低自由度协同优化及其在机翼设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多学科设计优化(MDO)是飞行器设计的一个重要发展方向。自从MDO被提出以来,得到了国内外学者的重视,并获得了较大的发展,但仍然存在某些问题,如:多学科设计优化方法过于复杂;代理模型技术仍然以多项式响应面为主,难以描述复杂的耦合关系;代理模型建立过程中对异常点的处理考虑较少,可能会影响代理模型的精度;利用MDO对机翼进行多学科设计优化时结构和气动两个子系统还难以并行,需要建立机翼上准确的气动载荷分布函数等。
     本文对多学科设计优化技术的几个研究方面,如MDO方法、代理模型技术、气动和结构学科分析优化模型的建立等问题进行了研究。
     在协同优化方法(CO)的基础上,通过减少设计变量个数,调整子系统目标函数等,提出了低自由度协同优化方法(LDFCO),利用三个数学算例对其计算效率进行了检验,结果表明低自由度协同优化方法可靠性较高,其计算量比CO方法明显减少。
     以异常点检验技术和序列Kriging优化(SKO)为基础,根据MDO中代理模型的特点,提出了一种面向MDO的代理模型建立方法-基于SKO的代理模型。研究了子系统的不同层次代理模型的建立方法,并成功地应用到了机翼多学科设计优化过程中。
     提出了分步SKO方法,并以该方法为基础,提出了一种基于分步SKO方法、遗传算法、MSC. Patran和MSC. Nastran的结构布局优化方法。利用该方法对复合材料加筋板和复合材料机翼进行了优化设计,达到了较好的优化效果。
     建立了基于Catia、Gambit和Fluent等通用软件的气动自动化分析模型。提出了利用三系数四次响应面模型拟合机翼上的升力分布以实现不同子系统并行和气动力的传递。以气动自动化分析模型和三系数四次响应面气动载荷分布模型为基础,提出了面向高精度气动分析模型的气动分析代理模型的建立方法。
     利用低自由度协同优化方法对轻型飞机机翼进行了气动/结构多学科设计优化,气动和结构两个子系统实现了并行,其中气动分析分别采用涡格法程序VLM和CFD软件Fluent,结构分析优化采用有限元软件MSC. Patran&Nastran。结果表明低自由度协同优化可以成功地应用于机翼多学科设计优化中。
Multidisciplinary design optimization (MDO) is one of the important development directions of aircraft design. Since MDO has been proposed, it is getting more attention and becomes prevailing. However there are still some problems. Multidisciplinary design optimization methods that appeared in recent years are too complicated. Polynomial response surface approximations are still the main surrogate models applied, but it is difficult to describe complicated relations with response surfaces. How to deal with outliers gets little attention when surrogate modes are constructed. It is difficult to make structure subsystem and aerodynamics subsystem concurrent when a wing is designed with MDO without accurate aerodynamic load distribution functions.
     Several research fields of MDO such as MDO methods, surrogate models, analysis and optimization models of structure and aerodynamics were investigated in this thesis.
     Low Degree-of-freedom Collaborative Optimization (LDFCO) was proposed through reducing the number of design variables and adjusting the objectives of subsystems based on Collaborative Optimization. Three test examples were used to verify the efficiency of LDFCO. The results show that LDFCO has high reliability and needs much less computation cost than CO. Based on outlier test and Sequential Kriging Optimization and according to the characteristics of surrogate models in MDO, a construction method of surrogate model for MDO–SKO based surrogate model was proposed. Several surrogate models of different levels of subsystems were researched and were applied to multidisciplinary design optimization of wings successfully.
     Two-step SKO was proposed and a structural layout optimization method was built based on two-step SKO, genetic algorithm, MSC. Patran and Nastran. A composite stiffened panel and a composite material wing were optimized with the structural layout optimization method. The results show that this optimization method has the ability to find out the approximate optimal solution, and can be used in engineering design conveniently.
     Based on Catia, Gambit and Fluent, an aerodynamics automatic analysis model was proposed. In order to transfer aerodynamics load among different subsystems, a quartic response surface with three coefficients was developed to fit lift distribution. Based on the aerodynamics automatic analysis model and the quartic response surface with three coefficients, a construction method of aerodynamics analysis surrogate models for high fidelity aerodynamics analysis models was proposed.
     Low Degree-of-freedom Collaborative Optimization was applied to solve Aerodynamic/structural multidisciplinary design optimization of a wing. The structure subsystem and the aerodynamics subsystem are parallel. Aerodynamics performance was calculated with VLM or Fluent. Structure analysis was performed using MSC. Patran and Nastran. The results show that Low Degree-of-freedom Collaborative Optimization can be applied to multidisciplinary design optimization of wings successfully.
引文
[1] AIAA Technical Committee on Multidisciplinary Design Optimization (MDO). White paper on current state of the art. American Institute of Aeronautics and Astronautics, 1991.
    [2] Giesing J P, Barthelemy J M. A Summary of Industry MDO Applications and Needs. An AIAA White Paper, 1998.
    [3]余雄庆.多学科设计优化算法及其在飞机设计中的应用研究, [博士学位论文].南京:南京航空航天大学. 1999.
    [4]余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中的应用.航空学报, 2000, 21(1):1~6.
    [5]陈琪峰.飞行器分布式协同进化多学科设计优化方法研究, [博士学位论文].长沙:国防科技大学. 2003.
    [6]王奕首,史彦军,腾宏飞.多学科设计优化研究进展.计算机集成制造系统. 2005, 11(6): 751~756.
    [7] Kodiyalam S, Sobieszczanski-Sobieski J. Multidisciplinary design optimization - some formal methods, framework requirements, and application to vehicle design. International Journal of Vehicle Design, 2001, 25(1/2): 3~22.
    [8] Kodiyalam S. Evaluation of methods for multidisciplinary design optimization (MDO), phase I. NASA CR 1998-208716, 1998.
    [9]谷良贤,龚春林.多学科设计优化方法比较.弹箭与制导学报, 2005, 25(1): 60~62.
    [10]陈琪锋,李晓斌,戴金海.导弹总体参数优化设计的合作协同进化MDO算法.国防科技大学学报, 2001, 23(5): 9~12.
    [11]陈琪锋,戴金海,李晓斌.分布式协同进化MDO算法及其在导弹设计中应用.航空学报, 2002, 23(3): 245~248.
    [12]陈琪锋,戴金海.异步并行的分布式协同进化MDO算法研究.宇航学报, 2002, 23(4): 57~61.
    [13]陈琪锋,戴金海.多目标的分布式协同进化MDO算法.国防科技大学学报. 2002, 24(4): 12~15.
    [14]何麟书,王书河,张玉珠.飞行器多学科综合设计新算法.航空学报, 2004, 25(5): 465~469.
    [15] Sobieszczanski-Sobieski J, Agte J S, Sandusky R. Bi-level integrated system synthesis (BLISS). NASA TM 1998-208715, 1998.
    [16] Sobieszczanski-Sobieski J. Sensitivity of complex, internally coupled systems. AIAA Journal, 1990, 28(1): 153~160.
    [17] Sobieszczanski-Sobieski J, Emiley M, Agte J, et al. Advancement of bi-level integrated system synthesis (BLISSS). AIAA-2000-0421, 2000.
    [18] Agte J, Sobieszczanski-Sobieski J, Sandusky R. Supersonic Business Jet Design Through Bi-Level Integrated System Synthesis. World Aviation Conference, SAE 1999-01-5622, 1999.
    [19] Kodiyalam S, Sobieszczanski-Sobieski J. Bi-level integrated system synthesis with response surfaces. AIAA-99-1306-wip, 1999.
    [20] Cramer E J, Dennis J E, Frank P D, et al. Problem formulations for multidisciplinary optimization. SIAM Journal of Optimization, 1994, 4(4):754~776.
    [21] Altus T D. A response surface methodology for bi-level integrated system synthesis (BLISS). NASA CR 2002-211652, 2002.
    [22] Kim H, Ragon S, Soremekun G, et al. Flexible approximation model approach for bi-level integrated system synthesis. AIAA-2004-4545, 2004.
    [23] Sobieszczanski-Sobieski J, Altus T D, Phillips M, et al. Bi-level integrated system synthesis for concurrent and distributed processing. AIAA Journal, 2003, 41(10): 1996~2002.
    [24] Kim H, Malone B. A Distributed, Parallel, and Collaborative Environment for Design of Complex Systems. AIAA-2004-1848, 2004.
    [25] Brown N F, Olds J R. Evaluation of Multidisciplinary Optimization (MDO) Techniques Applied to a Reusable Launch Vehicle. AIAA-2005-707, 2005.
    [26] Peter W G, Baets D, Mavris D N. Aeroelastic Design by Combining Conventional Practice with Bi-Level Integrated System Synthesis (BLISS). AIAA-2004-4431, 2004.
    [27] Michelena N, Kim H M, Papalambros P Y. A system partitioning and optimization approach to target cascading. Proceedings of the 12th International Conference on Engineering Design. Munich, Germany, 1999, 2: 1109~1112.
    [28] Kim H M. Target cascading in optimal system design [Ph.D.]. USA: University of Michigan, 2001.
    [29] Papalambros P Y, Wilde d J. Principles of optimal design: modeling and computation, second edition. New York, USA: Cambridge University Press, 2002.
    [30] Michalek J J, Papalambros P Y. Weights, norms, and notation in analytical target cascading. Journal of Mechanical Design, 2005, 127(3): 499~501.
    [31] Allison J, Kokkolaras M, Zawislak M, et al. On the use of analytical target cascading andcollaborative optimization for complex system design. Proceedings of 6th World Congress on Structural and Multidisciplinary Optimization. Rio De Janeiro, Brazil, 2005.
    [32] Michelena N, Park H, Papalambros P. Convergence properties of analytical target cascading. AIAA Journal, 2003, 41(5): 897~905.
    [33] Alexandrov N M, Lewis R M. Analytical and computational aspects of collaborative optimization. NASA TM-2000-210104, 2000.
    [34] Tzevelekos N, Kokkolaras M, Papalambros P, et al. An empirical local convergence study of alternative coordination schemes in analytical target cascading. Proceedings of 5th World Congress on Structural and Multidisciplinary Optimization. Venice, Italy 2003, Short version (short paper proceedings): 147~148; long version (conference CD-ROM).
    [35] Michalek J J, Papalambros P Y. An efficient weighting update method to achieve acceptable consistency deviation in analytical target cascading. Journal of Mechanical Design, 2005, 127(2): 206~214.
    [36]余雄庆.基于Agent模型的多学科设计优化方法.机械科学与技术, 2002, 21(5): 844~851.
    [37] Kim Yushin, Lee D H, Kim Yonghyup, et al. Multidisciplinary Design Optimization of Supersonic Fighter Wing Using Response Surface Methodology. AIAA-2002-5408, 2002.
    [38] Jun S, Jeon Y H, Rho J, et al. Application of Collaborative Optimization Using Response Surface Methodology to an Aircraft Wing Design. AIAA-2004-4442, 2004.
    [39] Gumbert C R, Hou G J, Newman P A. High-Fidelity Computational Optimization for 3-D Flexible Wings: Part I-Simultaneous Aero-Structural Design Optimization (SASDO). Optimization and Engineering, 2005, 6: 117~138.
    [40] Chiba K, Obayashi S, Nakahashi K. High-Fidelity Multidisciplinary Design Optimization of Aerostructural Wing Shape for Regional Jet. 23th AIAA Applied Aerodynamics Conference. Westin Harbour Castle, Toronto, Ontario Canada, 2005.
    [41] Kumano T, Jeong S, Obayashi S. Multidisciplinary Design Optimization of Wing Shape for a Small Jet Aircraft Using Kriging Model. AIAA-2006-932, 2006.
    [42]董波,张晓东,郦正能.干线客机机翼气动/结构综合设计研究.北京航空航天大学学报, 2002, 28(4): 435~437.
    [43]薛飞,余雄庆,姚卫星.轻型飞机机翼气动/结构协同优化研究.计算力学学报, 2005, 22(4): 488~491.
    [44]苟仲秋,宋笔锋.一种记及气动和隐身约束的结构两级优化设计方法.系统工程理论与实践, 2006, 3: 135~140.
    [45]刘金辉,乔志德,杨旭东,等.基于响应面法的机翼气动/结构一体化优化设计研究.空气动力学学报, 2006, 24(3): 300~306.
    [46]张科施,韩忠华,李为吉,等.基于近似技术的高亚声速运输机机翼气动/结构优化设计.航空学报, 2006, 27(5): 810~815.
    [47]白小涛,李为吉.基于近似技术的协同优化方法在机翼设计优化中的应用.航空学报, 2006, 27(5): 847~850.
    [48] Sobieski I P, Manning V M, Kroo I M. Response Surface Estimation and Refinement in Collaborative Optimization. AIAA-98-4753, 1998.
    [49] Demiguel A V, Murray W. An Analysis of Collaborative Optimization Methods. AIAA-2000-4750. 2000.
    [50] Kroo I, Manning V. Collaborative Optimization: Status and Directions. AIAA-2000-4721, 2000.
    [51] Lin J G. Analysis and Enhancement of Collaborative Optimization for Multidisciplinary Design. AIAA Journal, 2004, 42(2): 348~360.
    [52] Zadeh P M, Toropov V V, Wood A S. Use of Global Approximations in the Collaborative Optimization Framework. AIAA-2004-4654, 2004.
    [53] Jang B S, Yang Y S, Jung H S, et al. Managing Approximation Models in Collaborative Optimization. Struct Multidisc Optim, 2005.
    [54] Kroo I. Distributed Multidisciplinary Design and Collaborative Optimization. VKI lecture series on Optimization Methods & Tools for Multidisciplinary Design, 2004.
    [55]薛飞,余雄庆,姚卫星,等.协同优化在机翼气动/结构一体化设计中初步应用.航空计算技术, 2004, 34(1): 82~86.
    [56] Alexandrov N M, Lewis R M. Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design. AIAA Journal, 2002, 40(2): 302~309.
    [57] Cormier T, Scott A, Ledsinger L, et al. Comparison of Collaborative Optimization to Conventional Design Techniques for a Conceptual RLV. AIAA-2000-4885, 2000.
    [58]余雄庆,薛飞,穆雪峰,等.用遗传算法提高协同优化方法的可靠性.中国机械工程, 2003, 14(21): 1808~1811.
    [59] Du Xiaoping, Chen Wei. A Hierarchical Approach to Collaborative Multidisciplinary Robust Design. In: Cheng Gengdong ed. Proc. 4-th World Congress of Structural and Multidisciplinary Optimization. Shenyang: Liaoning Electronic Press, 2001.
    [60]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型研究.计算力学学报, 2005, 22(5): 608~612.
    [61]张健,李为吉.飞机多学科设计优化中的近似方法分析.航空计算技术, 2005, 35(3): 5~8.
    [62] Krishnamurthy T. Comparison of Response Surface Construction Methods for Derivative Estimation Using Moving Least Squares, Kriging and Radial Basis Functions. AIAA-2005-1821, 2005.
    [63] Simpson T W, Booker A J, Ghosh D, et al. Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion. Structural and Multidisciplinary Optimization, 2004, 27(5): 302~313.
    [64] Kim H. Statistical Modeling of Simulation Errors and Their Reduction via Response Surface Techniques, [Ph.D.]. USA: Virginia Polytechnic Institute and State University, 2001.
    [65] Papila M, Haftka R T. Response Surface Approximations: Noise, Error Repair, and Modeling Errors. AIAA Journal, 2000, 38(12): 2336~2343.
    [66]王中宇,张海滨,刘智敏.剔除离群值的学生化残差新方法.仪器仪表学报, 2006, 27(6): 624~628.
    [67]张立伟.用数理统计的方法处理试验数据的异常值.电线电缆, 2005, 4: 46~48.
    [68]周纪芗.回归分析.上海:华东师范大学出版社, 1993: 186~191.
    [69] Huber P J. Robust Estimation of a Location Parameter. Ann Math Statist, 1964, 35: 73~ 100.
    [70] Beaton A E, Tukey J W. The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data. Technometrics, 1974, 16: 147~185.
    [71] Fox J. An R and S-Plus Companion to Applied Regression. Sage Publications, 2002.
    [72]黄幼才.数据探测和抗差估计.北京:测绘出版社, 1990: 59~62.
    [73] Kim H, Mason W H, Watson L T, et al. Detection and Correction of Poorly Converged Optimizations by Iteratively Reweighted Least Squares. AIAA-2000-1525, 2000.
    [74] Martin J D, Simpson T W. On the Use of Kriging Models to Approximate Deterministic Computer Models. AIAA Journal, 2005, 43(4): 853~863.
    [75] Song W, Keane A J. A New Hybrid Updating Scheme for an Evolutionary Search Strategy using Genetic Algorithms and Kriging. AIAA-2005-1901, 2005.
    [76] Simpson T W. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. AIAA Journal, 2001, 19(12): 2233~2241.
    [77] Jeong S, Yamamoto K. Kriging-Based Probabilistic Method for Constrained Multi-Objective Optimization Problem. AIAA-2004-6437, 2004.
    [78] Lophaven S N, Nielsen H B, SΦndergaard J. DACE-A Matlab Kriging Toolbox, Version 2.0. Report IMM-REP-2002-12, Informatics and Mathematical Modeling. Technical University of Denmark, 2002. http://www.imm.dtu.dk/~hbn/publ/TR0212.ps.
    [79] Martin J D, Simpson T W. A Monte Carlo Simulation of the Kriging Model. AIAA-2004-4483, 2004.
    [80] Simpson T W, Peplinski J, Koch P N, et al. On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments. Design Theory and Methodology - DTM'97, 1997b, September14-17, Sacramento, CA, ASME, Paper No. DETC97/DTM-3881
    [81] Box G E P, Behnken D W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics, 1960, 2(4): 455~475.
    [82] Owen A B. Orthogonal Arrays for Computer Experiments, Integration and Visualization. Statistica Sinica, 1992, 2: 439~452.
    [83]方开泰.均匀设计和均匀设计表.北京:科学出版社, 1994.
    [84] Morris M D, Mitchell T J. Exploratory Designs for Computational Experiments. Journal of Statistical Planning and Inference, 1995, 43(3): 381~402.
    [85] McKay M D, Beckman R J, Conover W J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 1979, 21(2): 239~245.
    [86] Park J S. Optimal Latin-Hypercube Designs for Computer Experiments. Journal of Statistical Planning and Inference, 1994, 39: 95~111.
    [87] Simpson T W. A Concept Exploration Method for Product Family Design, [Ph.D.]. USA: Georgia Institute of Technology, 1998.
    [88] Jones D R, Schonlau M, Welch W J. Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization, 1998, 13: 455~492.
    [89] Sasena M J. Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations, [Ph.D.]. USA: University of Michigan, 2002.
    [90] Sobester A, Leary S T, Keane A J. On the Design of Optimization Strategies Based on Global Response Surface Approximation Models. Journal of Global Optimization, 2005, 33: 31~59.
    [91] Jones D R. A Taxonomy of Global Optimization Methods Based on Response Surfaces. Journal of Global Optimization, 2001, 21: 345~383.
    [92] Huang D, Allen T T, Notz W I, et al. Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models. Journal of Global Optimization, 2006, 34(3): 441~466.
    [93] Jeong S, Murayama M, Yamamoto K. Efficient Optimization Design Method Using Kriging Model. Journal of Aircraft, 2005, 42: 413~420.
    [94] Jeong S, Obayashi S. Efficient Global Optimization (EGO) for Multi-Objective Problem and Data Mining. Proceeding of Congress on Evolutionary Computation. 2005, 3: 2138~2145.
    [95]张晓萍.联结翼飞机气动/结构一体化设计研究, [硕士学位论文].南京:南京航空航天大学, 2006.
    [96] Margason R J, Lamar J E. Vortex-Lattice- Fortran Program for Estimating Subsonic Aerodynamic Characteristics of Complex Planforms. NASA TN D-6142, 1971.
    [97] Mason. Program Friction. http://www.aoe.vt.edu/~mason/Mason_f/friction.f, 1996.
    [98] MSC. Software Corporation. MSC/PATRAN User’s Manual.
    [99]刘克龙.面向MDO的结构形状优化方法研究, [硕士学位论文].南京:南京航空航天大学, 2004.
    [100] MSC. Software Corporation. MSC. Nastran 2005 Quick Reference Guide. 2004.
    [101] Huck C R, Joines J A, Kay M G. A Genetic Algorithm for Function Optimization: A MATLAB Implementation. http://www.ie.ncsu.edu/mirage/GAToolBox/gaot, 1998.
    [102] Liu W, Butler R, Mileham A R, et al. Optimum Design, Experimental Testing and Post-Buckling Analysis of Thick Composite Stiffened Panels. AIAA-2005-1826, 2005.
    [103] Park O, Haftka R T, Sankar B V, et al. Analytical and Experimental Study of a Blade Stiffened Panel in Axial Compression. AIAA-1998-1993, 1998.
    [104]中国航空研究院.复合材料结构稳定性分析指南.北京:航空工业出版社, 2002: 21~22.
    [105]杨乃宾,章怡宁.复合材料飞机结构设计.北京:航空工业出版社, 2002: 110~111.
    [106]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社. 2004: 7~11.
    [107]李杰.面向代理模型的机翼变形计算方法及其CFD计算, [硕士学位论文].南京:南京航空航天大学, 2007.