拟南芥K~+/H~+反向转运体AtKEA基因家族的生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Na+,K+/H+反向转运体是H+偶联的协同转运蛋白,其生物功能是跨膜转运Na+或K+,同时进行H+的反向转运。Na+,K+/H+反向转运体在维持细胞离子和pH平衡方面起着重要作用,在许多细胞生理生化过程,包括Na+和K+的转运,耐盐性,细胞周期和细胞增殖的调节,膜微囊运输和生物膜融合,以及生物发生等起着重要的调节作用。
     拟南芥AtKEA基因家族包括6个基因,它们与细菌K+/W反向转运体KefB和KefC的基因序列高度相似,表明AtKEA可能编码K+/H+反向转运体,在植物钾离子调控方面起着重要的作用。然而目前对AtKEA基因家族的离子转运特性和生物功能尚缺乏实验研究。
     我们运用生物信息学,酵母生长实验,实时定量PCR, GFP标签,GUS染色等分子生物学和细胞生物学技术对拟南芥AtKEA基因家族的离子转运特性,基因表达模式,蛋白质细胞定位以及生物学功能进行全面研究,以期阐明拟南芥AtKEA基因家族在钾吸收,逆境胁迫,pH调节以及渗透调节等方面的生物学功能,为全面揭示植物体内钾离子平衡机理,提高植物钾离子利用效率等奠定重要的理论基础。
     本研究取得以下研究成果:
     (1)生物信息学分析发现,AtKEA基因家族的6个基因形成两个亚组:AtKEAl-3和AtKEA4-6。AtKEA1和AtKEA2具有较长的N端结构域。系统发育分析发现,AtKEAs与AtNHXs和AtCHXs分布在不同的进化枝上,暗示AtKEAs的功能可能不同于AtNHXs和AtCHXs。
     (2)蛋白质结构分析发现,AtKEA1和AtKEA2均由一个N-端结构域,一个Na H交换结构域和一个C-端KTN结构域组成。在早期基因预测时,AtKEA1和AtKEA2基因只含有一个Na H交换结构域和一个C-端KTN结构域,N-端结构域没有包含在内(称为短片段AtKEA1和短片段AtKEA2基因,分别表示为AtsKEA1和AtsKEA2),并且实验也只克隆得到AtsKEA1和AtsKEA2基因。我们试图从拟南芥cDNA上直接克隆含有N-端结构域的全长AtKEA1和AtKEA2基因,但是没有获得与数据库序列一致的全长AtKEA1和AtKEA2基因。我们然后采取分段克隆的方法,在基因的中间选取一个酶切位点,将基因分成两段,分别克隆,最后将两个片段连接起来,得到全长序列基因。通过这个方法我们克隆得到与数据库序列一致的全长AtKEA1基因;但是我们仍然没有获得与数据库序列一致的全长AtKEA2基因。酵母突变体分析发现全长AtKEA1没有离子转运活性。所以本研究中,我们采用缺失N-端区域的AtsKEA1和AtsKEA2进行离子转运实验分析。
     (3)我们顺利克隆到与数据库序列一致的AtKEA3-6基因,并且用于离子转运实验分析。
     (4)采用缺失离子转运蛋白的酵母突变体分析AtKEA基因家族的离子转运特性。发现AtKEA基因家族能够抵抗高浓度K+和潮霉素的胁迫,但不能抵抗盐胁迫和Li+胁迫,表明AtKEA基因家族具有K+离子运输功能,并且参与细胞膜微囊运输。实验还发现AtKEA基因家族介导的K+转运与AtNHXs和AtCHXs所介导的K+转运可能具有不同的催化模式:AtKEAs基因在高钾,pH5.8时起作用;AtNHXs在高钾,酸性环境下起作用;AtCHXs只在低钾,碱性条件下有作用。
     (5) RT-qPC分析发现,AtKEA基因家族在拟南芥根和叶上均有表达。在低浓度K+胁迫下,AtKEA1, AtKEA3和AtKEA4的表达增强;AtKEA2和AtKEA5在山梨醇与ABA处理下表达增强。然而,AtKEA2和AtKEA5在ABA合成缺失突变体aba2-3中未表现出渗透胁迫响应,说明AtKEA2和AtKEA5对渗透胁迫的响应受ABA信号的调节。我们还发现,在SOS突变体中AtKEAs基因的表达不受影响,表明AtKEA基因的表达可能不受SOS途径的调节。
     (6)启动子-GUS分析发现,AtKEA1和AtKEA3在拟南芥叶片,花及根成熟部位均有表达,暗示AtKEA1和AtKEA3可能在拟南芥营养器官及生殖器官的生长发育过程中发挥作用。
     (7)GFP融合蛋白分析发现,AtKEA基因家族在酵母细胞中的定位具有多样性,暗示AtKEA基因家族可能具有不同的生理功能。
     (8)拟南芥原生质体瞬时基因表达和转基因植株分析发现,AtKEA3定位于高尔基体上。
     总之,我们的研究结果显示,AtKEA基因家族成员具有不同的基因表达模式和亚细胞分布;AtKEA基因在拟南芥中可能具有维持K+平衡和渗透调节的作用。
Na+,K+/H+antiporters are H+-coupled cotransporters whose biochemical activity is to transfer the Na+or K+across a membrane in exchange for protons (H+). Na+,K+/H+antiporters are critical for ion homeostasis and pH regulation in cells, and function in diverse cellular processes, including Na+and K+movement, salt tolerance, regulation of cell cycle and cell proliferation, vesicle trafficking and fusion, and biogenesis.
     In the Arabidopsis genome, the AtKEA gene family contains6members. AtKEAs are homologs of bacterial K+/H+antiporters KefB/KefC, indicating that AtKEAs may encode K+/H+antiporters in Arabidopsis, and play an important role in K+homeostasis. However, the physiological functions of the AtKEA gene family remain largely uncharacterized
     In this study, we characterized the ion transport activity, gene expression, cellular localizations and biological functions of the AtKEA gene family using a variety of methods and techniques including bioinformatics, yeast growth, RT-qPCR, GFP labeling and GUS staining. Our goal is to explore the role of the AtKEA gene family in potassium uptake, environmental stresses, cellular pH regulation and osmotic adjustment. Our study will pave the way for the understanding of the cellular mechanisms governing K+homeostasis in plants.
     The major results are listed below:
     (1) Bioinformatics analysis shows that the AtKEA family contains six genes forming two subgroups in the cladogram:AtKEAl-3and AtKEA4-6. AtKEAl and AtKEA2have a long N-terminal domain. Phylogenetic analysis finds that AtKEAs separate clearly from the clusters of AtNHXs and AtCHXs with their yeast orthologs, suggesting that AtKEAs may function distinctly from either AtNHXs or AtCHXs.
     (2) Protein organization analysis showed that AtKEA1andAtKEA2are comprised of a soluble N-terminal domain, a Na_H exchange domain and a C-terminal KTN domain. The long N-terminal domains of AtKEA1and AtKEA2were missed in early gene annotation. The cDNA sequences of the short version AtKEAl and AtKEA2, AtsKEAl and AtsKEA2, lacking the N-terminal domains but containing the Na_H exchange domains, have been cloned in yeast by Dr. John Ward lab. We attempted to clone the full-length cDNAs of AtKEAl and AtKEA2genes. Since the direct amplification from the Arabidopsis cDNA preparation was not successful, we used a two-step strategy. We separated the gene into two pieces by choosing a restriction enzyme site in the middle of the gene; the two pieces were cloned separately. We then combined them to get the full-length cDNA. For AtKEAl, an EcoRI site was chosen to separate the gene into two pieces of A1-C1870and T1871-A3582, and we successfully cloned the full-length cDNA. However, using the same strategy, we did not clone the full length AtKEA2gene. Yeast growth analysis shows that the full length AtKEAl is inactive in ion transport. Thus, the short versions AtKEA1and AtKEA2, AtsKEAl and AtsKEA2, were used in the ion transport assay in this study.
     (3) We successfully cloned the AtKEA3-6genes and used these gene sequences in ion transport assays.
     (4) The transport activity was analyzed by expressing the AtKEA genes in yeast mutants lacking multiple ion carriers. AtKEAs conferred resistance to high K+and hygromycin B but not to salt and Li+stress. These results suggest that AtKEA gene family are able to transfer K+, and play a role in vesicle trafficking. Moreover, AtKEAs, AtNHXs and AtCHXs may have different modes of action in facilitating K+homeostasis. AtKEAs function at high K+at pH5.8while AtNHXs function at high K+in acidic environments and AtCHXs at low K+under alkaline conditions.
     (5) RT-qPCR analysis showed that AtKEAs were expressed in both the shoot and root of Arabidopsis. The expression of AtKEAl, AtKEA3and AtKEA4was enhanced under low K+stress, whereas AtKEA2and AtKEA5were induced by sorbitol and ABA treatments. However, osmotic induction of AtKEA2and AtKEA5was not observed in aba2-3mutants, suggesting an ABA regulated mechanism for their osmotic response. AtKEAs' expression may not be regulated by the SOS pathway since their expression was not affected in sos mutants.
     (6) Promoter-GUS analysis showed that AtKEAl and AtKEA3were expressed in leaves, flowers and the mature area of roots in Arabidopsis, indicating that AtKEAs may function in regulating the growth and development of the vegetative and reproductive organs in Arabidopsis.
     (7) The GFP tagging analysis showed that AtKEAs were distributed diversely in yeast, suggesting that AtKEAs may have diversified roles in growth and development in plants.
     (8) The Golgi localization of AtKEA3was demonstrated by both the stably transformed seedlings and the transient expression in protoplasts.
     In summary, AtKEAs expressed and localized diversely, and may play roles in K+homeostasis and osmotic adjustment in Arabidopsis.
引文
Ache, P., Becker, D., Ivashikina, N., Dietrich, P., Roelfsema, M.R., and Hedrich, R. (2000). GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K(+)-selective, K(+)-sensing ion channel. FEBS Lett 486,93-98.
    Ali, R, Brett, C.L., Mukherjee, S., and Rao, R (2004). Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279, 4498-4506.
    Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J., and Gaber, R.F. (1992). Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89,3736-3740.
    Apse, M.P., Sottosanto, J.B., and Blumwald, E. (2003). Vacuolar cation/H+exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36,229-239.
    Apse, M.P., Aharon, GS., Snedden, W.A., and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285,1256-1258.
    Aranda-Sicilia, M.N., Cagnac, O., Chanroj, S., Sze, H., Rodriguez-Rosales, M.P., and Venema, K. (2012). Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K(+)/H(+) antiporter with a chloroplast transit peptide. Biochim Biophys Acta 1818, 2362-2371.
    Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies:a role for potassium transport proteins. J Exp Bot 57,425-436.
    Bakker, E.P., and Harold, F.M. (1980). Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force. J Biol Chem 255,433-440.
    Banuelos, M.A., Garciadeblas, B., Cubero, B., and Rodriguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130,784-795.
    Barragan, V., Leidi, E.O., Andres, Z., Rubio, L., De Luca, A., Fernandez, J.A., Cubero, B., and Pardo, J.M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24,1127-1142.
    Bassil, E., Coku, A., and Blumwald, E. (2012). Cellular ion homeostasis:emerging roles of intracellular NHX Na+/H+antiporters in plant growth and development. J Exp Bot 63, 5727-5740.
    Bassil, E., Tajima, H., Liang, Y.C., Ohto, M.A., Ushijima, K., Nakano, R., Esumi, T., Coku, A., Belmonte, M., and Blumwald, E. (2011a). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23,3482-3497.
    Bassil, E., Ohto, M.A., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., and Blumwald, E. (2011b). The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23,224-239.
    Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12, 431-434.
    Blumwald, E., Aharon, GS., and Apse, M.P. (2000). Sodium transport in plant cells. Biochim Biophys Acta 1465,140-151.
    Bowers, K., Levi, B.P., Patel, F.I., and Stevens, T.H. (2000). The sodium/proton exchanger Nhxlp is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11,4277-4294.
    Brett, C.L., Donowitz, M., and Rao, R. (2005 a). Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288, C223-239.
    Brett, C.L., Tukaye, D.N., Mukherjee, S., and Rao, R. (2005b). The yeast endosomal Na+ K+/H+ exchanger Nhxl regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16, 1396-1405.
    Britto, D.T., and Kronzucker, H.J. (2006). Futile cycling at the plasma membrane:a hallmark of low-affinity nutrient transport. Trends Plant Sci 11,529-534.
    Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science 168,521-530.
    Campanella, J.J., Bitincka, L., and Smalley, J. (2003). MatGAT:an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4,29.
    Cao, Y., Crawford, N.M., and Schroeder, J.I. (1995). Amino terminus and the first four membrane-spanning segments of the Arabidopsis K+channel KAT1 confer inward-rectification property of plant-animal chimeric channels. J Biol Chem 270,17697-17701.
    Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., and Casse, F. (2004). Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+homeostasis. Plant J 39,834-846.
    Chang, A.B., Lin, R., Keith Studley, W., Tran, C.V., and Saier, M.H., Jr. (2004). Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21, 171-181.
    Chanroj, S., Wang, G., Venema, K., Zhang, M.W., Delwiche, C.F., and Sze, H. (2012). Conserved and diversified gene families of monovalent cation/h(+) antiporters from algae to flowering plants. Front Plant Sci 3,25.
    Chanroj, S., Lu, Y., Padmanaban, S., Nanatani, K., Uozumi, N., Rao, R., and Sze, H. (2011). Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J Biol Chem 286,33931-33941.
    Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14,2723-2743.
    Choe, S. (2002). Potassium channel structures. Nat Rev Neurosci 3,115-121.
    Czempinski, K., Zimmermann, S., Ehrhardt, T., and Muller-Rober, B. (1997). New structure and function in plant K+ channels:KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J 16,2565-2575.
    daSilva, L.L., Snapp, E.L., Denecke, J., Lippincott-Schwartz, J., Hawes, C., and Brandizzi, F. (2004). Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16,1753-1771.
    Deeken, R., Sanders, C., Ache, P., and Hedrich, R. (2000). Developmental and light-dependent regulation of a phloem-localised K+channel of Arabidopsis thaliana. Plant J 23,285-290.
    Desbrosses, G., Kopka, C., Ott, T., and Udvardi, M.K. (2004). Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Mol Plant Microbe Interact 17,789-797.
    Elumalai, R.P., Nagpal, P., and Reed, J.W. (2002). A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14,119-131.
    Epstein, E., and Bloom, A.J. (2005). Mineral nutrition of plants:principles and perspectives. Sinauer Associates. Inc. Sunderland, Mass.
    Epstein, E., Rains, D.W., and Elzam, O.E. (1963). Resolution of Dual Mechanisms of Potassium Absorption by Barley Roots. Proc Natl Acad Sci U S A 49,684-692.
    Fang, Z., Mi, F., and Berkowitz, G.A. (1995). Molecular and Physiological Analysis of a Thylakoid K+Channel Protein. Plant Physiol 108,1725-1734.
    Ferguson, G.P., Nikolaev, Y., McLaggan, D., Maclean, M., and Booth, I.R. (1997). Survival during exposure to the electrophilic reagent N-ethylmaleimide in Escherichia coli:role of KefB and KefC potassium channels. J Bacteriol 179,1007-1012.
    Flis, K., Hinzpeter, A., Edelman, A., and Kurlandzka, A. (2005). The functioning of mammalian C1C-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Khalp. Biochem J 390,655-664.
    Fu, H.H., and Luan, S. (1998). AtKuP1:a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10,63-73.
    Fujisawa, M., Ito, M., and Krulwich, T.A. (2007). Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity. Proc Natl Acad Sci U S A104,13289-13294.
    Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N., and Iida, S. (2000). Colour-enhancing protein in blue petals. Nature 407,581.
    Gambale, F., and Uozumi, N. (2006). Properties of shaker-type potassium channels in higher plants. J Membr Biol 210,1-19.
    Garciadeblas, B., Benito, B., and Rodriguez-Navarro, A. (2002). Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50,623-633.
    Gassman, W., Rubio, F., and Schroeder, J.I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10,869-852.
    Gassmann, W., and Schroeder, J.I. (1994). Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+Uptake and Membrane Potential Control). Plant Physiol 105,1399-1408.
    Gaymard, F., Cerutti, M., Horeau, C., Lemaillet, G., Urbach, S., Ravallec, M., Devauchelle, G., Sentenac, H., and Thibaud, J.B. (1996). The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana. J Biol Chem 271,22863-22870.
    Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferriere, N., Thibaud, J.B., and Sentenac, H. (1998). Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94,647-655.
    Gierth, M., and Maser, P. (2007). Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581,2348-2356.
    Gong, D., Guo, Y., Schumaker, K.S., and Zhu, J.K. (2004). The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 134,919-926.
    Guo, Q., Sahoo, S.P., Wang, P.R., Milot, D.P., Ippolito, M.C., Wu, M.S., Baffic, J., Biswas, C., Hernandez, M., Lam, M.H., Sharma, N., Han, W., Kelly, L.J., MacNaul, K.L., Zhou, G., Desai, R., Heck, J.V., Doebber, T.W., Berger, J.P., Moller, D.E., Sparrow, C.P., Chao, Y.S., and Wright, S.D. (2004). A novel peroxisome proliferator-activated receptor alpha/gamma dual agonist demonstrates favorable effects on lipid homeostasis. Endocrinology 145,1640-1648.
    Hall, D., Evans, A.R., Newbury, H.J., and Pritchard, J. (2006). Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57,1201-1210.
    Haro, R., Sainz, L., Rubio, F., and Rodriguez-Navarro, A. (1999). Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31,511-520.
    Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., and Shinmyo, A. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27,129-138.
    Hoth, S., and Hedrich, R. (1999). Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. J Biol Chem 274,11599-11603.
    Jiang, X., Leidi, E.O., and Pardo, J.M. (2010). How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5,792-795.
    Kim, E.J., Kwak, J.M., Uozumi, N., and Schroeder, J.I. (1998). AtKUPl:an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10,51-62.
    Lacombe, B., Pilot, G., Gaymard, F., Sentenac, H., and Thibaud, J.B. (2000a). pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Lett 466,351-354.
    Lacombe, B., Pilot, G., Michard, E., Gaymard, F., Sentenac, H., and Thibaud, J.B. (2000b). A shaker-like K(+) channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12,837-851.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., Mc William, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.
    Lawrence, S.P., Bright, N.A., Luzio, J.P., and Bowers, K. (2010). The sodium/proton exchanger NHE8 regulates late endosomal morphology and function. Mol Biol Cell 21,3540-3551.
    Lebaudy, A., Very, A.A., and Sentenac, H. (2007). K+ channel activity in plants:genes, regulations and functions. FEBS Lett 581,2357-2366.
    Leidi, E.O., Barragan, V., Rubio, L., El-Hamdaoui, A., Ruiz, M.T., Cubero, B., Fernandez, J.A., Bressan, R.A., Hasegawa, P.M., Quintero, F.J., and Pardo, J.M. (2010). The AtNHXl exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61,495-506.
    Leigh, R., and Wyn Jones, R. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist 97, 1-13.
    Lu, Y., Chanroj, S., Zulkifli, L., Johnson, M.A., Uozumi, N., Cheung, A., and Sze, H. (2011). Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23,81-93.
    Maathuis, F.J. (2009). Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12,250-258.
    Maathuis, F.J., and Sanders, D. (1996). Mechanisms of potassium absorption by higher plant roots. Physiologia Plantarum 96,158-168.
    Maathuis, F.J., Filatov, V., Herzyk, P., Krijger, G.C, Axelsen, K.B., Chen, S., Green, B.J., Li, Y., Madagan, K.L., Sanchez-Fernandez, R., Forde, B.G, Palmgren, M.G, Rea, P.A., Williams, L.E., Sanders, D., and Amtmann, A. (2003). Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35,675-692.
    Maresova, L., and Sychrova, H. (2006). Arabidopsis thaliana CHX17 gene complements the khal deletion phenotypes in Saccharomyces cerevisiae. Yeast 23,1167-1171.
    Maser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J., Sanders, D., Harper, J.F., Tchieu, J., Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A., and Guerinot, M.L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126, 1646-1667.
    Miller, S., Douglas, R.M., Carter, P., and Booth, I.R. (1997). Mutations in the glutathione-gated KefC K+efflux system of Escherichia coli that cause constitutive activation. J Biol Chem 272,24942-24947.
    Miller, S., Ness, L.S., Wood, C.M., Fox, B.C., and Booth, I.R. (2000). Identification of an ancillary protein, YabF, required for activity of the KefC glutathione-gated potassium efflux system in Escherichia coli. J Bacteriol 182,6536-6540.
    Mitsui, K., Koshimura, Y., Yoshikawa, Y., Matsushita, M., and Kanazawa, H. (2011). The endosomal Na(+)/H(+) exchanger contributes to multivesicular body formation by regulating the recruitment of ESCRT-0 Vps27p to the endosomal membrane. J Biol Chem 286,37625-37638.
    Mouline, K., Very, A.A., Gaymard, F., Boucherez, J., Pilot, G., Devic, M., Bouchez, D., Thibaud, J.B., and Sentenac, H. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis. Genes Dev 16, 339-350.
    Nieves-Cordones, M., Martinez-Cordero, M.A., Martinez, V., and Rubio, F. (2007). An NH4+ -sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Science 172,273-280.
    Padmanaban, S., Chanroj, S., Kwak, J.M., Li, X., Ward, J.M., and Sze, H. (2007). Participation of endomembrane cation/H+exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol 144,82-93.
    Pandey, GK., Cheong, Y.H., Kim, B.G., Grant, J.J., Li, L., and Luan, S. (2007). CIPK9:a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res 17,411-421.
    Pardo, J.M., Cubero, B., Leidi, E.O., and Quintero, F.J. (2006). Alkali cation exchangers:roles in cellular homeostasis and stress tolerance. J Exp Bot 57,1181-1199.
    Parsons, H.T., Christiansen, K., Knierim, B., Carroll, A., Ito, J., Batth, T.S., Smith-Moritz, A.M., Morrison, S., Mclnerney, P., Hadi, M.Z., Auer, M., Mukhopadhyay, A., Petzold, C.J., Scheller, H.V., Loque, D., and Heazlewood, J.L. (2012). Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol 159,12-26.
    Pilot, G, Lacombe, B., Gaymard, F., Cherel, I., Boucherez, J., Thibaud, J.B., and Sentenac, H. (2001). Guard cell inward K+ channel activity in arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276,3215-3221.
    Qiu, Q.S. (2012). Plant and yeast NHX antiporters:roles in membrane trafficking. J Integr Plant Biol 54,66-72.
    Qiu, Q.S., and Fratti, R.A. (2010). The Na+/H+ exchanger Nhxlp regulates the initiation of Saccharomyces cerevisiae vacuole fusion. J Cell Sci 123,3266-3275.
    Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., and Zhu, J.K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99,8436-8441.
    Qiu, Q.S., Barkla, B.J., Vera-Estrella, R., Zhu, J.K., and Schumaker, K.S. (2003). Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol 132,1041-1052.
    Qiu, Q.S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., and Zhu, J.K. (2004). Regulation of vacuolar Na+/H exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279,207-215.
    Quintero, F.J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D.J., Zhu, J.K., and Pardo, J.M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 108,2611-2616.
    Rigas, S., Debrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K.A., Grabov, A., Dolan, L., and Hatzopoulos, P. (2001). TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13,139-151.
    Robinson, S.P. (1985). Osmotic adjustment by intact isolated chloroplasts in response to osmotic stress and its effect on photosynthesis and chloroplast volume. Plant Physiol 79, 996-1002.
    Rodriguez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochim Biophys Acta 1469,1-30.
    Rodriguez-Navarro, A., Blatt, M.R., and Slayman, C.L. (1986). A potassium-proton symport in Neurospora crassa. J Gen Physiol 87,649-674.
    Rodriguez-Rosales, M.P., Jiang, X., Galvez, F.J., Aranda, M.N., Cubero, B., and Venema, K. (2008). Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179,366-377.
    Rodriguez-Rosales, M.P., Galvez, F.J., Huertas, R., Aranda, M.N., Baghour, M., Cagnac, O., and Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signal Behav 4, 265-276.
    Roosild, T.P., Miller, S., Booth, I.R., and Choe, S. (2002). A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 109,781-791.
    Roosild, T.P., Castronovo, S., Miller, S., Li, C., Rasmussen, T., Bartlett, W., Gunasekera, B., Choe, S., and Booth, I.R. (2009). KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation. Structure 17,893-903.
    Roosild, T.P., Castronovo, S., Healy, J., Miller, S., Pliotas, C., Rasmussen, T., Bartlett, W., Conway, S.J., and Booth, I.R. (2010). Mechanism of ligand-gated potassium efflux in bacterial pathogens. Proc Natl Acad Sci U S A107,19784-19789.
    Rubio, F., Gassmann, W., and Schroeder, J.I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270, 1660-1663.
    Rubio, F., Santa-Maria, G.E., and Rodriguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum 109,34-43.
    Santa-Maria, G.E., Rubio, F., Dubcovsky, J., and Rodriguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9,2281-2289.
    Schachtman, D.P., and Schroeder, J.I. (1994). Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370,655-658.
    Schleyer, M., and Bakker, E.P. (1993). Nucleotide sequence and 3'-end deletion studies indicate that the K(+)-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J Bacteriol 175, 6925-6931.
    Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W.B., Flugge, U.I., and Kunze, R. (2003). ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131,16-26.
    Senn, M.E., Rubio, F., Banuelos, M.A., and Rodriguez-Navarro, A. (2001). Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276,44563-44569.
    Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.M., Gaymard, F., and Grignon, C. (1992). Cloning and expression in yeast of a plant potassium ion transport system. Science 256,663-665.
    Shi, H., Ishitani, M., Kim, C., and Zhu, J.K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter. Proc Natl Acad Sci U S A 97, 6896-6901.
    Shi, H., Lee, B.H., Wu, S.J., and Zhu, J.K. (2003). Overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21, 81-85.
    Song, C.P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D.W., Jagendorf, A., and Zhu, J.K. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci U S A101,10211-10216.
    Szczerba, M.W., Britto, D.T., and Kronzucker, H.J. (2009). K+transport in plants:physiology and molecular biology. J Plant Physiol 166,447-466.
    Sze, H., Padmanaban, S., Cellier, F., Honys, D., Cheng, N.H., Bock, K.W., Conejero, G., Li, X., Twell, D., Ward, J.M., and Hirschi, K.D. (2004). Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+homeostasis in pollen development. Plant Physiol 136,2532-2547.
    Talke, I.N., Blaudez, D., Maathuis, F.J., and Sanders, D. (2003). CNGCs:prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8,286-293.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28,2731-2739.
    Venema, K., Quintero, F.J., Pardo, J.M., and Donaire, J.P. (2002). The arabidopsis Na+/H+ exchanger AtNHXl catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277,2413-2418.
    Very, A.A., and Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54,575-603.
    Very, A.A., Gaymard, F., Bosseux, C., Sentenac, H., and Thibaud, J.B. (1995). Expression of a cloned plant K+ channel in Xenopus oocytes:analysis of macroscopic currents. Plant J 7, 321-332.
    Walker, D.J., Leigh, R.A., and Miller, A.J. (1996). Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci U S A 93,10510-10514.
    Wang, T.B., Gassmann, W., Rubio, F., Schroeder, J.I., and Glass, A.D. (1998). Rapid Up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol 118,651-659.
    Wang, X., Berkowitz, G.A., and Peters, J.S. (1993). K+ -conducting ion channel of the chloroplast inner envelope:functional reconstitution into liposomes. Proc Natl Acad Sci U S A 90,4981-4985.
    Wang, Y.H., Garvin, D.F., and Kochian, L.V. (2002). Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130, 1361-1370.
    Yamaguchi, T., Aharon, G.S., Sottosanto, J.B., and Blumwald, E. (2005). Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci U S A 102,16107-16112.
    Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30,529-539.
    Yoshida, K., Kawachi, M., Mori, M., Maeshima, M., Kondo, M., Nishimura, M., and Kondo, T. (2005). The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol 46,407-415.
    Zhang, H.X., and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19,765-768.
    Zhao, J., Cheng, N.H., Motes, C.M., Blancaflor, E.B., Moore, M., Gonzales, N., Padmanaban, S., Sze, H., Ward, J.M., and Hirschi, K.D. (2008). AtCHX13 is a plasma membrane K+ transporter. Plant Physiol 148,796-807.
    Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4, 401-406.
    Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-273.
    Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q-, and van Wijk, K.J. (2008). Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3, e1994.