低热值燃气预混火焰燃烧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于天然气应用的广泛性及其储量有限,生物质低热值燃气的应用日益受到关注。但低位热值的大幅降低和组分的多变性,导致生物质低热值燃气在天然气使用场合的应用受到阻碍和质疑。基于此背景本文利用热通量燃烧器,测量了低热值燃气在常温常压状态下的层流燃烧速度,同时还通过本生燃烧器和同心锥形燃烧器,产生喷射火焰和喷嘴火焰,利用激光手段研究几种典型生物质低热值燃气的火焰稳定性和火焰结构。与此同时使用大涡方法数值计算软件模拟部分实验火焰的火焰结构与流场情况。本研究旨在逐步建立完整的生物质低热值燃气燃烧机理和火焰特性的基础数据库,为将来低热值燃气的广泛运用奠定基础。
     研究结果显示使用GRI 3.0模拟生物质-甲烷燃气所得结果与实验数据以及文献中的数据吻合。对GG-S和GG-V燃气当量比低于1的情况,实验数据与GRI 2.11模拟结果吻合,但是GRI 3.0所得结果比实验结果略低;当量比大于1的情况,两种机理所得模拟结果均低于实验结果。GG-S和GG-V燃气的实验数据比文献中数据略高。由于低热值燃气中有氢气和一氧化碳的存在,故层流火焰燃烧速度的最大值出现在燃气较富集的区域。GRI机理可较好的预测GG-S和GG-V层流火焰燃烧速度出现最大值的区域,但不能准确预测LCV1和LCV2层流火焰燃烧速度出现最大值的区域。
     对于低热值燃气的火焰稳定性和火焰结构,研究证明喷嘴火焰比喷射火焰更具稳定性。对于喷射火焰,低位热值相同的稀释甲烷气体和LCV1比较,LCV1具有更高的临界起升和吹熄速度,这是因为LCV1中含有氢气。对于喷嘴火焰,火焰稳定性对燃料组分不敏感,这是因为喷嘴火焰与喷射火焰的稳定机理不同。从PLIF图像中可看到不同燃料的喷嘴火焰基本稳定在相同的位置。大涡模拟结果显示,火焰稳定在空气卷吸的回流区,这与锥形喷嘴的角度有关而与燃料组分、燃气出口雷诺数无关。
     对于生物质-甲烷燃气的火焰稳定性及局部熄灭,研究证明喷射火焰的火焰稳定性与燃气预混程度与出口雷诺数有关。一般情况下,预混火焰空气预混量的降低会增强火焰的稳定性。OH自由基分布说明,即使是远离吹熄临界线的火焰,仍然存在火焰空穴现象。逐渐增加空气量,火焰空穴会促使火焰的整体熄灭。局部火焰熄灭现象通常发生在局部流体速度高,与火焰发生碰撞的区域。
Biomass derived gases from gasification, pyrolysis, and landfills are renewable and CO_2 neutral fuels that have great potential to be usable in internal combustion engines, gas turbines, and industrial furnaces. It is important to know well about the base characteristics of the gases with low calorific value. Laminar burning velocities of five biomass derived gases have been measured at atmospheric pressure over a range of equivalence ratios, using the heat flux burner. Experimental studies about the stabilization of partially premixed turbulent flames with different biomass derived gases are carried out in a conical burner. Flame stabilization behavior with and without the cone is investigated and significantly different stabilization characteristics are observed in flames. Planar laser induced fluorescence imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are conducted to gain further understanding of the flame/flow interaction in the cone.
     For measurements of laminar burning velocity, the results of the bio-methane flame are generally in good agreement with data in the literature and the prediction using GRI-Mech 3.0. The measured laminar burning velocity of the industrial gasification gas is generally higher than the predictions from GRI-Mech 3.0 mechanism but agree rather well with the predictions from GRI-Mech 2.11 for lean and moderate rich mixtures. For rich mixtures, the GRI mechanisms underpredict the laminar burning velocities. For the model gasification gas, the measured laminar burning velocity is higher than the data reported in the literature. The peak burning velocities of the gasification gases/air and the co-firing gases/air mixtures are in richer mixtures than the biomethane/air mixtures due to the presence of hydrogen and CO in the gasification gases. The GRI mechanisms could well predict the rich shift for the pure gasification gases but failed for the cofiring gases mixtures. The laminar burning velocities for the bio-methane at elevated initial temperatures are measured and compared with the literature data.
     For flame stabilization and flame structure measurement, the data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities.
     The stabilization characteristics and local extinction structures of partially premixed bio-methane/air flames are studied using simultaneous OH-PLIF/PIV techniques. The stability regime of flames is determined for different degree of partial premixing and Reynolds numbers. It is found that in general partially premixed flames are more stable when the level of partial premixing of air to the fuel stream decreases. For the studied burner configuration at high Reynolds numbers there is an optimal partial premixing level of air to the fuel stream at which the flame is most stable. OH-PLIF images revealed that for the stable flames not very close to the blowout regime, significant local extinction holes appear already. By increasing premixing air to fuel stream successively, local extinction holes develop leading to eventual flame blowout. Local flame extinction is found to frequently attain to locations where locally high velocity flows impinging to the flame. The local flame extinction poses a future challenge for model simulations and the present flames provide a possible test case for such study.
引文
[1]周校平,张晓楠,燃烧理论基础,上海:上海交通大学出版社,2001
    [2] Kuo K. K., Principles of combustion, 2nd ed., New Jersey, John Wiley & Sons, Inc., Hoboken, 2005
    [3] Jones W. P., Launder B. E., The prediction of laminarisation with a two-equation model for turbulence, International Journal of Heat and Mass Transfer, 1972, 15: 301-314
    [4] Launder B. E., Priddin C.H., Sharma B. I., The calculation of turbulence boundary layers on spinning and curved surfaces, Transactions of the ASME, Journal of Fluids Engineering, 1977, 99: 231-238
    [5] Jones W. P., Whitelaw J. H., Calculation methods for reacting turbulent flows:A review, Combustion and Flame, 1982, 48: 1-26
    [6] Wilcox D. C., Turbulence modeling for CFD, DCW-Industries, La Canada, 1993
    [7] Cebeci T., Smith A. M. O., Analysis of turbulent boundary layers, Applied Mathematics and Mechanics, 1974, 15
    [8] Baldwin B. S., Lomax H., Thin layer approximation and algebraic model for separated turbulent flows, AIAA Journal, 1978, 257:1-8
    [9] Speziale C. G., Abid R.,Anderson E. C., A critical evaluation of two-equation models for near wall turbulence, AIAA Journal, 1990
    [10] Saffman P. G., A model for inhomogeneous flow, Pro. Roy. Soc. London, 1970, 317:417-433
    [11] Launder B. E., Spalding D. B., The numerical computation of turbulent flow, Computer Methods in Applied Mechanics and Engineering, 1974, 3:269-289
    [12] Launder B. E., Reece G. J., Rodi W., Process in the development of a Reynolds-stress turbulence closure, The Journal of Fluid Mechanics, 1975, 68:537-566
    [13] Sharifand M. A. R., Wong Y. K. E., Evaluation of the performance of three turbulence closure models in the prediction of confined turbulent flows, Computers and Fluids, 1995, 24:81-100
    [14] Poinsot T. J., Veynante D., Candel S., Quenching processes and premixed turbulent combustion diagrams, Journal of fluid mechanics, 1991, 228:561-606
    [15] Wenzel H., Direct numerical simulation of entire flamefront homogenous turbulence field, Ph.D thesis, Rheinisch-Westfahlishe Technische Hochschule, Aachen, Germany, 2000
    [16] Nilsson D., Automatic analysis and reduction of reaction mechanism for complex fuel combustion, Ph.D thesis, Lund Institute of Technology, Lund,Sweden, 2001
    [17] Markstein G. H., Nonsteady flame propagation, Pergram Press, 1964
    [18] Peters N., A spectral closure for premixed turbulent combustion in the flamelet regime, Journal of Fluid Mechanics, 1992, 242:611-629
    [19] Spalding D. B., Development of the eddy-breakup model of the turbulent combustion, Proceedings of the Combustion Institute, 1976, 16:1657-1663
    [20] Mahnussen B. F., Hjertager B. H., On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Prodeedings of the Combustion Institute, 1976, 16:719-729
    [21] Andersson L., Afterburner flow simulation with complex combustion kinetics, Master thesis, Chalmers University of Technology, 2000
    [22] Bray K. N., Calculation of chemical reaction rates in turbulent combustion, Modeling of Combustion and Turbulence, number 1992-03 in lecture notes, von Karman institute for fluid dynamics, 1992
    [23] Zimont V., Polifke W., Bettelini M., Weisenstein W., An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure, Journal of Engineering for Gas Turbines and Power, 1998, 120:526-532
    [24] Pope S. B., Pdf methods for turbulent reactive flow, Progress in Energy and Combustion Science, 1985, 11:119-192
    [25] Bilger R. W., Conditional moment closure for turbulent reacting flow, Physics of Fluids, 1993, 5:436-444
    [26] Peters N., Turbulent combustion, University of Cambridge, UK, 2000
    [27]姚强,李水清,王宇泽,燃烧学导论:概念与应用,北京:清华大学出版社,2009.206-208
    [28] Law C.K., A compilation of experimental data on laminar burning velocities
    [29] Van Maaren A. and de Gory, L.P.H., Stretch and the adiabatic burning velocity of methane-air and propane-air flames, Combustion Science and Technology , 1994, 102(1-6): 309-314
    [30] Hermanns R.T.E., Laminar burning velocities of methane-hydrogen-air mixtures, Ph.D thesis, Eindhoven University of Technology, Eindhoven, Netherlands, 2007
    [31] Kuo K. K., Principles of combustion, 2nd ed., New Jersey, John Wiley & Sons, Inc., Hoboken, 2005
    [32] Tahtouh, T., F. Halter, and C. Mounaim-Rousselle, Measurement of laminar burning speeds and Markstein lengths using a novel methodology, Combustion and Flame, 2009, 156(9): 1735-1743
    [33] Monteiro, E., M. Bellenoue, J. Sotton, et al., Laminar burning velocities and Markstein numbers of syngas-air mixtures, Fuel, In Press, Corrected Proof
    [34] Tahtouh, T., F. Halter, E. Samson, et al., Effects of hydrogen addition andnitrogen dilution on the laminar flame characteristics of premixed methane-air flames, International Journal of Hydrogen Energy, 2009, 34(19): 8329-8338
    [35] Serrano, C., J. J. Hernandez, C. Mandilas, et al., Laminar burning behaviour of biomass gasification-derived producer gas, International Journal of Hydrogen Energy, 2008, 33(2): 851-862
    [36] Bradley, D., M. Lawes, K. Liu, et al., Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa, Combustion and Flame, 2007, 149(1-2): 162-172
    [37] Tang, C., Z. Huang, C. Jin, et al., Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flames, International Journal of Hydrogen Energy, 2008, 33(18): 4906-4914
    [38] Miao, H., M. Ji, Q. Jiao, et al., Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures, International Journal of Hydrogen Energy, 2009, 34(7): 3145-3155
    [39] Miao, H., Q. Jiao, Z. Huang, et al., Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas, International Journal of Hydrogen Energy, 2009, 34(1): 507-518
    [40] Zhang, X., Z. Huang, Z. Zhang, et al., Measurements of laminar burning velocities and flame stability analysis for dissociated methanol-air-diluent mixtures at elevated temperatures and pressures, International Journal of Hydrogen Energy, 2009, 34(11): 4862-4875
    [41] Hu, E., Z. Huang, J. He, et al., Measurements of laminar burning velocities and onset of cellular instabilities of methane-hydrogen-air flames at elevated pressures and temperatures, International Journal of Hydrogen Energy, 2009, 34(13): 5574-5584
    [42] Hu, E., Z. Huang, J. He, et al., Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames, International Journal of Hydrogen Energy, 2009, 34(11): 4876-4888
    [43] Powling J., A new burner method for the determination of low burning velocities and limits of inflammability, Fuel 1949, 28(2):25-28
    [44] Botha J.P. and Spalding D.B., The laminar flame speeds of propane/air mixtures with heat extraction from the flame, Proc. R. Soc. Lon. ser-A 1954 , 255(1160): 71-95
    [45] de Goey, L.P.H., van Maaren A. and Quax R.m., Stabilization of adiabatic premixed laminar flames on a flat flame burner, Combustion Science and Technology , 1993, 92: 201-207
    [46] Konnov, A. A., The effect of temperature on the adiabatic laminar burning velocities of CH4-air and H2-air flames, Fuel, In Press, Corrected Proof
    [47] Ratna Kishore, V., R. Muchahary, A. Ray, et al., Adiabatic burning velocity ofH2-O2 mixtures diluted with CO2/N2/Ar, International Journal of Hydrogen Energy, 2009, 34(19): 8378-8388
    [48] Konnov, A. A., R. Riemeijer, and L. P. H. de Goey, Adiabatic laminar burning velocities of CH4 + H2 + Air flames at low pressures, Fuel, In Press, Corrected Proof
    [49] Coppens, F. H. V., J. De Ruyck, and A. A. Konnov, Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane + air flames, Experimental Thermal and Fluid Science, 2007, 31(5): 437-444
    [50] Hermanns, R. T. E., A. A. Konnov, R. J. M. Bastiaans, et al., Effects of temperature and composition on the laminar burning velocity of CH4 + H2 +O2 +N2 flames, Fuel, 89(1): 114-121
    [51] Ratna Kishore, V., N. Duhan, M. R. Ravi, et al., Measurement of adiabatic burning velocity in natural gas-like mixtures, Experimental Thermal and Fluid Science, 2008, 33(1): 10-16
    [52] Coppens, F. H. V., J. De Ruyck, and A. A. Konnov, The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2, Combustion and Flame, 2007, 149(4): 409-417
    [53] Konnov, A. A., I. V. Dyakov, and J. De Ruyck, The effects of composition on the burning velocity and NO formation in premixed flames of C2H4 +O2 + N2, Experimental Thermal and Fluid Science, 2008, 32(7): 1412-1420
    [54] Bosschaart, K. J., L. P. H. de Goey, and J. M. B. C. f. F. M. in collaboration with, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combustion and Flame, 2004, 136(3): 261-269
    [55] Lyons, K. M., Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments, Progress in Energy and Combustion Science, 2007, 33(2): 211-231
    [56] Pitts, W. M., Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames, Symposium (International) on Combustion, 1989, 22(1): 809-816
    [57] Buckmaster, J., Edge-flames, Progress in Energy and Combustion Science, 2002, 28(5): 435-475
    [58] Coats, C. M., Coherent structures in combustion, Progress in Energy and Combustion Science, 1996, 22(5): 427-509
    [59] Broadwell, J. E., W. J. A. Dahm, and M. G. Mungal, Blowout of turbulent diffusion flames, Symposium (International) on Combustion, 1985, 20(1): 303-310
    [60] Mizobuchi, Y., S. Tachibana, J. Shinio, et al., A numerical analysis of the structure of a turbulent hydrogen jet lifted flame, Proceedings of the Combustion Institute, 2002, 29(2): 2009-2015
    [61] Mizobuchi, Y., J. Shinjo, S. Ogawa, et al., A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame, Proceedings of the Combustion Institute, 2005, 30(1): 611-619
    [62] Phillips, H., Flame in a buoyant methane layer, Symposium (International) on Combustion, 1965, 10(1): 1277-1283
    [63] Kioni, P. N., B. Rogg, K. N. C. Bray, et al., Flame spread in laminar mixing layers: The triple flame, Combustion and Flame, 1993, 95(3): 276, IN1, 277-290
    [64] Kioni, P. N., K. N. C. Bray, D. A. Greenhalgh, et al., Experimental and numerical studies of a triple flame, Combustion and Flame, 1999, 116(1-2): 192-206
    [65] Dold, J. W., Flame propagation in a nonuniform mixture: Analysis of a slowly varying Triple Flame, Combustion and Flame, 1989, 76(1): 71-88
    [66] Plessing, T., P. Terhoeven, N. Peters, et al., An experimental and numerical study of a laminar triple flame, Combustion and Flame, 1998, 115(3): 335-353
    [67] Wichman, I. S., On diffusion flame attachment near cold surfaces, Combustion and Flame, 1999, 117(1-2): 384-393
    [68] Wichman, I. S., Z. Pavlova, B. Ramadan, et al., Heat flux from a diffusion flame leading edge to an adjacent surface, Combustion and Flame, 1999, 118(4): 651-668
    [69] Cha, M. S. and S. H. Chung, Characteristics of lifted flames in nonpremixed turbulent confined jets, Symposium (International) on Combustion, 1996, 26(1): 121-128
    [70] Chung, S. H. and B. J. Lee, On the characteristics of laminar lifted flames in a nonpremixed jet, Combustion and Flame, 1991, 86(1-2): 62-72
    [71] Chung, S. H., Stabilization, propagation and instability of tribrachial triple flames, Proceedings of the Combustion Institute, 2007, 31(1): 877-892
    [72] Kim, N. I., J. I. Seo, K. C. Oh, et al., Lift-off characteristics of triple flame with concentration gradient, Proceedings of the Combustion Institute, 2005, 30(1): 367-374
    [73] Ko, Y. S. and S. H. Chung, Propagation of unsteady tribrachial flames in laminar non-premixed jets, Combustion and Flame, 1999, 118(1-2): 151-163
    [74] Lee, B. J., J. S. Kim, and S. H. Chung, Effect of dilution on the liftoff of non-premixed jet flames, Symposium (International) on Combustion, 1994, 25(1): 1175-1181.
    [75] Lee, B. J. and S. H. Chung, Stabilization of lifted tribrachial flames in a laminar nonpremixed jet, Combustion and Flame, 1997, 109(1-2): 163-172
    [76] Azzoni, R., S. Ratti, S. K. Aggarwal, et al., The structure of triple flames stabilized on a slot burner, Combustion and Flame, 1999, 119(1-2): 23-40
    [77] Gollahalli, S. R., Savas, R. F. Huang, et al., Structure of attached and lifted gas jet flames in hysteresis region, Symposium (International) on Combustion, 1988,
    21(1): 1463-1471
    [78] Scholefield, D. A. and J. E. Garside, The structure and stability of diffusion flames, Symposium on Combustion and Flame, and Explosion Phenomena, 1949, 3(1): 102-110
    [79] Law C.K., Combustion physics, Combridge, Combridge University Press, 2005
    [80] Chen, R.-H., A. Kothawala, M. Chaos, et al., Schmidt number effects on laminar jet diffusion flame liftoff, Combustion and Flame, 2005, 141(4): 469-472
    [81] Chen, Y.-C. and R. W. Bilger, Stabilization mechanisms of lifted laminar flames in axisymmetric jet flows, Combustion and Flame, 2000, 122(4): 377-399
    [82] Ghosal, S. and L. Vervisch, Stability diagram for lift-off and blowout of a round jet laminar diffusion flame, Combustion and Flame, 2001, 124(4): 646-655
    [83] Boulanger, J., L. Vervisch, J. Reveillon, et al., Effects of heat release in laminar diffusion flames lifted on round jets, Combustion and Flame, 2003, 134(4): 355-368
    [84] Wichman I.S., Lakkaraju N., Ramadan B., The structure of quenched triple flames near cold walls in convective flows, Combustion Science and Technology, 1997, 127: 141-165
    [85] Qin X., Choi C.W., Mukhopadhyay A., Puri I.K., Aggarwal S.K. and Katta V.R., Triple flame propagation and stabilization in a laminar axisymmetric jet, Combust theory model, 2004, 8: 293-314
    [86] Lock, A. J., A. M. Briones, X. Qin, et al., Liftoff characteristics of partially premixed flames under normal and microgravity conditions, Combustion and Flame, 2005, 143(3): 159-173
    [87] Lockett, R. D., B. Boulanger, S. C. Harding, et al., The structure and stability of the laminar counter-flow partially premixed methane/air triple flame, Combustion and Flame, 1999, 119(1-2): 109-120
    [88] Vanquickenborne, L. and A. van Tiggelen, The stabilization mechanism of lifted diffusion flames, Combustion and Flame, 1966, 10(1): 59-69
    [89] Wohl, K., N. M. Kapp, and C. Gazley, The stability of open flames, Symposium on Combustion and Flame, and Explosion Phenomena, 1949, 3(1): 3-21
    [90] Eickhoff, H., B. Lenze, and W. Leuckel, Experimental investigation on the stabilization mechanism of jet diffusion flames, Symposium (International) on Combustion, 1985, 20(1): 311-318
    [91] Peters N., Williams F.A., Liftoff characteristics of turbulent jet diffusion flames, AIAA Journal, 1983, 21:423-429
    [92] Kalghatgi G.T., Lift-off heights and visible lengths of vertical turbulent jet diffusion in still air, Combustion Science and Technology, 1984, 41:17-29
    [93] Miake-Lye, R. C. and J. A. Hammer, Lifted turbulent jet flames: A stability criterion based on the jet large-scale structure, Symposium (International) on Combustion, 1989, 22(1): 817-824
    [94] Buckmaster, J. and R. Weber, Edge-flame-holding, Symposium (International) on Combustion, 1996, 26(1): 1143-1149
    [95] Favier, V. and L. Vervisch, Investigating the effects of edge flames in liftoff in non-premixed turbulent combustion, Symposium (International) on Combustion, 1998, 27(1): 1239-1245
    [96] Lyons, K. M., K. A. Watson, C. D. Carter, et al., On flame holes and local extinction in lifted-jet diffusion flames, Combustion and Flame, 2005, 142(3): 308-313
    [97] Eickhoff, H., Comment on "Liftoff of turbulent jet flames--assessment of edge flame and other concepts using cinema-PIV," by A. Upatnieks, J.F. Driscoll, C.C. Rasmussen, and S.L. Ceccio, Combustion and Flame, 2005, 142(3): 324-325
    [98] Schefer, R. W., M. Namazian, and J. Kelly, Structural characteristics of lifted turbulent-jet flames, Symposium (International) on Combustion, 1989, 22(1): 833-842
    [99] Schefer, R. W., M. Namazian, and J. Kelly, CH, OH and CH4 concentration measurements in a lifted turbulent-jet flame, Symposium (International) on Combustion, 1991, 23(1): 669-676
    [100] Schefer, R. W., M. Namazian, E. E. J. Filtopoulos, et al., Temporal evolution of turbulence/chemistry interactions in lifted, turbulent-jet flames, Symposium (International) on Combustion, 1994, 25(1): 1223-1231
    [101] Schefer, R. W., M. Namazian, and J. Kelly, Stabilization of lifted turbulent-jet flames, Combustion and Flame, 1994, 99(1): 75-78, IN9-IN10, 79-86
    [102] Upatnieks, A., J. F. Driscoll, C. C. Rasmussen, et al., Liftoff of turbulent jet flames--assessment of edge flame and other concepts using cinema-PIV, Combustion and Flame, 2004, 138(3): 259-272
    [103] Schefer R.W., Three-dimensional structure of lifted, turbulent-jet flames, Combustion Science and Technology, 1997, 125:371-394
    [104] Schefer R.W., flame sheet imaging using CH chemiluminescence, Combustion Science and Technology, 1997, 126:255-720
    [105] Demare D., Baillot F., The role of secondary instabilities in the stabilization of a nonpremixed lifted jet flame, Phys Fluids 2001, 13: 2662-2670
    [106] Chen T.H., Goss L.P., Statistical OH-zone structures of turbulent jet flames from liftoff to near-blowout, Combustion Science and Technology, 1991, 79:311-324
    [107] Muniz, L. and M. G. Mungal, Instantaneous flame-stabilization velocities in lifted-jet diffusion flames, Combustion and Flame, 1997, 111(1-2): 16-30
    [108] Muller, C. M., H. Breitbach, and N. Peters, Partially premixed turbulent flame propagation in jet flames, Symposium (International) on Combustion, 1994, 25(1): 1099-1106
    [109] Watson, K. A., K. M. Lyons, J. M. Donbar, et al., Observations on the leading edge in lifted flame stabilization, Combustion and Flame, 1999, 119(1-2):199-202
    [110] Watson, K. A., K. M. Lyons, J. M. Donbar, et al., Scalar and velocity field measurements in a lifted CH4-air diffusion flame, Combustion and Flame, 1999, 117(1-2): 257-271
    [111] Watson, K. A., K. M. Lyons, J. M. Donbar, et al., Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame, Combustion and Flame, 2000, 123(1-2): 252-265
    [112] Hasselbrink Jr, E. F. and M. G. Mungal, Characteristics of the velocity field near the instantaneous base of lifted non-premixed turbulent jet flames, Symposium (International) on Combustion, 1998, 27(1): 867-873
    [113] Watson, K. A., K. M. Lyons, C. D. Carter, et al., Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames, Proceedings of the Combustion Institute, 2002, 29(2): 1905-1912
    [114] Schefer, R. W. and P. J. Goix, Mechanism of flame stabilization in turbulent, lifted-jet flames, Combustion and Flame, 1998, 112(4): 559-574
    [115] Veynante D., Vervisch L., Poinsot T. and Linan A. and Ruetsch G.R., Triple flame structure and dffusion flame stabilization, Proceedings of the Summer Program. Center for Turbulence Research, NASA Ames/Stanford University; 1994, 55-65
    [116] Domingo, P. and L. Vervisch, Triple flames and partially premixed combustion in autoignition of non-premixed turbulent mixtures, Symposium (International) on Combustion, 1996, 26(1): 233-240
    [117] Kelman J.B., Eltobaji A.J. and Masri A.S., Laser imaging in the stabilization region of turbulent lifted flames, Combustion Science and Technology, 1998, 135:117-134
    [118] Tacke, M. M., D. Geyer, E. P. Hassel, et al., A detailed investigation of the stabilization point of lifted turbulent diffusion flames, Symposium (International) on Combustion, 1998, 27(1): 1157-1165
    [119] Watson K.A., Lyons K.M., Donbar J.M. and Carter C.D., On scalar dissipation and partially premixed flame propagation, Combustion Science and Technology, 2003, 175(4):649-664
    [120] Sreenivasan K.R., On local isotropy of passive scalars in turbulent shear flows, Proc Roy Soc London Ser A, 1991, 434:165-182
    [121] Starner, S. H., R. W. Bilger, J. H. Frank, et al., Mixture fraction imaging in a lifted methane jet flame, Combustion and Flame, 1996, 107(3): 307-313
    [122] Everest, D. A., D. A. Feikema, and J. F. Driscoll, Images of the strained flammable layer used to study the liftoff of turbulent jet flames, Symposium (International) on Combustion, 1996, 26(1): 129-136
    [123] Law, C. K., Dynamics of stretched flames, Symposium (International) onCombustion, 1989, 22(1): 1381-1402
    [124] Feikema D., Everst D.A. and Driscoll J.F., Images of the dissipation layers to quantify mixing within a turbulent jet, AIAA J, 1996, 34:2531-2538
    [125] Noda S., Mori H., ongo Y. and Nishioka M., Nonpremixed flamelet statistics at flame base of lifted turbulent jet nonpremixed flames, JSME Int J, 2005, 46:75-82
    [126] Cessou, A., C. Maurey, and D. Stepowski, Parametric and statistical investigation of the behavior of a lifted flame over a turbulent free-jet structure, Combustion and Flame, 2004, 137(4): 458-477
    [127] Han, D. and M. G. Mungal, Observations on the transition from flame liftoff to flame blowout, Proceedings of the Combustion Institute, 2000, 28(1): 537-543
    [128] Kang T.Y., Kyritsis D.C., Methane flame propagation in compositionally stratified gases, Combustion Science and Technology, 2005, 177:2191-2210
    [129] Montgomery, C. J., C. R. Kaplan, and E. S. Oran, The effect of coflow velocity on a lifted methane-air jet diffusion flame, Symposium (International) on Combustion, 1998, 27(1): 1175-1182
    [130] Takahashi, F. and W. J. Schmoll, Lifting criteria of jet diffusion flames, Symposium (International) on Combustion, 1991, 23(1): 677-683
    [131] Takahashi, F., W. John Schmoll, and V. R. Katta, Attachment mechanisms of diffusion flames, Symposium (International) on Combustion, 1998, 27(1): 675-684
    [132] Takahashi, F., W. J. Schmoll, D. D. Trump, et al., Vortex-flame interactions and extinction in turbulent jet diffusion flames, Symposium (International) on Combustion, 1996, 26(1): 145-152
    [133] Chao, Y.-C., Y.-L. Chang, C.-Y. Wu, et al., An experimental investigation of the blowout process of a jet flame, Proceedings of the Combustion Institute, 2000, 28(1): 335-342
    [134] Chao Y.C., Wu C.Y., Yuan T.and Tseng C.S., Stabilization process of a lifted flame turned by acoustic excitation, Combustion Science and Technology, 2002, 174:87-110
    [135] Chao Y.C., Wu C.Y., Lee K.Y., Li K.Y., Li Y.H. and Chen R.H., Effects of dilution on blowout limits of turbulent jet flames, Combustion Science and Technology, 2004, 176:1735-1753
    [136] Dahm, W. J. A. and R. W. Dibble, Coflowing turbulent jet diffusion flame blowout, Symposium (International) on Combustion, 1989, 22(1): 801-808.
    [137] Brown C.D., Watson K.A., Lyons K.M., Studies on lifted jet flames in coflow: the stabilization mechanism in the near-and far-fields, Flow Turbul Combust, 1999, 62:249-273
    [138] Upatnieks, A., J. F. Driscoll, and S. L. Ceccio, Cinema particle imaging velocimetry time history of the propagation velocity of the base of a liftedturbulent jet flame, Proceedings of the Combustion Institute, 2002, 29(2): 1897-1903
    [139] Maurey, C., A. Cessou, B. Lecordier, et al., Statistical flow dynamic properties conditioned on the oscillating stabilization location of turbulent lifted flame, Proceedings of the Combustion Institute, 2000, 28(1): 545-551
    [140] Mansour, M. S., The flow field structure at the base of lifted turbulent partially premixed jet flames, Experimental Thermal and Fluid Science, 2004, 28(7): 771-779
    [141] Mansour, M. S., Stability characteristics of lifted turbulent partially premixed jet flames, Combustion and Flame, 2003, 133(3): 263-274
    [142] Joedicke, A., N. Peters, and M. Mansour, The stabilization mechanism and structure of turbulent hydrocarbon lifted flames, Proceedings of the Combustion Institute, 2005, 30(1): 901-909
    [143] Hammer J.A. and Roshko A., Temporal behavior of lifted turbulent jet flames, Combustion Science and Technology, 2000, 155:75-103
    [144] Nogenmyr K.J., Kiefer J., Li Z.S., Bai X.S., Alden M., Numerical computations and optical diagnostics of unsteady partially premixed methane/air flames, Combustion and Flame, vol.157, pp.915-924, 2010.
    [145] Kiefer, J., Z. S. Li, J. Zetterberg, et al., Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging, Combustion and Flame, 2008, 154(4): 802-818
    [146] Roditcheva, O. V. and X. S. Bai, Pressure effect on soot formation in turbulent diffusion flames, Chemosphere, 2001, 42(5-7): 811-821
    [147] Li, Z. S., J. Kiefer, J. Zetterberg, et al., Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames, Proceedings of the Combustion Institute, 2007, 31(1): 727-735
    [148] Li, B., E. Baudoin, R. Yu, et al., Experimental and numerical study of a conical turbulent partially premixed flame, Proceedings of the Combustion Institute, 2009, 32(2): 1811-1818
    [149] Wang, P. and X. S. Bai, Large eddy simulation of turbulent premixed flames using level-set G-equation, Proceedings of the Combustion Institute, 2005, 30(1): 583-591
    [150] Nogenmyr, K. J., C. Fureby, X. S. Bai, et al., Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame, Combustion and Flame, 2009, 156(1): 25-36
    [151] Klason, T. and X. S. Bai, Computational study of the combustion process and NO formation in a small-scale wood pellet furnace, Fuel, 86(10-11): 1465-1474
    [152] Klason, T., X. S. Bai, M. Bahador, et al., Investigation of radiative heat transfer in fixed bed biomass furnaces, Fuel, 2008, 87(10-11): 2141-2153
    [153] Nogenmyr, K. J., C. Fureby, X. S. Bai, et al., "Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame" [Combust. Flame Vol. 155, Issue 3], Combustion and Flame, 2008, 155(3): 357-357
    [154] Seshadri, K. and X. S. Bai, Rate-ratio asymptotic analysis of the structure and extinction of partially premixed flames, Proceedings of the Combustion Institute, 2007, 31(1): 1181-1188
    [155] Nilsson, P. and X. S. Bai, Level-set flamelet library approach for premixed turbulent combustion, Experimental Thermal and Fluid Science, 2000, 21(1-3): 87-98
    [156] Seshadri, K., X. S. Bai, and H. Pitsch, Asymptotic structure of rich methane-air flames, Combustion and Flame, 2001, 127(4): 2265-2277
    [157] Bai, X. S., M. Balthasar, F. Mauss, et al., Detailed soot modeling in turbulent jet diffusion flames, Symposium (International) on Combustion, 1998, 27(1): 1623-1630
    [158] Nilsson, P. and X. S. Bai, Effects of flame stretch and wrinkling on co formation in turbulent premixed combustion, Proceedings of the Combustion Institute, 2002, 29(2): 1873-1879
    [159] Bai, X. S., L. Fuchs, and F. Mauss, Laminar flamelet structure at low and vanishing scalar dissipation rate, Combustion and Flame, 2000, 120(3): 285-300
    [160] Patankar, S. V. and C. Prakash, An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted-plate passages, International Journal of Heat and Mass Transfer, 1981, 24(11): 1801-1810
    [161] Rizzi, A., P. Eliasson, I. Lindblad, et al., The engineering of multiblock/multigrid software for Navier-Stokes flows on structured meshes, Computers & Fluids, 22(2-3): 341-367
    [162] Fletcher, D. F., Computational techniques for fluid dynamics : C.A.J. Fletcher, Springer Series in Computational Physics, Springer-Verlag, Heidelberg, 2nd ed. 1991. Two volumes; 425 and 515 pages, respectively. Softcover price DM 65.00 and DM 75.00, respectively. ISBN 3 540 53058 4 and 3 540 53601 9, Computer Physics Communications, 1992, 70(1): 221-221
    [163]R.T.E. Hermanns, Laminar burning velocities of methane-hydrogen-air mixtures, Ph.D thesis, Eindhoven University of Technology, Eindhoven, Netherlands, 2007
    [164] Bosschaart, K. J. and L. P. H. de Goey, Detailed analysis of the heat flux method for measuring burning velocities, Combustion and Flame, 2003, 132(1-2): 170-180.
    [165] de Goey, L.P.H., Somers L.M.T., Bosch W.M.M.L. and Mallens R.M.M., Modeling of small scale structure of flat burner-stabilized flames, Combustion Science and Technology, 1995, 104:387-400
    [166] Van Maaren A. and de Goey and L.P.H., Laser Doppler thermometry in flatlaminar flame speeds, Proceedings of the Combustion Institute, 1998, 27:513-519
    [184] C.M. Vagelopoulos, F.N. Egolfopoulos, C.K. Law, Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique, Proceedings of the Combustion Institute, 1994, 25:1341-1347
    [185] K. Stathl, L.Waldheim, M. Morris, U. Johansson, L. Gardmark, Biomass IGCC at Varnamo, Sweden-past and future, GCEP Energy Workshop, Frances C. Arrillaga Alumni Center, Standford University CA USA,1-16
    [186] Huang, Y., C. J. Sung, and J. A. Eng, Laminar flame speeds of primary reference fuels and reformer gas mixtures, Combustion and Flame, 2004, 139(3): 239-251
    [187] Karbasi, M. and I. Wierzba, The effects of hydrogen addition on the stability limits of methane jet diffusion flames, International Journal of Hydrogen Energy, 1998, 23(2): 123-129
    [188] Wilson, D. A. and K. M. Lyons, Effects of dilution and co-flow on the stability of lifted non-premixed biogas-like flames, Fuel, 2008, 87(3): 405-413
    [189] Won, S. H., J. Kim, K. J. Hong, et al., Stabilization mechanism of lifted flame edge in the near field of coflow jets for diluted methane, Proceedings of the Combustion Institute, 2005, 30(1): 339-347
    [190] Yaldizli, M., K. Mehravaran, H. Mohammad, et al., The structure of partially premixed methane flames in high-intensity turbulent flows, Combustion and Flame, 2008, 154(4): 692-714
    [191] Favier, V. and L. Vervisch, Edge flames and partially premixed combustion in diffusion flame quenching, Combustion and Flame, 2001, 125(1-2): 788-803
    [192] Bray, K., P. Domingo, and L. Vervisch, Role of the progress variable in models for partially premixed turbulent combustion, Combustion and Flame, 2005, 141(4): 431-437
    [193] Ihme, M., C. M. Cha, and H. Pitsch, Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach, Proceedings of the Combustion Institute, 2005, 30(1): 793-800
    [194] Ferraris, S. A. and J. X. Wen, Large eddy simulation of a lifted turbulent jet flame, Combustion and Flame, 2007, 150(4): 320-339
    [195] Yan, B., B. Li, E. Baudoin, et al., Structures and stabilization of low calorific value gas turbulent partially premixed flames in a conical burner, Experimental Thermal and Fluid Science, 2009, 34(3): 412-419