机翼大攻角分离流控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离流控制是流动控制的一个重要方向,大攻角机翼分离流控制研究具有非常重要的理论意义和工程应用前景。本文系统全面地研究了一种新的分离流控制方法——流动偏转器。
     首先,从流动控制应用现状入手,研究目前应用较多的控制方法,吸取这些方法的流动控制理念,提出一种新的流动控制方法。通过研究某型多段翼在低速情况下的流动控制特性,认识其流动控制原理,即引用下翼面的压力对上翼面的边界层进行吹气,进而增加上翼面边界底层的能量,抑制分离。该方法的缺点是减小了下翼面的压力。基于这种考虑,本文提出在机翼上翼面前缘附近进行流动控制,采用偏转导引来流动量的方法,对上翼面边界层进行吹气,这样既保证了下翼面的压力,又能对上翼面的流动分离进行控制。本文在机翼的前缘加装流动偏转器,使来流向机翼上表面偏转,从来流中提取能量,增加流动底层的速度,使之抗分离的能力增加,进而抑制分离,推迟失速。
     其次,采用风洞实验方法,研究了流动偏转器对分离流的实际控制效果。文中采用了三种不同类型的流动偏转器,由最初流动偏转器的流场显示看出,流动偏转器可以有效地控制分离。由第二种流动偏转器的风洞测力测压实验看出,流动偏转器可以使失速攻角推迟3度,由于流动偏转器对来流的偏转作用,可以使机翼上翼面的压力峰值保持到攻角24度。与干净机翼相比较,最终改进型流动偏转器可以使失速攻角推迟6度。由PIV流场测量结果看出,在流动偏转器的控制下,翼型上表面大的分离涡结构被抑制,失速攻角推迟;翼型上表面涡量变化较大的区域下移,壁面边界层与来流之间的能量交换加剧,底层能量增加,抗分离能力增强。
     第三,采用数值计算方法,研究流动偏转器的流动控制机理,并结合基因算法,对偏转器进行多参数优化。通过对流动方向变化规律和翼面边界层的深入研究,探寻了偏转器的控制原理:使来流向机翼吸力面偏转;削弱机翼前缘附近流动的三维效应使流动趋近二元化;使边界层内速度型变得饱满,减小速度型形状因子H_(12),增大速度型的稳定性,抑制流动分离。基因算法的优化结果提升了流动偏转器的应用潜力。在流动控制中,经过基因算法优化后的流动偏转器,可以更加有效的提高翼型的气动性能。计算流体力学(CFD)和基因算法(GA)的结合是一种有效的强大的优化方法,它在当前的流动控制设计中具有前瞻性。通过iSIGHT设计平台,结合Fluent ,形成一个高效的优化平台,可以推广到更广泛的流体应用领域。另外,本文把遗传算法应用到空气动力学的实验当中,可以为飞行器工程设计和空气动力学理论分析提供更加优化的实验方案;流动偏转器是实现遗传算法在空气动力学试验中应用的合适载体;为了满足遗传算法对参数变化的高精度要求,本文提出把超声电机精密驱动技术应用于流动控制。既推进了遗传算法在实验当中的应用,也推进了流动偏转器控制技术的实际应用。
     最后,研究了偏转器的实际工程应用。对风力机专用S809翼型的数值模拟结果表明,流动偏转器可以有效的控制分离,改善翼型的失速特性,增加翼型气动性能的稳定性。通过对流动偏转器参数的基因算法优化,得到了在一定范围内失速控制的最优参数,较大的提升了流动偏转器流动控制性能,使最大升力系数提升24%,18°攻角下升阻比提高50%以上,失速攻角推迟2度。且使失速过程变缓。由于风力机多数时候会运行在失速状态,失速的变缓,可以减少叶片抖动,提升运行品质。
As an important tendency of fluid mechanics, research of wing separation flow control at high angle of attack is of profound theoretical and practical significance. In this paper, a new flow control method was comprehensively researched.
     Firstly, starting with look through the present state of flow control, these commonly used methods were deeply studied. By absorbing the essence of these methods, a new flow control technology was introduced, called flow deflector. By researching the flow control characteristics of the multi-element airfoil, the principle of the flow control was found. The flow from the low surface of the airfoil through the gap at the leading edge and blows the boundary layer of the up surface. The energy of the boundary layer was enhanced and the separation was suppressed. The shortcoming of the method was that the pressure of the low surface of the airfoil was also reduced. Based on such consideration, some devices, fixed at the leading edge, could deflect the coming flow to control the flow separation. Then the idea of the flow deflector was born. Fixed at the leading edge, the parallel flats could make the coming flow deflect to the up surface of the airfoil. The velocity of the boundary layer was enhanced, the separation was retrained and the stall was delayed.
     Secondly, some experiments indicated that the flow deflector can restrain the flow separation. By increasing recognition of the flow deflector, three flow deflector models were produced to meet requirement of the research. The first model was used in the flow visualization experiment. The results validated the basic idea of controlling separation. The second model was used in the force measurement experiment. The results indicated that the flow deflector could delay the stall angle by 3 degree. As a function of the flow deflector, the peak of the pressure on the up surface was keep to angle of attack 24 degree. At last, the third model could delay the stall angle by 6 degree.The results of the PIV measurements indicated that there are many differences between the airfoil with and without flow deflector. By the control of the flow deflector, the separation vortices were retrained and the stall angle was delayed. The region where the vorticity changed extremely moved down to the up surface. The energy exchange between the coming flow and the boundary layer was sharp. The energy of the boundary layer was enhanced. And the ability of restrain the separation was improved.
     Thirdly, analysis of mechanism and optimization were done on the new flow control method. Deep research of flow direction changing trend and boundary layer are carried out to investigate the mechanism of flow deflector. The results indicate that the flow deflector increase the angle of flow around the leading edge of the wing and decrease the angle of the coming flow to make it deflect to the upside of the wing. The flow deflector can suppress the three dimensional effects and maintain the two-dimensional flow characteristics to some extent. Furthermore, the flow deflector can easily change the velocity profile in the boundary layer and make it more“fuller”. It decreases the shape factor and increases the stability of the boundary layer to restrain the flow separation.The results of the genetic algorithm optimization demonstrated the basic idea and application prospect. In the flow control experiment, the optimal flow deflector could enhance the aerodynamic characteristics effectively. Computational fluid dynamics in con-junction with a searching algorithm like a genetic algorithm potentially offers an efficient and robust optimization method and is a promising solution for current flow control designs. With the iSIGHT a highly efficient optimization platform combining with the FLUENT software can be extended to a wider field of fluid application.In this paper, the genetic algorithm in aerodynamics experiment was put forward for the first time. The platform could provide better plan for the experiments of aircraft design and aerodynamics theory analysis. The flow deflector, restraining the separation and delaying the stall angle effectively, is a proper carrier for the genetic algorithm in aerodynamics experiment. To meet the high precision demand of the parameters’varation in genetic algorithm, the using of the precision actuate technology in flow control was put forward for the first time. This technology spread the application of the genetic algorithm in experiment and the flow deflector in actual enginerring.
     Lastly, an application case in engineering was give. The results of numerical simulation for the airfoil S809 show that the flow deflector can control the separation effectively and improve the aerodynamic characteristics of the airfoil. An optimum flow deflector is obtained by genetic algorithm, which enhances the ability of separation control. It is indicated that the lift coefficient of the airfoil with flow deflector is increased by 24% and the lift-drag ratio by more than 50%. The stall of the airfoil is delayed by two degrees and the stall process is slow. Most of the time, the wind turbine run in the airfoil stall state, the slow stall process could reduce the blade dithering and enhance the running quality.
引文
[1] Prandtl L. Magnuseffeckt und Windkraftschiff. Naturwissenschaften ,1925,13:93-108.
    [2] Ryan K. Dygert. Experimental Investigation of an Embedded Crossflow Fan for Airfoil Propulsion/Circulation Control. Journal of Propulsion and Power, 2009, 25(1):196-203.
    [3] H.史里希廷.边界层理论.北京:科学出版社, 1988.
    [4] Viswanath PR, Ramesh G, Madhavan, KT. Separation control by tangential blowing inside the bubble. Expt. Fluids, 2000, V29: 96-102.
    [5] Thomas R Bewley. Flow control: new challenges for a new Renaissance[C]. Progress in Aerospace Sciences 37, 2001: 21-58.
    [6] K B M Q Zaman, D E Culley. A study of stall control over an airfoil using’synthetic jets’. AIAA 2006-98.
    [7] J. Tensi, I. Boué, F. Pailléand G. Dury, Modification of the wake behind a circular cylinder by using synthetic jets, Journal of Visualization, 2002, Volume 5, Number 1, Pages 37-44.
    [8] Sang Hoon Kim, Wooram Hong and Chongam Kim, Separation control mechanism of airfoil using synthetic jet, Journal of Mechanical Science and Technology, 2007, Volume 21, Number 9, Pages 1367-1375.
    [9] JinJun Wang, LiHao Feng and ChaoJun Xu, Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet, Science in China Series E: Technological Sciences, 2007, Volume 50, Number 5, Pages 550-559.
    [10] K. R. Srilatha, G. S. Dwarakanath and P. Ramamoorthy, Design of a natural laminar flow airfoil for the light transport aircraft, Acta Mechanica, 1990, Volume 85, Numbers 3-4, Pages 251-258.
    [11] M A Ramaswamy, Characteristics of a typical lifting symmetric supercritical airfoil, Sadhana, 1987, Volume 10, Numbers 3-4, Pages 445-458.
    [12] Neung-Soo Yoo, Aerodynamic performance improvement by divergent trailing edge modification to a supercritical airfoil, Journal of Mechanical Science and Technology, 2001, Volume 15, Number 10, Pages 1434-1441.
    [13] C P Butterfield, George Scott, and Walt Musial. Comparison of Wind Tunnel Airfoil Performance Data With Wind Turbine Blade Data. ASME Journal of Solar Energy Engineering, 1992, 114: 119-124.
    [14] Jian-Wen Wang, Rui-Bo Jia and Ke-Qi Wu, Numerical simulation on effect of pressuredistribution of wind turbine blade with a tip vane, Journal of Thermal Science, 2007, Volume 16, Number 3, Pages 203-207.
    [15] Xiong Liu, Yan Chen and Zhiquan Ye, Optimization model for rotor blades of horizontal axis wind turbines, Frontiers of Mechanical Engineering in China, 2007, Volume 2, Number 4, Pages 483-488.
    [16] V. L. Okulov and J. N. S?rensen, An ideal wind turbine with a finite number of blades, Doklady Physics, 2008, Volume 53, Number 6, Pages 337-342.
    [17] Sheng-Huan Wang and Shih-Hsiung Chen, Blade number effect for a ducted wind turbine, Journal of Mechanical Science and Technology, 2008, Volume 22, Number 10, Pages 1984-1992.
    [18] Xinqian Zheng, Sheng Zhou, Anping Hou, Zhengli Jiang and Daijun Ling, Separation control using synthetic vortex generator jets in axial compressor cascade, Acta Mechanica Sinica, 2006, Volume 22, Number 6, Pages 521-527
    [19] N. V. Khanov, Hydraulic performance characteristics of a vortical spillway with a tangential vortex generator in the flow, Power Technology and Engineering (formerly Hydrotechnical Construction), 1998, Volume 32, Number 5, Pages 253-258.
    [20] Reynald Bur, Didier Coponet and Yves Carpels, Separation control by vortex generator devices in a transonic channel flow, Shock Waves, 2009, Volume 19, Number 6, Pages 521-530.
    [21] U?ur Oralünal and Mehmet Atlar, An experimental investigation into the effect of vortex generators on the near-wake flow of a circular cylinder, Experiments in Fluids, 2010, Volume 48, Number 6, Pages 1059-1079.
    [22] Jean-Luc Aider, Jean-Fran?ois Beaudoin and JoséEduardo Wesfreid, Drag and lift reduction of a 3D bluff-body using active vortex generators, Experiments in Fluids, 2010, Volume 48, Number 5, Pages 771-789.
    [23] JingBo Huang, ZhiXiang Xiao, Song Fu and Miao Zhang, Study of control effects of vortex generators on a supercritical wing, SCIENCE CHINA Technological Sciences, 2010, Volume 53, Number 8, Pages 2038-2048.
    [24] Thomas Duriez, Jean-Luc Aider and Jose Eduardo Wesfreid, Control of a Separated Flow over a Smoothly Contoured Ramp Using Vortex Generators, IUTAM Bookseries, 1, Volume 7, IUTAM Symposium on Flow Control and MEMS, Part 7, Pages 437-441.
    [25] Ke Yang, Lei Zhang and JianZhong Xu, Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils, SCIENCE CHINA Technological Sciences, 2010, Volume 53, Number 1, Pages 1-7.
    [26] G. V. Selby, J. C. Lin and F. G. Howard, Control of low-speed turbulent separated flow using jetvortex generators, Experiments in Fluids, 1991, Volume 12, Number 6, Pages 394-400.
    [27] Lei Zhang, Ke Yang, JianZhong Xu and MingMing Zhang, Modeling of delta-wing type vortex generators, SCIENCE CHINA Technological Sciences, 2011, Volume 54, Number 2, Pages 277-285.
    [28]常跃峰,姜楠,沟槽壁湍流多尺度相干结构实验研究,航空动力学报, 2008, Vol.23, No.5, P788-795.
    [29]王晋军,李亚臣,沟槽面三角翼减阻特性实验研究,空气动力学学报, 2001, Vol.19, No.3, P283-287.
    [30] Cheng Xu, A vortex method for separated flow around an airfoil with a detached spoiler, Computational Mechanics, 1999, Volume 23, Number 3, Pages 271-278.
    [31] Yin Xieyuan and Ouyang Liangbiao, Study on forced shear flow by a oscillating spoiler, Acta Mechanica Sinica, 1989, Volume 5, Number 3, Pages 205-215.
    [32] J. S. Kim, S. Kim, J. Sung, J. S. Kim and J. Choi, Effects of an air spoiler on the wake of a road vehicle by PIV measurements, Journal of Visualization, 2006, Volume 9, Number 4, Pages 411-418.
    [33] D. V. Maklakov and G. M. Fridman, Jet Flow Past a Plate with a Spoiler in the Presence of a Stagnation Zone, Fluid Dynamics, 2005, Volume 40, Number 4, Pages 532-539.
    [34] J. S. Kim, J. Sung, S. Kim and J. S. Kim, PIV measurements on the change of the three-dimensional wake structures by an air spoiler of a road vehicle, Journal of Visualization, 2008, Volume 11, Number 1, Pages 45-54.
    [35] T. Lee and Y. Y. Su, Lift enhancement and flow structure of airfoil with joint trailing-edge flap and Gurney flap, Experiments in Fluids, Online First?, 28 December 2010
    [36] Neung-Soo Yoo, Effect of the Gurney flap on a NACA 23012 airfoil, Journal of Mechanical Science and Technology, 2000, Volume 14, Number 9, Pages 1013-1019.
    [37] T. Lee, PIV study of near-field tip vortex behind perforated Gurney flaps, Experiments in Fluids, 2011, Volume 50, Number 2, Pages 351-361.
    [38] Yachen Li, Jinjun Wang and Panfeng Zhang, Effects of Gurney Flaps on a NACA0012 Airfoil, Flow, Turbulence and Combustion, 2002, Volume 68, Number 1, Pages 27-39.
    [39] D. R. Troolin, E. K. Longmire and W. T. Lai, Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap, Experiments in Fluids, 2006, Volume 41, Number 2, Pages 241-254.
    [40] Y.C. Li, J.J. Wang, G.K. Tan and P.F. Zhang, Effects of Gurney flaps on the lift enhancement of a cropped nonslender delta wing, Experiments in Fluids, 2002, Volume 32, Number 1, Pages99-105.
    [41] Takuya Kawata, Yoshitsugu Naka, Koji Fukagata and Shinnosuke Obi, Simultaneous Measurement of Velocity and Fluctuating Pressure in a Turbulent Wing-tip Vortex Using Triple Hot-film Sensor and Miniature Total Pressure Probe, Flow, Turbulence and Combustion, Online First?, 22 April 2010.
    [42] Giacomo Valerio Iungo, Peter Skinner and Guido Buresti, Correction of wandering smoothing effects on static measurements of a wing-tip vortex, Experiments in Fluids, 2009, Volume 46, Number 3, Pages 435-452.
    [43] Kral L D. Active Flow Control Technology. ASME Paper No.FEDSM 2001-18196.
    [44] Mokhtarian F., Modi V.J., Yokomizo T, Rotating Air Scopp as Airfoil Boundary Layer Control. J. Aircraft 25, 973-975.1988
    [45] Mokhtarian F., Modi V.J., Yokomizo T. (1988a): Effect of Moving Surfaces on the Airfoil Boundary Layer Control. AIAA Paper No. 88-4337-CP, New York.
    [46] Mokhtarian F., Modi V.J. (1988): Fluid Dynamics of Airfoils with Moving Surface Boundary Layer Control. J. Aircraft 25, 163-169.
    [47] Modi V.J., Sun J.L.C., Akutsu T., Lake P., McMillian K., Swinton P.G., Mullins D. (1981): Moving Surface Boundary Layer Control for Aircraft Operation at High Incidence. J. Aircraft 18, 963-968.
    [48] Modi V.J., Sun J.L.C., Akutsu T., Lake P., McMillan K., Swinton P.G., Mullins D.(1980): Moving Surface Boundary Layer Control for Aircraft Operations at High Incidence. AIAA Paper No. 80-1621, New York.
    [49] Modi V.J., Fernando M., Yokonjizo T. (1990): Drag Reduction of Bluff Bodies Through Moving Surface Boundary Layer Control- ALA.A Paper No. 90-0298,New York.
    [50] Kummer, J., and Dang, T.,“High-Lift Propulsive Airfoil with Integrated Crossflow Fan,”Journal of Aircraft, Vol. 43, No. 4,Aug. 2006, pp. 1059–1068.
    [51] Ryan K. Dygert and Thong Q. Dang, Experimental Investigation of an Embedded Crossflow Fan for Airfoil Propulsion/Circulation Control, journal of propulsion and power,Vol. 25, No. 1, 2009,p196-203.
    [52] T. L. Chng,A. Rachman,H. M. Tsaiand and Ge-Cheng Zha, Flow Control of an Airfoil via Injection and Suction, journal of aircraft,Vol. 46, No. 1, 2009,p291-300.
    [53] G. Zha,J. J. Dussling, Quiet Ultra-Efficient Integrated Aircraft Using Co-Flow Jet Flow Control, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5 - 8 January 2009, Orlando, Florida, AIAA 2009-1437
    [54] H. Mitsudharmadi and Y. Cui , Implementation of Co-Flow Jet Concept on Low Reynolds Number Airfoil, 40th Fluid Dynamics Conference and Exhibit ,28 June - 1 July 2010, Chicago, Illinois, AIAA 2010-4717.
    [55] Bertrand P. E. Dano, Danah Kirk and Gecheng Zha, Experimental Investigation of Jet Mixing of a Co-Flow Jet Airfoil, 5th Flow Control Conference 28 June - 1 July 2010, Chicago, Illinois, AIAA 2010-4421.
    [56] Chunmei Chen, Roman Seele1 and Israe J. Wygnanski, On the Comparative Effectiveness of Steady Blowing and Suction Used for Separation and Circulation Control on an Elliptical Airfoil, 40th Fluid Dynamics Conference and Exhibit, 28 June - 1 July 2010, Chicago, Illinois, AIAA 2010-4715.
    [57] Raffaele Donelli and Domenico P. Coiro, Improving Aircraft Endurance Through Turbulent Separation Control by Pulsed Blowing, journal of aircraft,Vol. 45, No. 3, May–June 2008,p990-1001.
    [58] Ralf Petz and Wolfgang Nitsche, Active Separation Control on the Flap of a Two-Dimensional Generic High-Lift Configuration, journal of aircraft,Vol. 44, No. 3, May–June 2007,p865-874.
    [59]段会申,刘沛清,二维翼型微吸吹气减阻控制新技术数值研究,航空学报,Vol.30,No.7,p1219-1226,2009.
    [60]明晓,钝体尾流的特性及控制,南京航空航天大学博士论文,1988.
    [61]程永卓,李宇红,唐进等,振荡射流提高翼型升力的机理研究,工程热物理学报,Vol.24,No.1,2003,p49-51.
    [62]唐进,李宇红,霍福鹏,振荡射流改善翼型气动性能的实验研究,工程热物理学报,Vol.25, No.5,2004,p765-768.
    [63]郝礼书,乔志德,合成射流用于翼型分离流动控制的研究,西北工业大学学报, Vol.24, No. 4,2006,p528-530.
    [64]史志伟,张海涛,合成射流控制翼型分离的流动显示与PIV测量,实验流体力学, Vo1.22,No.3,2008,p49-53.
    [65]韩忠华,宋文萍,乔志德, OA212翼型主动流动控制的数值模拟研究,空气动力学学报,Vol . 27 , No. 6,2009,p639-644.
    [66]翁培奋,葛朓琳,丁珏,合成射流用于提高微型飞行器翼型气动特性的研究,上海大学学报(自然科学版), Vol. 15, No. 6,2009,p560-565.
    [67] L. Cattafesta , Y. Tian and R. Mitta, Adaptive Control of Post-Stall Separated Flow Application to Heavy Vehicles, The Aerodynamics of Heavy Vehicles II: Trucks,Buses, and Trains, Lecture Notes in Applied and Computational Mechanics, Volume 41, 151-160, 2009. Springer BerlinHeidelberg.
    [68] Marcus Ciuryla, Flight Control Using Synthetic Jets on a Cessna 182 Model, journal of aircraft,vol. 44, no. 2, 2007,p642-653.
    [69] John A. N. Farnsworth, John C. Vaccaro and Michael Amitay, Active Flow Control at Low Angles of Attack: Stingray Unmanned Aerial Vehicle, AIAA JOURNAL,Vol. 46, No. 10, 2008,p253-2544.
    [70] D. You and P. Moin, Active Control of Flow Separation Over an Airfoil Using Synthetic Jets, Journal of Fluids and Structures, Elsevier Science, 2008.
    [71]黄继雄,叶枝全,风力机专用新翼型及其气动特性研究,汕头大学硕士学位论文,2001.
    [72]杨科,王会社,基于CFD技术的高性能风力机翼型最优化设计方法,工程热物理学报,Vo1.28, No.4,2007, p586-588.
    [73]张磊,杨科,不同尾缘改型方式对风力机钝尾缘翼型气动性能的影响,工程热物理学报, Vo1.30,No.5,2009,p773-776.
    [74]琚亚平,张楚华,基于人工神经网络与遗传算法的风力机翼型优化设计方法,中国电机工程学报, Vol.29 No.20, 2009,p106-111.
    [75]吴洋,钱光平和刘沛清, CJ818超临界机翼气动优化设计,民用飞机设计与研究, 2009年增刊,p7-11.
    [76]刘克龙,姚卫星,低自由度协同优化及其在机翼设计中的应用,南京航空航天大学博士学位论文,2007.
    [77]刘艳,王江峰,伍贻兆,基于遗传算法的翼型多目标气动优化设计,飞机设计, Vol.28 ,No.4,2008,p1-5.
    [78]许平,姜长生,基于遗传算法的无人机层流翼型优化设计,航空兵器,No.2,2009,p7-10.
    [79]林宇,王和平,基于遗传算法的负弯度翼型亚音速多点设计,航空计算技术, Vol.39, No.1, 2009, p45-47.
    [80]谢辉,宋文萍,宋笔锋,基于CFD方法对微型扑翼翼型设计的研究,空气动力学学报, Vol.27, No. 2, 2009, p227-233
    [81]邓磊,乔志德,熊俊涛,杨旭东,低速翼型多点/多目标优化设计方法研究,航空计算技术, Vol.40, No.1, 2010, p16-20
    [82]王超,沈怀荣,基于遗传算法的微型飞行器翼型优化设计,装备指挥技术学院学报,Vol.20,No.16, 2009, p117-119
    [83]左林玄,王晋军,低雷诺数翼型的优化设计,兵工学报, Vol.30, No.8, 2009, p1074-1077
    [84]王晋军,涂建强,机翼平面形状对前缘涡的影响,科学通报,Vol.54,No.19, 2009,p940-2943
    [85] Jacob C. Haderlie,William A. Crossley,A Parametric Approach to Supercritical Airfoil DesignOptimization
    [86] Ermira J. Abdullah, Cees Bil? and Simon Watkins,Numerical Simulation of an Adaptive Airfoil System using SMA Actuators,
    [87]张宏武,江学忠,袁新,叶大均,二维翼型襟翼增升的数值模拟,清华大学学报(自然科学版), Vol.40, No.11, 2000,p55-58
    [88]杨炯,张维智,王元茂,李进学,格尼襟翼对某运输机翼型的增升试验研究,流体力学实验与测量,Vol. 16 No. 2, 2002, p25-29
    [89]李亚臣,王晋军,樊建超,张林,超临界翼型Gurney襟翼增升实验研究,北京航空航天大学学报, Vol. 29, No.6, 2003, p471-474
    [90]张攀峰,王晋军,合成射流控制NACA0015翼型大攻角流动分离,北京航空航天大学学报, Vol.34, No.14, 2008, p443-446
    [91]程玉庆,焦予秦,喷气吹气襟翼对翼型气动性能影响研究,航空计算技术, Vol.36 No.1, 2006, p100-102
    [92]罗华玲,乔渭阳,许开富,射流襟翼-低压涡轮叶栅主动流动控制数值研究,航空动力学报, Vol. 23 No. 2, 2008, p347-354
    [93]宋科,乔志德,多段翼型大迎角分离流动的DELAYED RANS/LES混合算法,航空计算技术,Vol. 39, No. 3, 2009,p42-47
    [94]申振华,夏商周,桂巧呋,申鸿烨,带Gurney襟翼翼型改型的气动性能的数值研究,太阳能学报, Vol. 28, No.9, 2007, p987-991
    [95] Jon Webb, Heather Higgenbotham, Dan Liebshutz, Analysis of Gurney Flap Effects on a NACA 0012 Airfoil/Wing Section, 19th Applied Aerodynamics Conference, 11 -14 June 2001 Anaheim, CA, AIAA-2001-2483
    [96] Kasim Biber, stall hysteresis of an airfoil with slotted flap, 43rd AIAA aerospace sciences meeting and exhibit 10-13 january 2005, Reno, NV,AIAA-2005-1230
    [97] T. Lee, aerodynamic characteristics of airfoil with perforated gurney-type flaps, journal of aircraft vol. 46, no. 2, march–april 2009 pages542-548
    [98]孙静,杨广瑭,张彬乾,带扰流板翼型的流场数值模拟,航空计算技术, Vol.36 No.6, 2006, p62-65
    [99]周涛,李晓勇,带扰流片的二维翼型非定常计算及分析,航空计算技术, Vol.36 No.2, 2006, p90-94
    [100] Seifert, A., Eliahu, S., Greenblatt, D., and Wygnanski, I.,“Use of Piezoelectric Actuators for Airfoil Separation Control,”AIAA Journal,Vol. 36, No. 8, Aug. 1998, p1535–1537.
    [101] Jose Mathew, Qi Song,Bhavani V. Sankar, Optimized Design of Piezoelectric Flap Actuators forActive Flow Control,AIAA JOURNAL,Vol. 44, No. 12, 2006, pages2919-2928
    [102] Tianshu Liu, J. Montefort,W. Liou, Post-Stall Flow Control Using Flexible Fin on Airfoil, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5 - 8 January 2009, Orlando, Florida, AIAA 2009-1106
    [103]唐登斌,机翼翼尖减阻装置的应用和发展,南京航空航天大学学报, Vol.26 No.1, 1994, p10-16
    [104]周国兵,张于峰,齐承英,王艳,几种翼型涡流发生器强化换热及流阻性能的实验研究,天津大学学报, Vol. 36, No. 6, 2003, p735-738
    [105]张进,张彬乾,阎文成,微型涡流发生器控制超临界翼型边界层分离实验研究,实验流体力学, Vo1.19, No.3, 2005, p58-60
    [106]阎文成,超临界翼型附面层分离及控制方案研究,西北工业大学硕士学位论文,2004.
    [107]张雨,孙刚,张淼,民用飞机翼梢小翼多约束优化设计,空气动力学学报, Vol,24, No.3, 2006, p367-370
    [108]陶洋,林俊,屠恒章,王元靖,实体鼓包改进超临界翼型跨声速气动特性研究,空气动力学学报,Vol.25, No.1, 2007, p116-119
    [109] Hiroyuki Abe, Takehiro Nomura, Yoshihiro Kikushima, Smart Control of Flow Separation around an Airfoil, International Conference on Power Engineering-2007, October 23-27, 2007, Hangzhou, China
    [110] Simon Evans, John Coull, Howard Hodson, Minimizing the loss produced by a turbulent separation using vortex generator jets, 5th Flow Control Conference 28 June - 1 July 2010, Chicago, Illinois, AIAA 2010-4590
    [111] Florian von Stillfried, Stefan Wallin, Arne V. Johansson, An improved passive vortex generator model for flowseparation control, 5th Flow Control Conference, 8 June - 1 July 2010, Chicago, Illinois, AIAA 2010-5091
    [112] Todd R. Quackenbush, Pavel V. Danilov, and Glen R. Whitehouse, Flow Driven Oscillating Vortex Generators for Control of Boundary Layer Separation, 40th Fluid Dynamics Conference and Exhibit 28 June - 1 July 2010, Chicago, Illinois AIAA 2010-4266
    [113] Amith Seshagiri, Evan Cooper, Lance W. Traub, Effects of Vortex Generators on an Airfoil at Low Reynolds Numbers, JOURNAL OF AIRCRAFT,Vol. 46, No.1, January–February 2009, pages116-122DOI: 10.2514/1.36241,
    [114] Peter Scholz, Saqib S. Mahmood,Marcus Casper, Experimental and Numerical Investigations on the Control of Airfoil Stall using Vortex Generator Jets, 5th Flow Control Conference 28 June - 1 July 2010, Chicago, Illinois, AIAA 2010-4250
    [115]董刚,张洪军,苏中地,范宝春,电磁力控制翼型体边界层流动的研究,中国计量学院学报, Vol.18, NO.3, 2007, p195-199
    [116]殷玲,董刚,周本谋,陈志华,范宝春,电磁力控制翼型体绕流的数值研究,飞行力学, Vol. 25, No.1, 2007, p76-79
    [117]陈耀慧,范宝春,陈志华,李鸿志,电磁力控制下的翼型绕流和升力,中国科学, Vol.39, No.8, 2009, p1141-1150
    [118] Christian Cierpka, Tom Weier, and Gunter Gerbeth, Electromagnetic Control of Separated Flows Using Periodic Excitation with Different Wave Forms,
    [119] Thomas Albrecht, Tom Weier, Gunter Gerbeth, Numerical and Experimental Investigation of Electromagnetic Separation Control Using Different Wave Forms, 5th Flow Control Conference, 2010, Chicago, Illinois, AIAA 2010-4709
    [120]薛帮猛,杨永,应用等离子体进行翼型升力控制的数值模拟研究,航空计算技术, Vol. 38 No. 1, 2008, p9-11
    [121] Thomas C Corke, BenjaminMertz. Plasma Flow Control Optimized Airfoil. A IAA 2006 - 1208, 2002.
    [122]赵小虎李应红等,等离子体气动激励的加速特性研究,空气动力学学报,Vol.28, No.2, 2010, p168-173
    [123]梁华,李应红,程邦勤等,等离子体气动激励抑制翼型失速分离的仿真研究,航空动力学报, Vol.23 No.5, 2008, p777-783
    [124]毛枚良,邓小刚,陈亮中,陈坚强,常气压辉光放电等离子体对边界层流动的影响,计算物理, Vol.26, No.1, 2009, p57-63
    [125]方弘毅,李光里,杨波,等离子体控制翼型流动分离实验,沈阳航空工业学院学报, Vol.27, No. 4, 2010, p18-26
    [126] B. G?ksel, D. Greenblatt, I. Rechenberg, etal, Pulsed Plasma Actuators for Active Flow Control at MAV Reynolds Numbers, R. King (Ed.): Active Flow Control, NNFM 95, 2007, p42-55,
    [127] N. Benardl, J.P. Bonnet, E. Moreau, On the Benefits of Hysteresis Effects for Closed-Loop Separation Control Using Plasma Actuation, 5th Flow Control Conference, 2010, Chicago, Illinois, AIAA 2010-4259
    [128] Je′ro?me Jolibois, Maxime Forte, Eric Moreau, Separation Control along a NACA 0015 Airfoil Using a Dielectric Barrier Discharge Actuator, IUTAM Symposium on Flow Control and MEMS, 2008, pages175-182.
    [129]惠增宏,竹朝霞,张理,带缝翼多段翼型气动特性的实验研究,流体力学,Vol.21, No. 2, 2007, p17-20
    [130] Bruce L. Storms, James C. Ross, Experimental Study of Lift-Enhancing Tabs on a Two-Element Airfoil, Journal of Aircraft,Vol.32, No. 5, 1995, pages1072-1078
    [131] Markus Schatz, Bert G¨unther, Frank Thiele, Computational Investigation of Separation Control for High-Lift Airfoil Flows, Active Flow Control, NNFM 95, 2007, pages173-189
    [132] Ralf Petz, Wolfgang Nitsche, Designing Actuators for Active Separation Control Experiments on High-Lift Configurations, Active Flow Control, NNFM 95, 2007,pages69-84
    [133] Jesse Little,Mo Samimy, Control of Separation from the Flap of a High-Lift Airfoil with DBD Plasma Actuation, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition ,2010, Orlando, Florida, AIAA 2010-1088
    [134] L.L.M. Veldhuis, M. van der Steen, Flow separation control by off surface elements, 28th AIAA Applied Aerodynamics Conference, 2010, Chicago, Illinois, AIAA 2010-4684
    [135] W.liebe. Der Auftrieb Tragflügel. Entstehung und Zusammenbruch Aerokurier[M],12:1250-1523,1979.
    [136] G. patone and W. Müller. Aeroflexible Oberflachenkappen als“Rückstrombremsen”nach dem Vorbild der Deckfedern des Vogelfügels[J]. TR-96-05,Technische Universitāt Berlin, 1996.
    [137] D.W.Bechert, M. Bruse, R. Meyer, and W.Hage. Biological surfaces and their technological application laboratory and flight experiments on drag reduction and separation control[J]. AIAA Paper 97-1960, Snowmass Village, CO,1997.
    [138] M.Schatz, T. Knacke and F. Thiele. Separation Control by Self-Activated Movable Flaps[J]. AIAA paper 2004-1243,2003.
    [139] M.Strelets. Detached-eddy simulation of massively separated flows[J]. AIAA Paper 2001-0879,2001.
    [140]翼型的低速失速特性[M].航空气动力手册,1978.
    [141]史志伟,等.旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J].实验流体力学. 2007,21(3):18-23.
    [142] W. Kyle Anderson,Daryl L. Bonhaus, Navier-Stokes Computations and Experimental Comparisons for Multielement Airfoil Configurations,
    [143] Goksel B, Rechenberg I. Active Flow Control by Surface Smooth Plasma Actuators.14th DGLR Symposium of STAB, Bremen, 2004.
    [144] Yair G, Thomas E. Effect of Geometric Parameters on the Velocity Output of a Synthetic Jet Actuator. AIAA Paper 2002-0126, 2002.
    [145] Yarusevych S, Kawall J G, Sullivan P E. Effect of acoustic excita-tion on airfoil performance at low Reynolds numbers. AIAA Pa-per, 41(8),1599-1601, 2003.
    [146] Prandtl L. Essentials of Fluid Dynamics, London, Blackie & Son Ltd, 1952.
    [147] T L Chang, A Rachman and H M Tsai etc. Flow Control of an Airfoil via Injection and Suction[J]. JOURNAL OF AIRCRAFT, 2009, 46(1): 291-300.
    [148] Russell F Osborn, Sridhar Kota, Joel A.Hetrick. Active Flow Control Using High-Frequency Compliant Struc-tures[J]. JOURNAL OF AIRCRAFT, 2004, 41(3): 603-609.
    [149] K B M Q Zaman, D E Culley. A study of stall control over an airfoil using’synthetic jets’[J]. AIAA 2006-98.
    [150]李应红,吴云,张朴,等.等离子体激励抑制翼型失速分离的实验研究[J].空气动力学学报,2008, 26(3):372-377.
    [151] Flint O Thomas, Thomas C Corke, and Muhammad Iqbal etc. Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Con-trol[J]. AIAA JOURNAL, 2009, 47(9): 2169-2178.
    [152]倪亚琴.涡流发生器研制及其对边界层的影响研究[J].空气动力学学报,1995,13(1):110-115.
    [153]张进,张彬乾,阎文成,等.微型涡流发生器控制超临界翼型边界层分离实验研究[J].实验流体力学, 2005, 19(3): 58-60.
    [154]李亚臣,王晋军. Gurney Flap增升研究综述[J].航空学报, 2000,21(4): 380-382.
    [155]王运涛,王光学,张玉伦. 30P-30N多段翼型复杂流场数值模拟技术研究[J].空气动力学学报,2010,28(1),99-103.
    [156]陈强唐登斌.湍流大涡破碎装置的减阻研究[J].弹道学报, 2001, 13(4): 22-33.
    [157]周立胜,明晓,白亚磊,等.流动偏转器对机翼失速特性的控制[J].空气动力学学报,2011, 39(1):5-11.
    [158] H. Schlichting. Boundary-Layer Theory [M]. Mcgraw-Hill Book Company.1979:673-675.
    [159] C P Butterfield, George Scott, and Walt Musial. Compari-son of Wind Tunnel Airfoil Performance Data With Wind Turbine Blade Data. ASME Journal of Solar Energy En-gineering, 1992, 114: 119-124.