基于指标分解的汽车动态性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车的设计问题是涉及多个学科的复杂大系统工程问题。本文引用一种可以有效解决这类问题的优化方法——指标分解(Analytical Target Cascading,ATC)。该方法可以对汽车进行层解分析,依次解决每一层的设计问题,从而实现对整辆汽车的优化。本文在指标分解方法的基础上,提出了一种指标分解扩展方法。这种方法适用于利用ADAMS/Car建模的汽车优化问题。
     本文通过两个工程实例分别对指标分解方法和扩展方法进行了验证。首先利用指标分解方法对一辆SUV的平顺性和操纵稳定性进行优化设计问题。SUV的整车层采用半车模型作为平顺性问题的设计模型,采用自行车模型作为操纵稳定性设计问题的设计模型。子系统层分为了四个子系统,前、后悬架设计问题采用在ADAMS/Car中建立的多体悬架模型作为设计模型,轮胎垂直刚度设计问题采用轮胎垂直振动数学模型作为设计模型,轮胎侧偏刚度设计问题采用轮胎侧偏数学模型作为设计模型。整个优化过程是在iSIGHT与MATLAB、ADAMS/Car的联合仿真优化平台上完成的。
     为了顺利的执行指标分解的扩展方法,本文引入了ADAMS/Car中的概念悬架模型,并利用概念悬架模型和多体模型,结合指标转换过程,完成了该方法应用于某轿车的优化设计问题。在优化过程中,本文利用筛选试验选取了灵敏度较高的设计变量,再通过拉丁方试验设计建立了二阶响应面,最后运用模拟退火和序列二次规划的组合优化方法实现了优化。
Vehicle design problem is a complex large system engineering problem which usually refers to multidisciplinary analysis. This thesis presents a useful optimal method named Analytical Target Cascading (ATC) to solve this kind of problem effectively. Using the method, targets of full vehicle design problem are cascaded and design problems in each level are settled. The thesis also presents a Special Analytical Target Cascading (SATC) method based on ATC, which can be used in the design problem of the vehicle built in ADAMS/Car.
     The thesis proved the feasibility of ATC and SATC through two projects. The first project uses ATC to design the Handling Performance and Ride Quality for a SUV. The vehicle-level design problem contains two analysis models, a“half-car”model and a“bicycle”model. Subsystem-level analysis models for the front and rear suspensions are multibody-dynamics models. The tire models call the tire stiffness equations. The whole optimal process is executed on the platform of iSIGHT, MATLAB and ADAMS/Car.
     The thesis solved the problem of a passenger car by building conceptual suspension models and multibody models in order for the application of SATC. In the optimization process, the target transition process is used to transit the targets; the screening test is used to choose important design variables; second-order polynomial RSM models are built by using Latin Hypercube design and the combination of Simulated Annealing (SA) and SQP optimization methods can prevent to trap in local optimization and improve optimization speed using RSM model.
引文
[1] AIAA White Paper. Current State of the Art: Multidisciplinary Design Optimization. Washington: AIAA Technical Committee for MDO, 1991
    [2] Yukish M, Simpson T W. Requirements on MDO Imposed by the Undersea Vehicle Conceptual Design Optimization. AIAA 2200024816
    [3] Haftka R T., Simultaneous Analysis and Design. AIAA Journal, 1985, 23(7): 1099~1103
    [4] Wujek B A, Renaud J E. Multidisciplinary Collaborative Optimization, In: Proceedings of a Distributed Computing Environment. Proceedings in Applied Mathematics, 1997(80): 189~208
    [5] SELLAR R S. Response surface based, concurrent subspace optimization for multidisciplinary system design [R]. AIAA 2199620714
    [6] Tappeta R V, Renaud F E. Multidisciplinary Collaborative Optimization, In: Proceedings of the 1997 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Sacramento, California, 1997 DETC97/DAC-3772
    [7] Braun, R., Collaborative Optimization: An Architecture For Large-Scale Distributed Design, 1996, Doctoral Dissertation, Stanford University
    [8] Braun, R. and Kroo, I.,“Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment,”Multidisciplinary Design Optimization: State-of-the-Art, N. Alexandrov and M. Hussaini (eds.), SIAM, 1996
    [9] Braun, R. Moore, A., and Kroo, I.,“Use of the Collaborative Optimization Architecture for Launch Vehicle Design,”1996, Proceedings of the 6th AIAA/NASA/ISSMO Sympoisium on Multidisciplinary Analysis and Optimization, AIAA-96-4018-CP
    [10] Kroo I, Altus S, Braun R, et al. Multidisciplinary Design Optimization Methods for Aircraft Preliminary Design. AIAA Paper 94-4325-cp, 1994
    [11] Balling R J, Wilkison C A. Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems. AIAA Journal, 1997, 35(1): 178~186
    [12] Braun R D, Gage P, Kroo I, et al. Implementation and Performance Issues in Collaborative Optimization. Washington: AIAA Paper 96-4017, 1996
    [13] Braun T D, Moore A A, Kroo I. Collaborative Approach to Launch Vehicle Design. Journal of Spacecraft and Rockets, 1997, 34(4): 478~486
    [14] Kim H. M., Michelena, N. F., Papalambros, P. Y. and Jiang, T.. Target Cascading in Optimal System Design. Proceedings of the 2000 ASME Design Engineering Technical Conferences, September 10–13, Baltimore, MD, DETC2000/DAC-14265
    [15] Kim H. M.. Target Cascading in Optimal System Design. Doctoral Dissertation, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 2001
    [16] Kim, H. M., Kokkolaras, M., Louca, L., Delagrammatikas, G., Michelena, N.,Filipi, Z., Papalambros, P. Y., and Assanis, D.. Target Cascading in Vehicle Redesign: a Class VI Truck Study, Int. J. Veh. Des., 2002, 29~31, pp. 199–225
    [17] Michelena, N.F.; Park, H.; Papalambros, P.Y.. Convergence Properties of Analytical Target Cascading, AIAA Journal, 41, 2003, pp. 897–905
    [18] Michalek, J.J.; Papalambros, P.Y.. An Efficient Weighting Update Method to Achieve Acceptable Inconsistency Deviation in Analytical Target Cascading, ASME Journal of Mechanical Design, 2005
    [19] Michalek, J.J.; Papalambros, P.Y.. Technical Brief: Weights, Norms, and Notation in Analytical Target Cascading, ASME Journal of Mechanical Design, 2005
    [20]陈树勋.工程大系统的普遍型分解调节优化.中国机械工程, 1999, 10(7):799~802
    [21]白广忱,张春宜.机械系统整体可靠性优化设计的分解协调法.机械工程学报,1999,35(2):53~56
    [22]陆金桂,余俊,王浩等.基于人工神经网络的结构近似分析方法的研究.中国科学(A),1994,24(6):653~658
    [23]席裕庚.复杂工业过程的满意控制.信息与控制,1995,24(1):14~20
    [24]刘德峰.权重未知的多目标优选方法.系统工程与电子技术, 1998, 20(8): 4 1~43
    [25]李强,周济,钟毅芳.机械系统动态优化设计的复合遗传算法.机械工程学报, 1999, 35(5):27~30
    [26]王书河,何麟书,张玉珠.飞行器多学科设计优化软件系统.北京航空航天大学学报, 2005, 31(1):51~55
    [27]刘克龙,姚卫星,余雄庆.运用低自由度协同优化的机翼结构气动多学科设计优化.航空学报, 2007, 28(15):1025~1032
    [28]赵刚,江平宇.面向大规模定制生产的e-制造单元目标层解分析优化规划模型.机械工程学报, 2007, 43(2):178~190
    [29]郭孔辉.关于汽车操纵稳定性脉冲实验分析方法的研究.上海托汽. 1979年第4期
    [30]郭孔辉、王德宝.高速汽车操纵稳定性试验评价方法的研究.汽车技术. 1980年第2期
    [31]郭孔辉.操纵稳定性的基本分析.汽车技术. 1976年第2期
    [32]郭孔辉.汽车操纵稳定性.长春:吉林人民出版社. 1983
    [33]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社. 1991
    [34]余智生.汽车理论.北京:机械工业出版社. 2002
    [35]米奇克·M.汽车动力学(B卷).北京:人民交通出版社, 1994
    [36]陈立平,张云清.机械系统动力学分析及ADAMS应用,北京:清华大学出版社,2005
    [37] R. H. Myers, A. H. Khuri, G. G. Vining. Response surface alternative to the Taguchi robust parameter design approach, American Statistics, 1992, 46:131~139
    [38] G. G. Vining, R.H. Myers. Combining Taguchi and response surface philosophies: a dual response approach. Journal of Quality Technology, 1990, 22(1):3845
    [39]田口玄一.开发设计阶段的质量工程学.北京:兵器工业出版社, 1990, 12~16
    [40] G. Taguchi. Introduction to quality engineering. Unipub, Whithe plains, NY, 1986: 5~8
    [41] GB/T 6323.2-1994《汽车操纵稳定性试验方法转向瞬态响应试验(转向盘转角阶跃输入)》中华人民共和国国家标准
    [42] GB5902-86《汽车平顺性脉冲输入行驶试验方法》.中华人民共和国国家标准
    [43] Peter A. Barros Jr, Michelle R. Kirby and Dimitri N. Mavris. Impact of Sampling Technique Selection on the Creation of Response Surface Models. SAE 2004-01-3134
    [44] Joseph P. Ryan, Steven P. Fuja, Henry A. Schmid, General Motors Corporation. Objective Ride and Handling Goals for the 1997 Chevrolet Corvette. SAE Technical Paper 970091, 1997
    [45] Henry A. Schmid, Steven P. Fuja, Joseph P. Ryan. Design Synthesis of Suspension Architecture for the 1997 Chevrolet Corvette General Motors Corporation. SAE Technical Paper 970091, 1997
    [46] Michael W. Neal, Mary A. Dona, General Motors Corporation. Ride and Handling Development of 1997 Chevrolet Corvette. SAE Technical Paper 970098, 1997
    [47] Stephen D. Longo. Edward D. Moss, Brian W. Deutschel, Midsize/Luxury Car Group, General Motors. The 1997 Chevrolet Corvette Structure Architecture Synthesis. SAE Technical Paper 970089, 1997
    [48] Steven P. Fuja, Henry A. Schmid, Joseph P. Ryan. Synthesis of Chassis Parameters for Ride and Handling on the 1997 Chevrolet Corvette. SAE Technical Paper 970097, 1997
    [49] Kenneth D. Norman. Objective Evaluation of On-Center Handling Performance. SAE paper 840069
    [50] J Somerville. et al.. Improvement in the Quantification of On-Center Handling Quality. SAE paper 930827
    [51] H. Shimomura, et al.. Experimental Analysis of Steering Response Characteristics and Steering Characteristics. Int. J. of Vehicle Design, vol. 12, No. 2, 1991
    [52] Sobieski J., James B., and Riley M.. Structural Sizing by Generalized, Multilevel Optimization. AIAA J. 1987, 25(1), pp. 139–145
    [53] Cramer E., Dennis J., Frank P., Lewis R., and Shubin G.. Problem Formulation for Multidisciplinary Optimization. SIAM J. Control Optim.. 1994, 4(4), pp. 754–776
    [54] Braun R.. Collaborative Optimization: An Architecture For Large-Scale Distributed Design. Doctoral Dissertation, Stanford University, Stanford. 1996.
    [55] Tappeta R., and Renaud J.. Multiobjective Collaborative Optimization. ASME J. Mech. Des.. 1997, 119(3), pp. 403–411
    [56] Alexandrov N. M., and Lewis R. M.. Analytical and Computational Aspects of Collaborative Optimization. NASA TM-2000-210104, Hampton, VA. 2000
    [57] Michelena N. F., Papalambros P. Y., Park H. A., and Kulkarni D.. Hierarchical Overlapping Coordination for Large-Scale Optimization by Decomposition. AIAA J.. 1999.37(7), pp. 890–896
    [58] Park H. A., Michelena N. F., Kulkarni D., and Papalambros P. Y.. Convergence Criteria for Overlapping Coordination Under Linear Constraints. Journal of Computational Optimization and Applications. 2001, 18(3), pp.273–293
    [59] Papalambros P. Y., and Wilde D.. Principles of Optimal Design: Modeling and Computation (2nd Ed.), Cambridge University Press, New York. 2000
    [60] Bazaraa M. S., Sherali H. D., and Shetty C. M.. Nonlinear Programming (2nd Ed.), John Wiley & Sons, Inc., New York. 1993
    [61] IEEE. IEEE Standard for Application and Management of the Systems Engineering Process. IEEE Std. 1998, 1220–1998
    [62] Hogland D.. A Parametric Model to Generate Subsystem Constitutive Laws for a Vehicle Ride Model. M. S. Thesis, Department of Mechanical Engineering, Universityof Michigan, Ann Arbor. 2000
    [63] Hann S. A., Nakamura S., and Sayers M. W.. Painless Derivation and Programming of Equations of Motion for Vehicle Dynamics. SAE Paper No.923010
    [64] Shigley J. E., and Mischke C. R.. Mechanical Engineering Design (5th Ed.). McGraw-Hill Co., New York. 1989
    [65]赖宇阳,袁新.基于遗传算法和逐次序列规划的叶栅基迭优化[J].工程热物理学报, 2003, 24(1): 52~54
    [66] L. Ingber. Adaptive Simulated Annealing (ASA). Global optimization C-code, Caltech Alumni Association [M], Pasadena, CA 1993
    [67]陈立周.稳健设计.北京:机械工业出版社,2000
    [68]康立山,谢云等.非数值并行算法(第一册).北京:科学出版社, 1998
    [69] Dave Crolla,喻凡.车辆动力学及其控制.北京:人民交通出版社,2004
    [70] Wong, J.Y., 1993, Theory of Ground Vehicles (2nd Ed.), Jonh Wiley & Sons, Inc., New York
    [71] M. Kokkolaras, R. Fellini, H. M. Kim, N. F. Michelena, and P. Y. Papalambros. Extension of the target cascading formulation to the design of product families. Struct Multidisc Optim , 2002, 24, pp. 293–301
    [72] D. Geoff Rideout, Jeffrey L. Stein, Jeffrey L. Stein. Target Cascading: A Design Process for Achieving Vehicle Ride and Handling Targets. Proceedings of IMECE 2001
    [73]夏人伟.工程优化理论与算法.北京:北京航空航天大学出版社,2003
    [74] Huibin Liu. Target Setting and Cascading for Design of Complex Engineering Systems under Uncertainty. Doctoral Dissertation, Northwestern University, 2006