商用车板簧建模及整车性能指标分解与综合关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
指标分解方法对于商用车这样的复杂工程产品系统来说是一种层次化的设计方法,该方法可以使产品研发流程更加有序化,便于研发流程的量化管理。
     本文以商用车为研究对象,实现了基于指标分解的设计与优化方法的具体细节,形成了基于该方法的研发流程的主要环节,主要研究括以下内容:
     1)研究了虚拟样机技术中三种板簧建模方法——有限元法、SAE三连杆法和离散梁法的建模原理,并对三种建模方法进行了深入的研究比较,在SAE三连杆法的基础上提出了一种改进的SAE三连杆法板簧建模方法,该方法具有模型参数少、精度高等优点。
     2)按照指标分解方法的理论体系,使用指标分解方法对三轴商用车平顺性和操纵稳定性进行了联合优化,详细阐述了指标分解方法各层次建立的步骤和指标传递过程,以及改善优化效果的相应措施。
     3)指标分解传统方法应用于大型工程实例中,往往会产生系统指标难以继续传递的弊端。为了增强指标分解方法应用的广泛性,文中提出了一种新的指标分解方法——指标分解扩展方法。通过概念悬架模型以及SAE三连杆法板簧的使用,把概念悬架整车模型的输入曲线与多体子系统模型的K&C曲线联系起来,板簧的刚度曲线与自身结构尺寸联系起来,解决了子系统层设计变量难以继续下传至零部件层的问题,同时提高了仿真精度。
     4)建立了商用车整车多体模型,并对该仿真模型的有效性进行了验证,并在此基础上对优化前后整车层评价指标进行了对比,结果表明应用ATC扩展方法进行优化,整车层的操纵稳定性和平顺性都不同程度得到了改善。
     本文按照指标分解方法的理论体系,结合中国商用车研发的实际状况,重新构造了商用车研发的模型体系,该模型体系能够使商用车的研发流程更加具有层次性,使其研发过程更加规范化,从而提高商用车的研发品质与研发效率。创新地实现了基于指标分解方法的商用车开发流程,该流程不仅可以提高开发效率,并且由于该流程可以提供量化的子系统性能指标,因此对研发流程的“目标门管理”具有极大的促进作用。
Analytical Target Cascading(ATC), which is a hierarchical method for designing engineering product of complex large system, like commercial vehicle, it can make the R&D process more neatly and methodically arranged and more conveniently for quantification management.
     This thesis elaborates the process of forming main procedures of optimal design method based on ATC for commercial vehicle in detail. The main research contents are listed as follows:
     Modelling theory of three methods to build leafspring based on Virtual Prototyping Technology are studied and compared. A new improved method based on SAE three-link modeling is proposed. This new method is proved with more advantage such as requiring fewer parameters and with higher simulation accuracy.
     According to the theoretical system of ATC, performances of handling and ride characteristics of tri-axle commercial vehicle are optimized simultaneously. Modelling of each hierarchy in the optimization problem and its process of target cascading are dealt with specifically. Besides, method of improving the effectiveness of ATC is also presented.
     Although ATC has an enormous application potential to solve various engineering problems, there also exists a drawback of passing system targets down to the subsystem continuously. In order to widen the range of application, a new ATC method, ATC extended method is put forward. By the application of conceptual suspension and Three-Link Leafspring Model, input curves of full vehicle of conceptual suspension and K&C curves of multibody subsystem, stiffness curves of leafspring and its structure dimensions are related. Thus, design variable of the multibody subsystem can be cascaded down to the part level successfully, with the enhancement of simulation accuracy.
     Multibody models of full vehicle are built in ADAMS and the verification of the model is conducted with the test data. Objectives of the vehicle before and after the optimization are compared. It reveals that the performances of handling and ride characteristic of tri-axle commercial vehicle are improved to various extents after optimization using ATC extended method.
     According to the theoretical system of ATC as well as taking present status of research on commercial vehicle in China into consideration, this thesis rebuild a model system of commercial vehicle for research. This system can make the research process highly organized and standardized. Thus, quality and efficiency for research and development are enhanced to a great extent. This dissertation presents the development process for designing commercial vehicle based on Analytical Target Cascading method innovatively. This process is beneficial to enhance the efficiency of development. Besides, it greatly promotes the progress towards‘target gate management’during the R&D process owing to the quantification performance targets of subsystems.
引文
[1] [德]施普尔,克劳舍著,宁汝新等译.虚拟产品开发技术.北京:机械工业出版社,2000
    [2] [德]耶尔森.赖姆帕尔著,张洪欣,余卓平译.汽车底盘基础.北京:科学普及出版社,1992
    [3]陈欣,林逸,王焕明,朱启昕,龚学军.弹性元件对悬架性能的影响.汽车技术,1996,5:11-13
    [4]吴宪.基于虚拟设计环境的轿车悬架系统设计平台的研究:[博士后论文],上海:同济大学,2001
    [5] Vedamuthu S. An Investigation of the Pulse Steer Method for Determining Automobile Handling Qualities. SAE Paper 930829.
    [6]郭孔辉.钢板弹簧刚度计算的主片分析法.汽车工程, 1984, 6(2):22-28.
    [7] Jayakumar P, Alanoly J, Johnson R. Three-Link Leaf-Spring Model for Road Loads. SAE Technical Paper Series 2005-01-0625.
    [8]景立新,郭孔辉,卢荡.钢板弹簧三连杆模型参数辨识研究.汽车技术, 2010, 12:10-13.
    [9] Zahavi E. Analysis of a contact problem in leaf springs. Mechanics Research Communications, 1992, 19(1):21-27.
    [10]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999.
    [11]郑贤中,蒙培生,黄延恩等.受力钢板弹簧的有限元三维数值模拟.机械设计与研究, 1998, 3,:41-42.
    [12]林金木.渐变刚度钢板弹簧的有限元计算.农业机械学报, 1996, 27:155-160.
    [13] http://www.mscsoftware.com.
    [14]唐罗生.虚拟产品开发及其应用技术研究:[博士学位论文],长沙:国防科技大学,1998
    [15]胡玉梅,邓兆祥,王欣,宾洋.汽车后悬架的非线性有限元分析.重庆大学学报, 2003, 26(4):38-41.
    [16]谷安涛.应用CAE技术进行钢板弹簧精确设计.汽车工程, 2002, 24(1):73-76.
    [17] Leevy G., Cao K. Evaluation of a Multi-Leaf Hybrid Springs for Automotive Suspensions. SAE Technical Paper Series 2004-01-0782.
    [18] Li Q, Li W. A contact finite element algorithm for the multileaf spring of vehicle suspension systems. Automobile Engineering,Instn Mech. Engrs,2004, 218: 305-314.
    [19]郑银环,张仲甫.钢板弹簧力学特性的非线性有限元分析.机械科学与技术,2008, 27(7): 914-916.
    [20]唐应时,陈明媚,潘佳炜,张武.基于接触摩擦的多片式钢板弹簧悬架预应力的计算.湖南大学学报(自然科学版), 2009, 36(4): 29-33.
    [21] Su XW, Wang SP, Zhu DM, Shi J. Nonlinear Characteristic Analysis of Leaf Spring Torsion for The Actuator Loading. Prognostics & System Health Management Conference, Macau, 2010, 956-960.
    [22] Han-Shue T, Thomas B. Model Identification of an Automotive Hydraulic Active Suspension System. Proceedings of the American Control Conference, Albuquerque, New Mexico, June 1997, 2920-2924.
    [23] Young-Jin Y. Frictional Behavior of Automotive Leaf Spring. In: Proceedings of the 4th Korea一Russia International Symposium on Science and Technology, 2000, 3: 5-10
    [24] Erol S, Mathieu G. Design, analysis and optimization of composite leaf springs for light vehicle applications. Composite Structures, 1999, 44:195-204.
    [25] Osipenko MA, Nyashin YI, Rudakov RN. A contact Problem in the theory of leaf spring bending. International Journal of Solids and Structures, 2003, 40:3129-3136
    [26] Rajendran I, Vijayarangan S. Optimal design of a composite leaf spring using genetic algorithms. Computers and Structures, 2001, 79(11):1121-1129.
    [27]丁能根,马建军.钢板弹簧迟滞特性的有限元分析.汽车工程, 2003, 25(1):12-14.
    [28]张越今,宋健,管迪华.滑板式钢板弹簧悬架变刚度计算方法的研究.汽车技术, 1997, 12:1-3.
    [29] Sugiyama H, Shabana AA, Omar MA, Loh WY. Development of nonlinear elastic leaf spring model for multibody vehicle systems. Comput. Methods Appl. Mech. Engrg. 2006, 195:6925-6941.
    [30] Baumal AE, McPhee JJ, Calamai PH. Application of genetic algorithms to the design optimization of an active vehicle suspension system. Computer methods in applied mechanics and engineering, 1998, 163:87-94.
    [31] Qureshi HA. Automobile leaf springs from composite materials. Journal of Materials Processing Technology, 2001, 118:58-61.
    [32] Mahmood MS., Davood R. Analysis and optimization of a composite leaf spring. Composite Structures, 2003, 60:317-325.
    [33] Hoyle JB. Modelling the static stiffness and dynamic frequency response characteristics of a leaf spring truck suspension. Automobile Engineering, Instn Mech. Engrs, 2004, 218:259-278.
    [34]王其东,方锡邦,卢剑伟,赵猛.汽车钢板弹簧多体动力学建模及动特性仿真研究.合肥工业大学学报(自然科学版),1999, 22(6):35-39.
    [35]刘红领,柳杨,陈伟,赵晓峰.渐变刚度钢板弹簧的模拟仿真.机械设计,2006, 23(11):37-39.
    [36] Prasade U, Medepalli S, Moore D, Rao RN. Beam Element Leaf Spring Suspension Model Development and Assessment Using Road Load Data. SAE paper 2006-01-0994.
    [37]郭孔辉.板簧变形运动学分析及其应用.汽车工程, 1990, 2:7-15
    [38]范永亮.钢板弹簧悬架系统运动分析.汽车技术, 1994, 8:6-9.
    [39]胡加.汽车转向系与悬架系统运动干涉的解析分析法.上海工程技术大学学报, 1998, 12(4):27-32.
    [40] Nogueira F, Teixeira RR, Ueda OM, Yokoyama EA. Nonlinear Finite Element Study of the Windup Geometry of a Parabolic Front Suspension Leaf Spring, SAE paper 2000-01-3279.
    [41]刘宝山,鲍永明,王殿生.板簧变形运行学计算分析新探.东北林业大学学报,2001, 29(4):73-76.
    [42]佟刚,张国忠,任飞.具有等厚主片变截面钢板弹簧优化设计.机械设计与制造, 2001, 2:9-11.
    [43] Shokrieh MM, Rezaei D. Analysis and optimization of a composite leaf spring. Composite Structures, 2003, 60:317-325.
    [44]卢剑伟,陈解,王其东.平顺性仿真驱动的板簧承载式悬架参数优化.系统仿真学报,2007, 19(21):5025-5029.
    [45]王志宏.后钢板弹簧悬架变形对传动轴最大滑出量的影响.汽车工程,2001, 23(3):167-172.
    [46]倪寿勇,陈靖芯,刘洪庆.虚拟样机技术在三轴板簧平衡悬架结构改进中的应用.汽车工程,2007, 29(11):981-986.
    [47] Tappeta RV, Renaud FE. Multidisciplinary Collaborative Optimization, In Proceedings of the 1997 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Sacramento, California, 1997, DETC97/DAC-3772.
    [48] Braun R. Collaborative Optimization: An Architecture For Large-Scale Distributed Design: [PhD thesis], Stanford University, 1996.
    [49] Braun R, Kroo I. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment. Multidisciplinary Design Optimization: State-of-the-Art,N. Alexandrov and M.Hussaini(eds.), SIAM, 1996, 344-355.
    [50] Braun R, Moore A, Kroo I. Use of the Collaborative Optimization Architecture for Launch Vehicle Design. Proceedings of the 6th AIAA/NASA/ISSMO Sympoisium on Multidisciplinary Analysis and Optimization, AIAA-96-4018-CP, 1996: 783-195.
    [51] Sellar RS. Response surface based,concurrent subspace optimization for multidisciplinary system design. AIAA -96-0714, 1996: 384-401.
    [52] Du X, Chen W. Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA Journal, 2002, 40(3):545-552.
    [53] Gu X, Renaud JE, Batill SM. Worst case propagated uncertainty of multidisciplinary systems in robust design optimization. Struct. Multidisc. Optim., 2000, 20(3): 190-213.
    [54] Gu X, Renaud JE. Implementation study of implicit uncertainty propagation(IUP) in decomposition based optimization. AIAA-2002-5416, Proceedings of the 9th AIAA/USAF/NASA/ISSMO Symposium and Exihibit on Multidisciplinary Analysis and Optimization, Atlanta,GA, Sep.4-6, 2002:32-39.
    [55] Kim HM. Target cascading in optimal system design: [PhD thesis]. University of Michigan, 2001.
    [56] Kim HM, Rideout DG, Papalambros PY. Analytical Target Cascading in Automotive Vehicle Design. Journal of Mechanical Design, 2003, 125: 481-489.
    [57] Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN. Simulation-based optimal design of heavy trucks by model-based decomposition: An extensive analytical target cascading case study. Int. J. of Heavy Vehicle Systems, 2004, 11: 403-433.
    [58] Kim HM, Kokkolaras M. Target cascading in vehicle redesign: a classⅥtruck study. Int. J. of Vehicle Design, 2002, 29(3): 1-27.
    [59] Nestor M, Loucas L, Kokkolaras M. Design of an Advanced Heavy Tactical Truck: A Target Cascading Case Study. SAE Technical Paper Series 2001-01-2793.
    [60] Georges H. Recurrent RBF Networks for Suspension System Modeling and Wear Diagnosis of a Damper. IEEE World Congress on Computational Intelligence. Anchorage, AK, USA, 1998, 2441-2446.
    [61] Blouin VY, Fadel GM, Haque IU, Wagner JR, Samuels HB. Continuously variable transmission design for optimum vehicle performance by analytical target cascading . Int. J. of Heavy Vehicle Systems, 2004, 11:327-348.
    [62] Michelena NF, Park H, Papalambros PY. Convergence Properties of Analytical Target Cascading, AIAA Journal, 41, 2003,41:897–905.
    [63] Michalek JJ, Papalambros PY. An Efficient Weighting Update Method to Achieve Acceptable Inconsistency Deviation in Analytical Target Cascading, ASME Journal of Mechanical Design, 2005, 127: 206-213.
    [64] Tosserams S, Etman LFP, Papalambros PY, Rooda JE. An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidisc Optim , 2006, 31:176–189.
    [65] Castillo JMD, Pintado P,Benitez FG. Optimization for vehicle suspensionⅡ:Frequency Domain, Vehicle System Dynamics, 1990, 19: 331-352.
    [66] Ryan RR. ADAMS-Multibody System Analysis Software. In:Schiehlen Wed. Multibody System Handbook, Berlin, 1990.
    [67] Minen D. Flexible Bodies and ADAMS: Methods and Techniques, Mechanical Dynamics, Inc., 1999.
    [68] Li Y. Diagonal quadratic approximation for parallel computing with analytical target cascading. Master thesis, Carnegie Mellon University, 2006.
    [69] Geoff Rideout D.,Stein JL,Ferris JB. Target cascading: a design process for achieving vehicle ride and handling targets. Proceedings of IMECE 2001Symposium on Advanced Automotive Technologies, New York, New York, 2011, 1-11.
    [70]刘克龙,姚卫星,余雄庆.运用低自由度协同优化的机翼结构气动多学科设计优化.航空学报, 2007, 28(15):1025-1032.
    [71]凌六一.基于ATC的供应链优化设计:[博士学位论文],长沙:中国科学技术大学,2006.
    [72]吕新生,高济众.复杂系统优化设计的分解协调法(之一).合肥工业大学学报,1995, 18(3):1-7.
    [73]白广忱,张建国,平志鸿.大系统可靠度优化分配的分解协调法.系统工程与电子技术,1998, 4:63-67.
    [74]陈树勋.工程大系统设计的普遍型分解协调优化.中国机械工程,1999,10(7):799-802.
    [75] Williams DE. Handling benefits of steering a third axle. Automobile Engineering, 2010, 224:1501-1511.
    [76] Qiuzhen Q, Jean WZ. On Steering Control of Commercial Three-Axle Vehicle. Journal of Dynamic Systems, Measurement, and Control, 2008, 130: 1-11.
    [77] Kharrazi S, Lidberg M, Lingman P, Svensson JI, Dela N. The effectiveness of rear axle steering on the yaw stability and responsiveness of a heavy truck. Vehicle System Dynamics, 2008, 46: 365-372.
    [78] Wu DH. A theoretical study of the yaw/roll motions of a multiple steering articulated vehicle. Proc InstnMech Engrs, 2001, 215: 1257-1265.
    [79] Moon KH, Lee SH, Chang S, Mok JK, Park TW. Method for control of steering angles for articulated vehicles using virtual rigid axles. International Journal of Automotive Technology, 2009, 10(4):441-449.
    [80] Zhang YQ, Gao S. A fuzzy synthesis control scheme and optimization for vehicle dynamic stability system. Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, September 4-7, 2007.
    [81] Liu T, Zhang XH. A Study on Parameter Optimization of Parallel Hydraulic Hybrid Vehicle. Control and Decision Conference, China, 2010.
    [82] Tomoyuki O, Hiroaki Y, Shinji W. Design Estimation of the Hybrid Power Source Railway Vehicle based on the Multiobjective Optimization by the Dynamic Programming. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3: 48-55.
    [83] Tang CQ, Zhao LG. Fuzzy Optimization of VehicIe Powertrain Based on Dynamic Quality and Fuel Economy. 2nd International Conference on Mechanical and Electronics Engineering, Wuhan, China, 2010, 2:390-393.
    [84] Smith WA, Zhang N. Hydraulically interconnected vehicle suspension: optimization and sensitivity analysis. Automobile Engineering, 2010, 224: 1335-1355.
    [85] Kodiyalam S, Yang RJ, Gu L, Tho C H. Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment. Struct Multidisc Optim, 2004, 26:256-263.
    [86] Zhao Q, Wang Y, Gao F. Multiobjective evolutionary optimization design of vehicle magnetorheological fluid damper. International Conference on Smart Materials and Nanotechnology in Engineering, Harbin, China,2007, 6432: 1-7.
    [87] Laura VP, Guillermo R, Bossio, Diego M, Guillermo O. Optimization of power management in an hybrid electric vehicle using dynamic programming. Mathematics and Computers in Simulation 2006, 73: 244–254.
    [88] Sun B, Xu Z, Zhang X. Parametric Optimization of Rubber Spring of Construction Vehicle Suspension. Global Design to Gain a Competitive Edge: An Holistic and Collaborative Design Approach Based on Computational Tools, 2008: 571-580.
    [89] Xu WT, Lin JH, Zhang Y H, Kennedy D, Williams F W. Pseudo-excitation-method-based sensitivity analysis and optimization for vehicle ride comfort. Engineering Optimization, 2009, 41(7): 699-711.
    [90] Gu L, Tyan T, Li G, Yang RJ. Vehicle structure optimization for crash pulse. Proceedings of DETC’04 ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt Lake City, Utah, USA, September 28-October 2, 2004.
    [91] Hong UP, Park GJ. Determination of the crash pulse and optimization of the crash components using the response surface approximate optimization. Automobile Engineering, 2003, 217: 203-213.
    [92] Song SI, Park GJ. Multidisciplinary optimization of an automotive door with a tailored blank. Automobile Engineering, 2006, 220: 151-163.
    [93] Dhand A, Cho B, Walker A. Optimization potential of the vehicle launch performance for start–stop micro-hybrid vehicles. Automobile Engineering, 2010, 224: 1059-1070.
    [94] Lan F, Chen J, Lin J. Comparative analysis for bus side structures and lightweight optimization. Automobile Engineering, 2004, 218: 1067-1075.
    [95]岳喜磊,王可,王红岩.多轴越野车辆悬架部件结构优化设计.装甲兵工程学院学报, 2010, 24(3): 29-31.
    [96]肖力军,李仁发.基于ADAMS的汽车底盘仿真及悬架系统性能优化.系统仿真学报, 2006, 18(7): 55-58.
    [97]吕彭民,和丽梅,尤晋闺.基于舒适性和轮胎动载的车辆悬架参数优化.中国公路学报, 2007, 20(1): 112-117.
    [98] Lotze A, Sehweiger J. Application of Modern Optimization Tools for the Design of Aircraft Structures. Presented at the 40. Annual General Meeting of the Aeronautical Society of India, December, 19-21, 1988.
    [99] Strandemar K. Truck Characterizing Through Ride Diagram. SAE Technical Paper Series 2004-01-2714.
    [100] Sun T, Yu F. Study on ride quality of a heavy-duty off-road vehicle with a nonlinear hydropneumatic spring. International Journal of Automotive Technology, 2005, 6(5): 483-489.
    [101] Eriksson P, Friberg O. Ride comfort optimization of a city bus. Struct Multidisc Optim, 2000, 20:67-75.
    [102] Perseguim OT, Costa Neto A. Comfort and Vibration Study of a Tractor and Trailer Combination Using Simulation and Experimental Approaches: the Jumping Ride Behavior. SAE Technical Paper Series, 2000-01-3517.
    [103] Joehen R. Virtual Development of Ride and Handling Characteristics for Advanced Passenger Cars. Vehicle System Dynamics, 2003, 40(3): 135-155.
    [104] Pacejka H. Tyre and Vehicle Dynamics. Butterworth-Heinemann, 2006.
    [105] Mitsehke M. Dynamik der Krafifahrzeuge. Germany, 1990.
    [106] Jornsen R. Automotive Chassis: Engineering Principles. London: Arnold,1996.
    [107] Gerrard MB. Kinematic suspension linkages-a model for their behavior and a procedure for their design. SAE Technical Paper 2002-01-02.
    [108] Gerrard MB. The Equivalent Elastic mechanism: a tool for the analysis and the design of compliant suspension linkages. SAE Technical Paper 2005-01-1719.
    [109] Hegazy S. Multi-Body dynamics in full-vehicle handling analysis under transient manoeuvre. Vehicle System Dynamcis, 2000, 34: 1-24.
    [110] Bian XL, Song BA, Walter R. Optimization of steering Iinkage an double-wishbone suspension via R-W multi-body dynamic analysis. Forschung im Ingenieurwesen 2004, 69:38-43.
    [111] Xin C, Yi L. Research on the dynamics of flexible multibody system of Passenger car suspension. Technical Paper Series, 980899.
    [112] Gobbi. Multi-Objective Robust Design of the suspension system of road vehicles. Vehicle System Dynamics, 2004, 41: 537-546.
    [113] Chondros. Vehicle Dynamics Simulation and Suspension System Design. SAE Technical Paper Series, 970106.
    [114] PennestrìE, Valentini PP, Vita L. Comfort analysis of car occupants: comparison between multibody and finite element models. Int. J. Vehicle Systems Modelling and Testing, 2005, 1: 68-78.
    [115] Fromn H. Kuzer Berichte Ueber die Geschichte der Theorie des Tadflattems. Ber: Lilie2nthal Ges ,1941.
    [116] Fiala, E., Seitenkrafte am rollenden Luftreifen. VDI-Zeitschrift, 1964.
    [117] Gim G., Nikravesh P. An analytical model of pneumatic tyres for vehicle dynamic simulations(part 1~part 3). International Journal of Vehicle Design, 1990, 11:19-39.
    [118] Sharp R. Tyre structural mechanisms influencing shear force generation:ideas form a multi-radial-spoke model.Vehicle System Dynamics, 1991, 21:145-155.
    [119] Pacejka H, Bakker E. The magic formula tyre model. Vehicle System Dynamics,1991, 21:1-18.
    [120] Guo K, Ren L. A unified semi-empirical tire model with higher accuracy and less parameters. SAE 1999-01-0785.
    [121]陆军. MSC.ADAMS技术与工程分析实例.北京,中国水利水电出版社,2008
    [122]李松焱,闵永军,王良模,安丽华.轮胎动力学模型的建立与仿真分析.南京工程学院学报,2009,7:34-41
    [123]余志生.汽车理论.北京,机械工业出版社,2000.
    [124] Theron NJ, Thoresson MJ. The ride comfort vs. handling compromise for off-road vehicles. Journal of Terramechanics, 2007, 44(4): 303-317.
    [125]刘惟信.汽车设计.北京,清华大学出版社,2001.
    [126] Sharp RS. Wheelbase filtering and automobile suspension tuning for minimizing motions in pitch. Automobile Engineering, 2002, 216: 933-946.
    [127] Cao D, Khajepour A. Wheelbase filtering and characterization of road profiles for vehicle dynamics. ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada, August 15–18, 2010.
    [128]王霄锋.汽车底盘设计.北京,清华大学出版社,2010.
    [129]陈立平,张云清,任卫群,覃刚,机械系统动力学分析及ADAMS应用,北京,清华大学出版社,2005.