effects of soybean oligosaccharides on humanfaecal flora[J]. Microbial Ecology1990,3:293~303.
    [276] Shetty P, Kurpad A. Increasing starch intake in the human diet increases fecal bulking[J].American Journal of Clinical Nutrition,1986,43:210~212.
    [277] Mussatto S I, Mancilha I M. Non-digestible oligosaccharides: A review[J]. CarbohydratePolymers,2007,68:587~597.
    [278] Midtvedt T, Norman A. Parameters in7α-dehydroxylation of bile acids by anaerobicLactobacilli[J]. Acta Pathologica Microbiologica Scandinavica,1968,72:313~329.
    [279] Malhotra S L. Faecal urobilinogen levels and pH of stools in population groups withdifferent incidence of cancer of the colon, and their possible role in its aetiology[J]. Journalof the Royal Society of Medicine,1982,75:709~714.
    [280] Pietroiosti A, Giulan M, Vita S, et al. Fecal pH and cancer of the large bowel[J].Gastroenterology,1983,84:1273.
    [281] Campbell J M, Fahey G C, Wolf B W. Selected indigestible oligosaccharides affect largebowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats[J]. Journal ofNutrition.1997,127:130~136.
    [282] Neyrinck A M, Possemiers S, Verstraete W, et al. Dietary modulation of clostridial clusterXIVa gut bacteria (Roseburiaspp.) by chitin–glucan fiber improves host metabolicalterations induced by high-fat diet in mice[J]. Journal of Nutritional Biochemistry,2012,23:51~59.
    [283] Gropper S S, Smith J L. In Advanced nutrition and human metabolism, edition no.1,Wadsworth Publishing Company: New York,2012.
    [284] Xu X, Xu P, Ma C, et al. Gut microbiota, host health, and polysaccharides[J].Biotechnology Advances,2012,31:318~337.
    [285] Topping D L, Clifton P M. Short-chain fatty acids and human colonic function: roles ofresistant starch and nonstarch polysaccharides[J]. Physiological Reviews,2001,81:1031~1064.
    [286] Hu J L, Nie S P, Min F F, et al. Polysaccharide from seeds of Plantagoasiatica L. increasesshort-chain fatty acid production and fecal moisture along with lowering pH in mousecolon[J]. Journal of Agricultural and.Food Chemistry,.2012,60:11525~11532.
    [287] Hu J L, Nie S P, Li C, et al. In vitro effects of a novel polysaccharide from the seeds ofPlantagoasiatica L. on intestinal function[J]. International Journal of BiologicalMacromolecules,2013,54:264~269.
    [288] Takahashi T,Maeda H. Physiological effects of water-soluble soybean fiber in rats[J].Bioscience Biotechnology and Biochemistry,1999,63:1340~1345.
    [289] Folch J, Lees M,Sloane-Stanley G. A simple method for the isolation and purification oftotal lipids from animal tissues[J]. Journal of Biological Chemistry,1957,226:497~509.
    [290] Muyzer G, De Waal E C, Uitterlinden A. G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16S rRNA[J]. Applied and Environmental Microbiology,1993,59:695~700.
    [291] Gong J, Yu H, Liu T, et al. Effects of zinc bacitracin, bird age and access to range onbacterial microbiota in the ileum and caeca of broiler chickens[J]. Journal of AppliedMicrobiology,2008,104:1372~1382.
    [292] Kannel W B, Castelli W P, Gordon T. Cholesterol in the prediction of atheroscleroticdisease. New perspectives based on the Framingham study[J]. Annals of Internal Medicine,1979,90:969~975.
    [293] Nishimura N, Nishikawa H, Kiriyama S. Ileorectostomy or cecectomy but not colectomyabolishes the plasma cholesterol-lowering effect of dietary beet fiber in rats[J]. Journal ofNutrition,1993,123:1260~1269.
    [294] Duncan S, Louis P, Flint H. Cultivable bacterial diversity from the human colon. Lett[J].Journal of Applied Microbiology,2007,44:343~350.
    [295] Crittenden R, Karppinen S. In vitro fermentation of cereal dietary fibre carbohydrates byprobiotic and intestinal bacteria[J]. Journal of the Science and Food Agriculture,2002,82:781~789.
    [296] Gill S R, Pop M, DeBoy R T, et al. Metagenomic analysis of the human distal gutmicrobiome[J]. Science,2006,312:1355~1359.
    [297] Moon C D, Pacheco D M. Reclassification of Clostridium proteoclasticum asButyrivibrioproteoclasticus comb. nov., a butyrate-producing ruminal bacterium[J].International Journal of Systematic and Evolutionary Microbiology,2008,58,2041~2045.
    [298] Simons L A, Amansec S G. Effect of Lactobacillus fermentum on serum lipids in subjectswith elevated serum cholesterol[J]. Nutrition Metabolism and Cardiovascular Diseases,2006,16:531~535.
    [299] Cani P D, Amar J, Iglesias M A, et al. Metabolic endotoxemia initiates obesity and insulinresistance[J]. Diabetes,2007,56:1761~1772.
    [300] Sadzikowski M, Sperry J, Wilkins T. Cholesterol-reducing bacterium from human feces[J].Applied and Environmental Microbiology,1977,34:355~362.
    [301] Huck-Iriart C, Pizones Ruiz-Henestrosa V M, Candal R J, et al. Effect of aqueous phasecomposition on stability of sodium caseinate/sunflower oil emulsions. Food and BioprocessTechnology,2013,6:2406~2418.
    [302] Hoai N T, Sasaki A, Sasaki M, et al. Synthesis, characterization, and lectin recognition ofhyperbranched polysaccharide obtained from1,6-anhydro-D-hexofuranose.Biomacromolecules,2011,12:1891~1899.
    [303] Rasmussen M J, Rea R F, Tri J L, et al. Use of a transurethral microwavethermotherapeutic device with permanent pacemakers and implantable defibrillators. MayoClinic Proceedings,2001,76:601–603.
    [304] Kim I H, Cho H C, Bae Y C, et al. Heat and radiation effect on the degradation behaviorsof polymeric liquids. European Polymer Journal,2003,39:1431–1435.
    [305] Tao Y, Xu W. Microwave-assisted solubilization and solution properties of hyperbranchedpolysaccharide. Carbohydrate Research,2008,343,3071~3078.
    [306] Reddy T T, Tammishetti S. Free radical degradation of guar gum. Polymer Degradationand Stability,2004,86:455~459.
    [307] Guillon F, Auffret A, Robertson J, et al. Relationships between physical characteristics ofsugar-beet fibre and its fermentability by human faecal flora. Carbohydrate Polymer,1998,37:185~197.
    [308] Tiwari B K, Muthukumarappan K, O'Donnell C P, et al. Rheological properties ofsonicated guar, xanthan and pectin dispersions. International Journal of Food Properties,2010,13:223~233.
    [309] Floury J, Desrumaux A, Axelos M A V, et al. Degradation of methylcellulose duringultra-high pressure homogenisation. Food Hydrocolloids.2002,16:47~53.
    [310] Barker S, Bourne E, Stephens R, et al. Infra-red spectra of carbohydrates. Part II. Anomericconfiguration of some hexo-and pento-pyranoses. Journal of the American ChemicalSociety,1954,174:3468~3473.
    [311] Guillon F, Champ M. Structural and physical properties of dietary fibres, and consequencesof processing on human physiology. Food Research International,2000,33:233~245.
    [312] Botham R L, Ryden P, Robertson J A, et al. Structural features of polysaccharides and theirinfluence on fermentation behaviour. In Proceedings of the PRO-FIBRE Symposium,Functional properties of non digestible carbohydrates, Guillon, F., Eds., ImprimerieParentheáses: Nantes,1998, p46~49.
    [313] Glitsù L V, Gruppe H, Schols H A, et al. The degradation of rye arabinoxylans in pigs isinfluenced by their structural characteristics. In Proceedings of the PRO-FIBRE Symposium,Functional properties of non digestible carbohydrates, Guillon, F., Eds., ImprimerieParentheáses: Nantes,1998, p42~45.
    [314] Bobin-Dubigeon C, Lahaye M, Barry J L. Human colonic bacterial degradability of dietaryfibres from sea lettuce (Ulva sp.). Journal of the Science of Food and Agriculture,1997,73:149~159.
    [315] Lapasin, R.,&Pricl, S. Rheology of industrial polysaccharides: theory and applications(1st ed.) London: Blackie Academic&Professional.
    [316] Lyons, Deidra Shannon. Depolymerization of chitosan by high-pressure homogenizationand the effect on antimicrobial properties[D]. Master's Thesis. University of Tennessee.2011, http://trace.tennessee.edu/utkgradthes/1001.
    [317] Gan, C. Y.,&Latiff, A. A. Extraction of antioxidant pectic-polysaccharide frommangosteen (Garcinia mangostana) rind: Optimization using response surfacemethodology[J]. Carbohydrate Polymers,2011,83(2):600-607.
    [318] Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, M. E., Serrano, J., Go i, I.,&Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods,oils and beverages: Extraction, measurement and expression of results[J]. Food ResearchInternational,2008,41(3):274-285.
    [319] Liu, C.-M., Zhong, J.-Z., Liu, W., Tu, Z.-C., Wan, J., Cai, X.-F., et al. Relationship betweenfunctional properties and aggregation changes of whey protein induced by high pressuremicrofluidization[J]. Journal of Food Science,2011,76(4): E341-E347.
    [320] Chen, W. S., Henry, G. A., Gaud, S. M., Miller, M. S., Kaiser, J. M., Balmadeca, E. A.,Morgan, R. G., Baer, C. C., Borwankar, R. P.,&Hellgeth, L. C. Microfragmented ionicpolysaccharide/protein complex dispersions.1989, EP Patent0,340,035.
    [321] Lagoueyte, N.,&Paquin, P. Effects of microfluidization on the functional properties ofxanthan gum[J]. Food Hydrocolloids,1998,12(3):365-371.
    [322] Arjmandi, B. H., Craig, J., Nathani, S.,&Reeves, R. D. Soluble dietary fiber andcholesterol influence in vivo hepatic and intestinal cholesterol biosynthesis in rats[J]. TheJournal of Nutrition,1992,122(7):1559-1565.
    [323] Moundras, C., Behr, S. R., Demigné, C., Mazur, A.,&Rémésy, C. Fermentablepolysaccharides that enhance fecal bile acid excretion lower plasma cholesterol andapolipoprotein E-rich HDL in rats[J]. The Journal of Nutrition,1994,124(11):2179.
    [324] Gama, F., Teixeira, J.,&Mota, M. Cellulose morphology and enzymatic reactivity: amodified solute exclusion technique[J]. Biotechnology and Bioengineering,1994,43(5):381-387.
    [325] Stewart, M. L.,&Slavin, J. L. Particle size and fraction of wheat bran influenceshort-chain fatty acid production in vitro[J]. British Journal of Nutrition,2009,102(10):1404-1407.
    [326] Ebihara, K.,&Nakamoto, Y. Effect of the particle size of corn bran on the plasmacholesterol concentration, fecal output and cecal fermentation in rats[J]. Nutrition Research,2001,21(12):1509-1518.
    [327] Lampe, J. W., Slavin, J. L., Melcher, E. A.,&Potter, J. D. Effects of cereal and vegetablefiber feeding on potential risk factors for colon cancer[J]. Cancer Epidemiology Biomarkers&Prevention,1992,1(3):207-211.
    [328] Leenen C H, Dieleman L A. Inulin and oligofructose in chronic inflammatory boweldisease[J]. Journal of Nutrition,2007,137:2572S~2575S.
    [329] Loftus E V. Clinical epidemiology of inflammatory bowel disease, incidence, prevalence, andenvironmental influences[J]. Gastroenterology,2004,126:1504~1517.
    [330] Hendrickson B A, Gokhale R, Cho J H. Clinical aspects and pathophysiology ofinflammatory bowel disease[J]. Clinical Microbiology Reviews,2002,15:79~94.
    [331] Sokol H, Seksik P, Furet J P, et al. Low counts of Faecalibacterium prausnitzii in colitismicrobiota[J]. Inflammatory Bowel Diseases,2009,15:1183~1189.
    [332] Mazmanian S K, Round J L, Kasper D L. A microbial symbiosis factor prevents intestinalinflammatory disease[J].Nature.2008,453:620~625.
    [333] Frank D N. Molecular-phylogenetic characterization of microbial community imbalances inhuman inflammatory bowel diseases[J]. Proceedings of the National Academy of Sciences ofthe United States of America,2007,104:13780~13785.
    [334] Treem W R, Ahsan N, Shoup M, et al. Fecal short-chain fatty acids in children withinflammatory bowel disease[J]. Journal of Pediatric Gastroenterology and Nutrition,1994,18:159~164.
    [335] Huang T C, Tsai S S. Effect of Arctiumlappa L. in the dextran sulfate sodium colitis mousemodel[J]. World Journal of Gastroenterology,2010,16:4193~4199.
    [336] Kanauchi O, Nakamura T. Effects of germinated barley foodstuff on dextran sulfatesodium-induced colitis in rats[J]. Journal of Gastroenterology,1998,33:179~188.
    [337] Lim B O, Lee S H. Effect of dietary pectin on the production of immunoglobulins andcytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextransulfate sodium[J]. Bioscience Biotechnology and Biochemistry,2003,67:1706~1712.
    [338] Cooper H S, Murthy S, Shah R, et al.Clinicopathologic study of dextran sulfate sodiumexperimental murine colitis[J]. Laboratory Investigation,1993,69:238~249.
    [339] Loher F, Bauer C, Landauer N, et al. The interleukin-1β-converting enzyme inhibitorpralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper1T-cellactivation[J]. Journal of Pharmacology and Experimental Therapeutics,2004,308(2):583~590.
    [340] Ohtsuka Y, Sanderson I R. Dextran sulfate sodium-induced inflammation is enhanced byintestinal epithelial cell chemokine expression in mice[J]. Pediatric Research,2003,53:143~147.
    [341] Greten F R, Eckmann L, Tim F, et al. IKKa links inflammation and tumorigenesis in a mousemodel of colitis-associated cancer[J]. Cell,2004,118:285~296.
    [342] Lavi I, Levinson D, Peri I, et al. Orally administered glucans from the edible mushroomPleurotuspulmonarius reduce acute inflammation in dextran sulfate sodium-inducedexperimental colitis[J]. British Journal of Nutrition,2010,103:393~402.
    [343] Larrosa M,YanTeìz-Gascoìn M J, Selma M V, et al. Effect of a low dose of dietaryresveratrolon colon microbiota, inflammation and tissue damage in a DSS-induced colitis ratmodel[J]. Journal of Agricultural and Food Chemistry,2009,57:2211~2220.
    [344] Chung H L, Yue G G L, To K F, et al. Effect of Scutellariae Radix extract on experimentaldextran-sulfate sodium-induced colitis in rats[J]. World Journal of Gastroenterology,2007,13:5605~5611.
    [345] Cho J Y, Chi S G, Chun H S. Oral administration of docosahexaenoic acid attenuates colitisinduced by dextran sulfate sodium in mice[J]. Molecular Nutrition&Food Research,2011,55:239~246.
    [346] Zhou H L, Deng Y M, Xie Q M. The modulatory effects of the volatile oil of ginger on thecellular immune response in vitro and in vivo in mice[J]. Journal of Ethnopharmacology,2006,105:301~305.
    [347] Howarth G S, Xian C J, Read L C. Insulin-like growth factor-I partially attenuates colonicdamage in rats with experimental colitis induced by oral dextran sulphate sodium[J].Scandinavian Journal of Gastroenterology,1998,33:180~190.
    [348] Fichtlscherer S, G Rosenberger G, Walter D, et al. Elevated C-reactive protein levels andimpaired endothelial vasoreactivity in patients with coronary artery disease[J]. Circulation,2000,102:1000~1006.
    [349] Ghia J E, Blennerhassett P, Collins S M. Vagus nerve integrity and experimental colitis[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,2007,293:G560~G567.
    [350] Halliwell B. Antioxidants in human health and disease[J]. Annual Review of Nutrition,1996,16:33~50.
    [351] Korenaga D, Takesue F, Inutsuka S, et al. Impaired antioxidant defense system of colonictissue and cancer development in dextran sulfate sodium-induced colitis in mice[J]. Journal ofSurgical Research,2002,102:144~149.
    [352] Krawisz J E, Sharon P. Quantitative assay for acute intestinalinflammation based onmyeloperoxidase activity. Assessment of inflammation in rat and hamster models[J].Gastroenterology,1984,87:1344~1350.
    [353] Nusrat A, Parkos C A. Neutrophil migration across model intestinal epithelia, monolayerdisruption and subsequent events in epithelial repair[J]. Gastroenterology,1997,113:1489~1500.
    [354] Nakamura M, Saito H. Cytokine production in patients with inflammatory boweldisease[J].Gut,1992,33:933~937.
    [355] Rutgeerts P, Sandborn W J. Infliximab for induction and maintenance therapy for ulcerativecolitis[J]. New England Journal of Medicine,2005,353:2462~2476.
    [356] McAlindon M, Hawkey C, Mahida Y. Expression of interleukin1a and interleukin1aconverting enzyme by intestinal macrophages in health and inflammatory bowel disease[J].Gut.1998,42:214~219.
    [357] Hoentjen F Z X, Tannock G W. The prebiotic combination inulin and oligofructose preventscolitis in HLA-B27transgenic rats[J]. Canadian Journal of Gastroenterology,2004,18, Suppl.A, abstract4.
    [358] Kretzmann N A, Fillmann H, Mauriz J L, et al. Effects of glutamine on proinflammatory geneexpression and activation of nuclear factor kappa B and signal transducers and activators oftranscription in TNBS-induced colitis[J]. Inflammatory Bowel Diseases,2008,14:1504~1513.
    [359] Daynes R A, Jones D C. Emerging roles of PPARs in inflammation and immunity[J]. NatureReviews Immunology,2002,2:748~759.
    [360] Tu ón M J, Miguel B S, Crespo I, et al. Melatonin attenuates apoptotic liver damage infulminant hepatic failure induced by the rabbit hemorrhagic disease virus[J]. Journal of PinealResearch,2011,50:38~45.
    [361] Ohkawara T, Mitsuyama K, Takeda H, et al. Lack of macrophage migration inhibitory factorsuppresses innate immune response in murine dextran sulfate sodium-induced colitis[J].Scandinavian Journal of Gastroenterology,2008,43:1497~1504.
    [362] Sklyarov A Y, Lesyk R, Panasyuk N, et al. Comparison of dual acting drugs and conventionalNSAIDs towardsparameters of NO-synthase system and oxidative stress in mucosalmembrane of large intestine of rats with experimental ulcerative colitis[J]. Biopolymers&Cell,2011,27:147~153.
    [363] Su K C, Guth E, Guth P H. Effects of cyclooxygenase and lipoxygenase inhibition oneicosanoids and healing of acetic acid colitis in rats[J]. Digestive Diseases and Sciences,1993,38:289~294.
    [364] Joo E, Yamane S, Hamasaki A, et al. Enteral supplement enriched with glutamine, fiber, andoligosaccharide attenuates experimental colitis in mice[J]. Nutrition,2013,29,549~555.
    [365] Vicario M, Amat C, Rivero M. Dietary glutamine affects mucosal functionsin rats with mildDSS-induced colitis[J]. Journal of Nutrition,2007,137:1931~1937
    [366] Araki Y, Andoh A, Tsujikawa T, et al. Alterations in intestinal microflora, faecal bile acidsand short chain fatty acids in dextran sulphate sodium-induced experimental acute colitis inrats[J]. European Journal of Gastroenterology&Hepatology,2001,13:107~112.
    [367] Kumar N, Balamurugan R, Jayakanthan K, et al. Probiotic administration alters the gut floraand attenuates colitis in mice administered dextran sodium sulfate[J]. Journal ofGastroenterology Hepatology,2008,23:1834~1839.
    [368] Schell M A, Karmirantzou M, Snel B, et al. The genome sequence of Bifidobacteriumlongum reflects its adaptation to the human gastrointestinal tract[J]. Proceedings of theNational Academy of Sciences of the United States of America,2002,99:14422~14427.
    [369] Philippea D, Heupelb E, Blum-Sperisena S, et al. Treatment with Bifidobacteriumbifidum17partially protects mice from Th1-driven inflammation in a chemically induced model ofcolitis[J]. International Journal of Food Microbiology,2011,149:45~49.
    [370] Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy(Bifidobacteriumlongum/Synergy1) initiates resolution of inflammation in patients withactive ulcerative colitis, a randomized controlled pilot trial[J]. Gut,2005,54:242~249.
    [371] Heinemann C, van HylckamaVlieg J E T, Janssen D B, et al. Purification andcharacterization of a surface-binding protein from Lactobacillus fermentum RC-14thatinhibits adhesion of Enterococcus faecalis1131[J]. FEMS Microbiology Letters,2000,190:177~180.
    [372] Gomes A M P, Malcata F X. Bifidobacterium spp. and Lactobacillus acid ophilus, biological,biochemical, technological and therapeutical properties relevant for use as probiotics[J].Trends in Food Science&Technology,1999,10:139~157.
    [373] Stewart M L, Savarino V. Assessment of dietary fiber fermentation, Effect of Lactobacillusreuteri and reproducibility of short-chain fatty acid concentrations[J]. Molecular Nutrition&Food Research,2009,53: S114~S120.
    [374] Rochat T, Bermúdez-Humarán L, Gratadoux J, et al. Anti-inflammatory effects ofLactobacilluscaseiBL23producing or not a manganese-dependant catalase on DSS-inducedcolitis in mice[J]. Microbial Cell Factories,2009,6:22~31.
    [375] Bjursell M K, Martens E C, Gordon J I. Functional genomic and metabolic studies of theadaptations of a prominent adult human gut symbiont, Bacteroidesthetaiotaomicron, to thesuckling period[J]. Journal of Biological Chemistry,2006,281:6269~6279.
    [376] Apajalahti J H A, Kettunen H, Kettunen A, et al. Culture-independent microbial communityanalysis reveals that inulin in the diet primarily affects previously unknown bacteria in themouse cecum[J]. Applied and Environmental Microbiology,2002,68:4986~4995.
    [377] Salyers A A,Vercellotti J R, West S E H, et al. Fermentation of mucin and plantpolysaccharides by strainsof Bacteroides from the human colon[J]. Applied andEnvironmental Microbiology,1977,33:319~322.
    [378] Kanauchi O, Fukuda M, Matsumoto Y, et al. Eubacteriumlimosum ameliorates experimentalcolitis and metabolite of microbe attenuates colonic inflammatory action with increase ofmucosal integrity[J]. World Journal of Gastroenterology,2006,12:1071~1077.
    [379] Varel V H, Yen J T. Microbial perspective on fiber utilization by swine[J]. Journal of AnimalScience,1997,75:2715~2722.
    [380] Metzler-Zebeli B U, Hooda S, Pieper R, et al. Nonstarch polysaccharides modulate bacterialmicrobiota, pathways for butyrate production, and abundance of pathogenic Escherichia coliin the pig gastrointestinal tract[J]. Applied and Environmental Microbiology,2010,76:3692~3701.
    [381] Sutherland T, Biondini P E, Ward G. Selection for growth rate, feed efficiency and bodycomposition in mice[J]. Genetics,1974,78(1):525~540.
    [382] Han X, Benight N, Osuntokun B, et al. Tumour necrosis factor α blockade induces ananti-inflammatory growth hormone signalling pathway in experimental colitis[J]. Gut,2007,56(1):73~81.
    [383] Gonzalez-Rey E, Anderson P, González M A, et al. Human adult stem cells derived fromadipose tissue protect against experimental colitis and sepsis[J]. Inflammatory BowelDisease,2009,58:929~939.
    [384] O'Shea J J, Ma A, Lipsky P, et al. Cytokines and autoimmunity[J]. Nature ReviewsImmunology,2002,2(1):37~45.
    [385] Brombacher F, Kastelein R A, Alber G. Novel IL-12family members shed light on theorchestration of Th1responses[J]. Trends in Immunology,2003,24(4):207~212.
    [386] Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cellstimulatory factor (NKSF), a cytokine with multiple biologic effects on humanlymphocytes[J]. The Journal of Experimental medicine,1989,170(3):827~845.
    [387] Duchmann R, Schmitt E, Knolle P, et al. Tolerance towards resident intestinal flora in miceis abrogated in experimental colitis and restored by treatment with interleukin-10orantibodies to interleukin-12[J]. European Journal of Immunology,1996,26(4):934~938.
    [388] Rees V. Chronic experimental colitis induced by dextran sulphate sodium (DSS) ischaracterized by Th1and Th2cytokines[J]. Clinical&Experimental Immunology,1998,114(3):385~391.
    [389] Sartor R B. Cytokines in intestinal inflammation: pathophysiological and clinicalconsiderations[J]. Gastroenterology,1994,106(2):533~539.
    [390] Karttunnen R, Breese E, Walker Smith J, et al. Decreased mucosal interleukin-4(IL-4)production in gut inflammation[J]. Journal of Clinical Pathology,1994,47(11):1015~1018.
    [391] McDonald S A C, Palmen M J H J, Van Rees E P, et al. Characterization of the mucosalcell-mediated immune response in IL-2knockout mice before and after the onset ofcolitis[J]. Immunology,1997,91(1):73~80.
    [392] Osman N, Adawi D, Ahrne Siv, et al. Modulation of the effect of dextran sulfatesodium-induced acute colitis by the administration of different probiotic strains ofLactobacillus and Bifidobacterium[J]. Digestive Diseases and Sciences,2004,49(2):320~327.
    [393] Videla S, Vilaseca J, Antolín M, et al. Dietary inulin improves distal colitis induced bydextran sodium sulfate in the rat[J]. The American Journal of Gastroenterology,2001,96:1486–1493.