精子特异性LRRC52的生理学功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阐明精子功能调控机制是诊断和治疗男性不育、研发新型男性避孕药的前提。离子通道是调控精子功能的关键因子。精子特异性SL03通道是生理条件下调控精子功能的主要K+通道。离体实验表明,睾丸特异性表达的LRRC52(Leucine-Rich-Repeat-Containing protein52)具有调节SL03通道的功能。然而,LRRC52是否为SL03的在体调节亚基尚不清楚。本研究设计、制备抗LRRC52胞外段的多克隆抗体,对小鼠和正常人精子LRRC52生理功能及其机制进行研究。应用分子生物学、免疫荧光、电生理及精子功能分析等手段,我们发现LRRC52是SL03通道的在体调节亚基,是介导精子钾电流(IKSper)的关键组分。此外,我们的结果还提示,LRRC52可作为设计精子功能调控化合物的分子靶点。
     第一部分LRRC52在小鼠成熟精子的表达、定位及与SLO3的关系
     为获得能从细胞外特异性作用于LRRC52的化合物,我们设计制备了抗LRRC52胞外段的多克隆抗体(LID1)。通过Western blot、精子凝集实验、免疫荧光和免疫共沉淀等技术,我们验证了所获抗体的特异性,研究了在体条件下LRRC52与SLO3的相关性。结果表明:1)小鼠精子蛋白中可检测到LRRC52, LID1孵育的精子发生明显的凝集反应;2) LRRC52分布于小鼠精子尾部,尤以中段明显,并与SLO3存在明显的共定位;3)小鼠精子LRRC52与SLO3构成蛋白复合体。这些结果提示,LRRC52是SLO3的潜在调节亚基。
     第二部分LRRC52对小鼠成熟精子膜电流的影响
     为阐明LRRC52的生理功能,我们应用全细胞膜片钳技术研究了LID1对精子膜电流的影响。结果表明:1)LID1显著抑制小鼠IKSper但不影响精子钙电流(ICatSper);2) LID1对IKSper电导.电压曲线(G-V曲线)的影响与异体表达系统中LRRC52亚基对SL03的作用相符。这些结果提示LRRC52是构成精子钾通道、介导精子钾电流的重要组分。
     第三部分LRRC52对小鼠成熟精子生理功能的影响
     应用计算机辅助精子分析(CASA)、金霉素(CTC)染色、体外受精(IVF)、调节性体积下降(RVD)检测等实验手段,我们观察了LID1对精子活力、顶体反应(AR)、体外受精能力及RVD等相关生理功能指标的影响。结果表明:1)LID1显著抑制小鼠精子总运动力、直线速度(VSL)、曲线速度(VCL)和平均路径速度(VAP);2)LID1不影响自发性AR的发生率,但显著抑制A23187诱发的AR发生率;3)LID1孵育对精子RVD能力的影响不显著;4)LID1显著抑制小鼠精子的体外受精率。这些结果提示,LRRC52在精子生理功能中扮演重要角色,是开发调控精子功能化合物的潜在分子靶点。
     第四部分LRRC52在人成熟精子的表达及其生理功能
     介导人精子IKSper的离子通道分子组成尚不清楚。由于用于制备LID1的LRRC52抗原片段在小鼠与人完全相同,我们用LID1初步观察LRRC52在人精子的表达及其可能的生理功能。结果表明:1) LRRC52和SLO3均在人精子蛋白中有表达,二者主要分布于精子尾部中段;2)LID1降低人精子顶体反应的发生率;3)LD1抑制人精子总运动力和曲线速度(VCL)。这些结果提示,LRRC52可能扮演与其在小鼠精子上类似的功能角色。
Elucidating the molecular mechanisms underlying the regulation of sperm functions is crucial for treatment of male infertility and development of novel contraceptives. The ion channels in the cytosolic membrane are critical regulators of sperm functions. Previous studies have shown that the sperm-specific SLO3potassium channel plays a vital role in fertility of male mouse. In addition, studies in heterologous expression system have shown that the testis-specific LRRC52(Leucine-Rich-Repeat-Containing protein52) holds the ability to regulate SLO3channels. However, it remains to be determined whether LRRC52is a native auxiliary subunit for SLO3in sperm. In this study, we designed a polyclonal antibody recognizing an extracellular domain of LRRC52and investigated the physiological functions of LRRC52and the related mechanisms in both mouse and human sperm, using a diversity of methods including biochemistry, immunofluorescence, electrophysiology and sperm function analysis. Our results suggest that LRRC52is a physiologically important interacting partner of SLO3to mediate potassium current in sperm (IkSper), and LRRC52may serve as a potential molecular target for developing regulatory compounds of sperm functions.
     PART1. Expression, localization of LRRC52and its interaction with SLO3in mouse sperm
     In order to obtain an agent that can get access to LRRC52from the extracellular side, we designed a polyclonal antibody (LID1) recognizing an extracellular domain of LRRC52. Using western blot, sperm agglutination test, immunofluorescent staining and co-immunoprecipitation (Co-IP), we observed the specificity of LID1, and then investigated the co-localization and interaction between LRRC52and SLO3in mouse sperm. The results showed that:1) LRRC52was detected from mouse sperm protein extracts, and sperm incubated with LID1exhibited significant agglutination;2) LRRC52was specifically localized at the sperm flagellum, especially at the mid-piece region where SLO3was located;3) there was co-assembly between LRRC52and SL03in mouse sperm. These results indicate that LRRC52is a potential auxiliary subunit for native SLO3channel.
     PART2. Effects of LRRC52on membrane currents in mouse sperm
     To clarify the physiological importance of LRRC52, we investigated its effects on sperm-membrane currents by whole-cell patch-clamp technique. The results showed that:1) LID1inhibited IKSper in a dose-dependent manner, with no effect on calcium current (Icatsper);2) LID1displayed a similar effect on the conductance-voltage curve (G-V curve) of IKSper with that in heterologous expression system. These results indicate that LRRC52constitutes a functional component of the channel mediating IKSper.
     PART3. Effects of LRRC52on physiological functions of mouse sperm
     To further verify the physiological function of LRRC52, we examined the effects of LID1on sperm viability, AR (acrosome reaction), fertilization capacity and RVD (regulatory volume decrease) capacity, using computer-assisted sperm analysis (CASA), chlortetracycline (CTC) staining, in vitro fertilization (IVF) and sperm morphology analysis, respectively. The results indicated that:1) LID1incubation significantly reduced sperm viability, straight progressive velocity (VSL), curvilinear velocity (VCL) and average path velocity (VAP);2) LID1significantly inhibited the percentage of AR induced by A23187, leaving the spontaneous AR unaffected;3) LID1did not influence the RVD ability of sperm;4) LID1reduced sperm fertility in vitro. Taken together, these results strongly support that LRRC52is a physiologically regulatory subunit of SLO3, and may serve as a potential molecular target for developing regulatory compounds of sperm functions.
     PART4. Existence and physiological functions of LRRC52in human sperm
     The molecular composition of ion channels mediating potassium current in human sperm has been of a great scientific interest. Since the sequence of amino acids for the antigenic determinant of LRRC52is completely conserved in mouse and human, we attempted to study the expression profile and possible physiological functions of LRRC52in human sperm using LID1. The results were:1) both LRRC52and SLO3were expressed in human sperm and located in the mid-piece of sperm flagellum;2) LID1significantly reduced the occurrence of both spontaneous and induced AR in human sperm;3) LID1inhibited the motility and VCL of human sperm. These results suggest that LRRC52may play similar physiological roles in human sperm, as in mouse sperm.
引文
[1]Joffe M. What has happened to human fertility [J]? Hum Reprod.2010,25(2):295-307
    [2]肖红梅,钟群,卢光琇.不孕相关因素及病因分析.国际病理科学与临床杂志[J].2007,27(4):105-107.
    [3]刘以训.我国男性避孕研究的发展前景[J].自然科学进展.2004,14(3):249-255.
    [4]Bottcher B, Radenbach K, Wildt L, et al. Hormonal contraception and depression:a survey of the present state of knowledge [J]. Arch Gynecol Obstet.2012,286(1):231-236.
    [5]Giojalas LC, Rovasio RA. Mouse spermatozoa modify their motility parameters and chemotactic response to factors from the oocyte microenvironment [J]. Int J Androl. 1998,21(4):201-206.
    [6]Hamamah S, Gatti JL. Role of the ionic environment and internal pH on sperm activity [J]. Hum Reprod.1998,13(4):20-30.
    [7]郑莉萍,李葆明,曾旭辉.精子特异性钙离子通道CatSper及其功能调控[J].生理科学进展.2012,12(1):12-15.
    [8]Lishko PV, Kirichok Y, Ren D, et al. The control of male fertility by spermatozoan ion channels [J]. Annu Rev Physiol.2012,74(1):453-475.
    [9]Shukla KK, Mahdi AA, Rajender S. Ion channels in sperm physiology and male fertility and infertility [J]. J Androl.2012,33(5):777-788.
    [10]Chan HC, Chen H, Ruan Y, et al. Physiology and pathophysiology of the epithelial barrier of the female reproductive tract:role of ion channels [J]. Adv Exp Med Biol.2012,763: 193-217.
    [11]Navarro B, Kirichok Y, Chung JJ, et al. Ion channels that control fertility in mammalian spermatozoa [J]. Int J Dev Biol.2008,52(2):607-613.
    [12]Darszon A, Trevino CL, Wood C, et al. Ion channels in sperm motility and capacitation [J]. Soc Reprod Fertil Suppl.2007,65(1):229-244.
    [13]Santi CM, Orta G, Salkoff L, et al. K+ and Cl- channels and transporters in sperm function [J]. Curr Top Dev Biol.2013,102:385-421.
    [14]Castellano LE, Trevin CL, Rodn D, et al. Transient receptor potential (TRPC) channels in human sperm:expression, cellular localization and involvement in the regulation of flagellar motility [J]. FEBS Letters.2003,541:69-74.
    [15]Kirichok Y, Navarszon Aro B, Clapham DE. Whole cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel [J]. Nature.2006,439:737-740.
    [16]Qi H, Moran MM, Navarro B, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility [J]. Proc Natl Acad Sci USA.2007, 104:1219-1223.
    [17]Hildebrand MS, Avenarius MR, Fellous M, et al. Genetic male infertility and mutation of CATSPER ion channels [J]. Eur J Hum Genet.2010,18(11):1178-1184.
    [18]Barratt CL, PublicoverSJ. Sperm are promiscuous and CatSper is to blame....[J]. EMBO J.2012,31(7):1624-1626.
    [19]Lishko PV, Kirichok Y. The role of Hv1 and CatSper channels in sperm activation [J]. J Physiol.2010,588(23):4667-4672.
    [20]Lishko PV, Botchkina IL, Fedorenko A, et al. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel [J]. Cell.2010,140:327-337.
    [21]Zheng LP, Wang HF, Li BM, et al. Sperm-specific ion channels:targets holding the most potential for male contraceptives in development [J]. Contraception.2013,88(4):485-491
    [22]Barfield JP, Yeung CH, Cooper TG.The effects of putative K+ channel blockers on volume regulation of murine spermatozoa [J]. Biol Reprod.2005,72(5):1275-1281.
    [23]Benoff S. Receptors and channels regulating acrosome reactions. Hum Fertil (Camb) [J].1999,2(1):42-55.
    [24]Barfield JP, Yeung CH, Cooper TG. Characterization of potassium channels involved in volume regulation of human spermatozoa [J]. Hum Reprod.2005, 11(12):891-897.
    [25]Hur CG, Choe C, Kim GT. Expression and localization of two-pore domain K(+) channels in bovine germ cells [J]. Reproduction.2009,37(2):237-244.
    [26]Chow GE, Muller CH, Curnow EC, et al. Expression of two-pore domain potassium channels in nonhuman primate sperm [J]. Fertil Steril.2007,87(2):397-404.
    [27]Navarro B, Kirichok Y. Clapham DE. KSper, a pH-sensitive K+ current that controls sperm membrane potential [J]. Proc Natl Acad Sci USA.2007,104 (18):7688-7692.
    [28]Zeng XH, Yang C, Kim ST, et al. Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa [J]. Proc Natl Acad Sci USA.2011,108 (14):5879-5884.
    [29]Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, et al. The SLO3 sperm-specific potassium channel plays a vital role in male fertility [J]. FEBS Lett.2010,584(5):1041-1046.
    [30]Yang C, Zeng XH, Zhou Y, et al. LRRC52 (leucine-rich-repeat-containing protein 52), a testis-specific auxiliary subunit of the alkalization-activated SLO3 channel [J]. Proc Natl Acad Sci USA.2011,108(48):19419-19424
    [31]Leonetti MD, Yuan P, Hsiung Y, et al. Functional and structural analysis of the human Slo3 pH- and voltagegated K+ channel [J]. Proc Natl Acad Sci USA.2012,109(47):19274-19279.
    [32]Li HG, Ding XF, Liao AH, et al. Expression of CatSper family transcripts in the mouse testis during post-natal development and human ejaculated spermatozoa:relationship to sperm motility [J]. Mol Hum Reprod.2007,13(5):299-306.
    [33]Schreiber M, A Wei, A Yuan, et al. SLO3, a novel pH-sensitive K+ channel from mammalian spermatocytes [J]. J Biol Chem.1998,273:3509-3516.
    [34]Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique [J] Mol Hum Reprod.2011,17(8):478-499.
    [35]Zhang X, Zeng XH, Xia XM, et al. pH-regulated Slo3 K+ channels:properties of unitary currents [J]. J Gen Physiol.2006,128:301-315.
    [36]Zhang X, Zeng XH, Lingle CJ. Slo3 K+channels:voltage and pH dependence of macroscopic currents [J]. J Gen Physiol.2006,128:317-336.
    [37]Santi CM, Butler A, Kuhn J, et al. Bovine and mouse SLO3 K+ channels:evolutionary divergence points to an RCK1 region of critical function [J]. J Biol Chem.2009,284(32):21589-21598.
    [38]Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif [J]. Curr Opin Struct Biol [J].2001,11:725-732.
    [39]Kajava AV. Structural diversity of leucine-rich repeat proteins [J]. J Mol Biol.1998,277: 519-527.
    [40]Dolan J, Walshe K, Alsbury S, et al. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns [J]. BMC Genomics.2007,8:320-344.
    [41]Yan J, Aldrich RW. BK potassium channel modulation by leucine-rich repeat-containing proteins [J]. Proc Natl Acad Sci USA.2012,109(20):7917-7922.
    [42]World Health Organization:WHO laboratory manual for the examination and processing of human semen.5th ed. Switzerland, WHO Press,2010.
    [43]Xia XM, Zhang X, Lingle CJ. Ligand-dependent activation of Slo family channels is defined by interchangeable cytosolic domains [J]. J Neurosci.2004,24(24):5585-5591.
    [44]Calderone V. Large-conductance, Ca2+-activated K+ channels:function, pharmacology and drugs [J]. Curr Med Chem.2002,9(14):1385-1395.
    [45]Qian X, Nimigean CM, Niu X, et al. SLO1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels [J]. J Gen Physiol.2002,120(6):829-843.
    [46]Budelli G, Geng Y, Butler A, et al. Properties of Slo 1 K+ channels with and without the gating ring [J]. Proc Natl Acad Sci U S A.2013,110(41):16657-16662.
    [47]Contreras GF, Castillo K, Enrique N, et al. A BK (SLO 1) channel journey from molecule to physiology [J]. Channels (Austin).2013,7(6). [Epub ahead of print]
    [48]Lauren J, Airaksinen MS, Saarma M, Timmusk T. A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system[J]. Genomics.2003,81:411-421.
    [49]Yan J, Aldrich RW. LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium [J]. Nature.2010,466(7305):513-516.
    [50]Yan J, Aldrich RW. BK potassium channel modulation by leucine-rich repeat-containing proteins [J]. Proc Natl Acad Sci USA.2012,109(20):7917-7922.
    [51]熊承良,吴明章,刘继红,黄宇烽主编.人类精子学[M].湖北科学技术出版社.2002.
    [52]Guo R, Xu D, Wang W. Identification and analysis of new proteins involved in the DNA damage response network of Fanconi anemia and Bloom syndrome [J]. Methods.2009,48(1): 72-79.
    [53]Neill JD, Plant TM, Pfaff DW, et al. Knobil and Neill's Physiology of Reproduction [M]. Boston:Elsevier.2006.
    [54]De la Vega-Beltran JL, Sanchez-Cardenas C, Krapf D, et al. Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction [J]. J Biol Chem.2012,287(53):44384-44393.
    [55]Martinez-Lopez P, Santi CM, Trevino CL, et al. Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by SLO3 channels. Biochem Biophys Res Commun [J].2009, 381(2):204-209.
    [56]Tang QY, Zhang Z, Xia XM, et al. Block of mouse Slol and Slo3 K+ channels by CTX, IbTX, TEA,4-AP and quinidine [J]. Channels (Austin).2010,4(1):22-41.
    [57]Almassy J, Begenisich T. The LRRC26 protein selectively alters the efficacy of BK channel activators [J]. Mol Pharmacol.2012,81(1):21-30.
    [58]Kirichok Y, Navarro B, Clapham DE. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel [J]. Nature 2006,439(7077):737-740.
    [59]Bai JP, Shi YL. Inhibition of Ca2+ channels in mouse spermatogenic cells by male antifertility compounds from Tripterygium wilfordii Hook. f [J]. Contraception.2002,65(6): 441-445.
    [60]Shi YL, Bai JP, Wang WP. Ion-channels in human sperm membrane and contraceptive mechanisms of male antifertility compounds derived from Chinese traditional medicine. Acta Pharmacol Sin [J].2003,24(1):22-30.
    [61]Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm [J]. Nature.2011,471 (7338):387-391.
    [62]Strunker T, Goodwin N, Brenker C, et al. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm [J]. Nature.2011,471(7338):382-386.
    [63]Marconi M, Sanchez R, Ulrich H, et al. Potassium current in mature bovine spermatozoa [J]. Syst Biol Reprod Med.2008.54(6):231-239.
    [64]Orta G, Ferreira G, Jose O, et al. Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction [J]. J Physiol.2012:2659-2675.
    [65]Navarro B, Miki K, Clapham DE. ATP-activated P2X2 current in mouse spermatozoa [J]. Proc Natl Acad Sci U S A.2011,108(34):14342-14347.
    [66]Figueiras-Fierro D, Acevedo JJ, Martinez-Lopez P. Electrophysiological evidence for the presence of cystic fibrosis transmembrane conductance regulator (CFTR) in mouse sperm [J]. J Cell Physiol.2013,228(3):590-601.
    [67]Chavez JC, de la Vega-Beltran JL, Escoffier J, et al. Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization [J]. PLoS One.2013,8(4): e60578.
    [68]Nazari M, Mirshahi M, Mowla SJ, et al. Investigation in vitro Expression of CatSper Sub Fragment followed by Production of Polyclonal Antibody:Potential Candidate for The Next Generation of Non Hormonal Contraceptive [J]. Cell J.2012,14(3):215-224.
    [69]Dallas ML, Deuchars SA, Deuchars J. Immunopharmacology:utilizing antibodies as ion channel modulators [J].Expert Rev Clin Pharmacol.2010,3(3):281-289.
    [70]Karnabi E, Qu Y, Wadgaonkar R, et al. Congenital heart block:identification of autoantibody binding site on the extracellular loop (domain I, S5-S6) of alpha(1D) L-type Ca channel [J]. J Autoimmun.2010,34(2):80-86.
    [71]Ludden MJ, Ling XY, Gang T, et al. Multivalent binding of small guest molecules and proteins to molecular printboards inside microchannels [J]. Chemistry.2008,14(1):136-142.
    [72]Jiang Y, Ruta V, Chen J, et al. The principle of gating charge movement in a voltage-dependent K+ channel [J]. Nature.2003,423(6935):42-48.
    [73]Weber F, Rudel R, Aulkemeyer P, et al. Anti-GM1 antibodies can block neuronal voltage-gated sodium channels [J]. Muscle Nerve.2000,23(9):1414-1420.
    [74]Austin CR. The capacitation of the mammalian sperm [J]. Nature.1952,170:326.
    [75]Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes [J]. Nature. 1951,168:697-698.
    [76]Zeng Y, Clark EN, Florman HM. Sperm membrane potential:hyperpolarization during capacitation regulates zona pellucida-dependent acrosomal secretion [J]. Dev Biol.1995,171: 554-563.
    [77]Davis BK. Timing of fertilization in mammals:Sperm cholesterol/phospholipid ratio as a determinant of the capacitation interval [J]. Proc Natl Acad Sci USA.1981,78:7560-7564.
    [78]Harrison RA. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate [J]. Molecular Reproduction and Development.2004; 67: 337-352.
    [79]Baldi E, Casano R, Falsetti C, et al. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa [J]. J Androl.1991,12:323-330.
    [80]DasGupta S, Mills CL, Fraser LR. Ca(2+)-related changes in the capacitation state of human spermatozoa assessed by a chlortetracycline fluorescence assay [J]. J Reprod Fertil.1993,99: 135-143.
    [81]Harrison RA. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate [J]. Mol Reprod Dev.2004,67:337-352.
    [82]Ho K, Wolff CA, Suarez SS. CatSper-null mutant spermatozoa are unable to ascend beyond the oviductal reservoir [J]. Reprod Fertil Dev.2009,21(2):345-350.
    [83]Quill TA, Sugden SA, Rossi KL, et al. Hyperactivated sperm motility driven by CatSper2 is required for fertilization [J]. Proc Natl Acad Sci USA.2003,100:14869-14874.
    [84]Jin J, Jin N, Zheng H, et al. Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility [J]. Biol Reprod.2007,77:37-44.
    [85]Zhang Z, Wang GL, Li HX, et al. Regulation of fertilization in male rats by CatSper2 knockdown [J]. Asian J Androl.2012,14(2):301-309.
    [86]Zeng XH, Navarro B, Xia XM, et al. Simultaneous knockout of SLO3 and CatSperl abolishes all alkalization-and voltage-activated current in mouse spermatozoa [J]. J Gen Physiol.2013,142 (3):305-313.
    [87]Ren D, Navarro B, Perez G, et al. A sperm ion channel required for sperm motility and male Fertility [J]. Nature.2001,413:603-609.
    [88]Quill TA, Ren D, Clapham DE, et al. A voltage-gated ion channel expressed specifically in spermatozoa [J]. Proc Natl Acad Sci USA.2001,98(22):12527-12531.
    [89]Qi H, Moran MM, Navarro B, et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility [J]. Proc Natl Acad Sci USA.2007, 104:1219-1223.
    [90]Xia J, Ren D. Egg coat proteins activate Calcium entry into mouse sperm via CATSPER channels [J]. Biol Reprod.2009,80(6):1092-1098.
    [91]Xia J, Reigada D, Mitchell CH, et al. CATSPER channel-mediated Ca2+ entry into mouse sperm triggers a tail-to-head propagation [J]. Biol Reprod.2007,77(3):551-559.
    [92]Xia J, Ren D. The BSA-induced Ca2+ influx during sperm capacitation is CATSPER channel-dependent [J]. Reprod Biol Endocrinol.2009,7:119.
    [93]陈大元主编.受精生物学:受精机制与生殖工程[M].科技出版社.2002
    [94]Zheng LP, Huang J, Zhang DL, et al. C-erbB2 and c-myb induce mouse oocyte maturation involving activation of maturation promoting factor [J]. DNA and Cell Biol.2012,31(2): 164-170.
    [95]Yoshida M, Hiradate Y, Sensui N, et al. Species-specificity of sperm motility activation and chemotaxis:a study on ascidian species [J]. Biol Bull.2013,224(3):156-165.
    [96]De Lisa E, Salzano AM, Moccia F, et al. Sperm-attractant peptide influences the spermatozoa swimming behavior in internal fertilization in Octopus vulgaris [J]. J Exp Biol.2013,216 (12):2229-2237.
    [97]Boryshpolets S, Kowalski RK, Dietrich GJ, et al. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters [J]. Theriogenology.2013, 80(7):758-765.
    [98]Espinosa F, Darszon A. Mouse sperm membrane potential:changes induced by Ca2+ [J]. FEBS Lett.1995,372:119-125.
    [99]Sugiyama H, Chandler DE. Sperm guidance to the egg finds calcium at the helm. Protoplasma [J].2013, Epub ahead of print.
    [100]Munoz-Garay C, De la Vega-Beltran JL, Delgado R, et al. Inwardly rectifying K'channels in spermatogenic cells:functional expression and implication in sperm capacitation [J]. Dev Biol.234:261-274.
    [101]Cooper TG. The epididymis, cytoplasmic droplets and male fertility [J]. Asian J Androl. 2011,13(1):130-138.
    [102]郑莉萍,李葆明,曾旭辉.精子特异性Slo3钾通道研究进展[J].生理科学进展.2012,43(4):286-290.
    [103]Chen Q, Peng H, Lei L, et al. Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration [J]. Cell Res.2011,21(6):922-933.
    [104]Callies C, Cooper TG, Yeung CH. Channels for water efflux and influx involved in volume regulation of murine spermatozoa [J]. Reproduction.2008,136(4):401-410.
    [105]Yeung CH, Barfield JP, Cooper TG. The role of anion channels and Ca2+ in addition to K+ channels in the physiological volume regulation of murine spermatozoa [J]. Mol Reprod Dev. 2005,71(3):368-379.
    [106]Vulcano GJ, Moses DF, Valcarcel A, et al. A lineal equation for the classification of progressive and hyperactive spermatozoa [J]. Math Biosci.1998,149(1):77-93.
    [107]Peedicayil J, Deendayal M, Sadasivan G, et al. Assessment of hyperactivation, acrosome reaction and motility characteristics of spermatozoa from semen of men of proven fertility and unexplained infertility [J]. Andrologia.1997,29(4):209-218.
    [108]Alcoba DD, Pimentel AM, Brum IS, et al. Developmental potential of in vitro or in vivo matured oocytes [J]. Zygote.2013,1-6.
    [109]Shen S, Wang J, Liang J, et al. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia [J]. World J Urol.2013. [Epub ahead of print]
    [110]Salvolini E, Buldreghini E, Lucarini G, et al. Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility [J]. Fertil Steril.2013,99(3):697-704.
    [111]周梦芝,王华锋,郑月慧等.重金属污染与雄(男)性不育[J].中国公共卫生.2013,5(4):1.4.
    [112]Dirami T, Rode B, Jollivet M, et al. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia [J]. Am J Hum Genet.2013,92(5):760-766.
    [113]Liu B, Wang P, Wang Z, et al. Analysis and difference of voltage-dependent anion channel mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia [J].J Assist Reprod Genet.2010,27(12):719-724.
    [114]Liu B, Wang P, Wang Z, et al. The use of anti-VDAC2 antibody for the combined assessment of human sperm acrosome integrity and ionophore A23187-induced acrosome reaction [J]. PLoS One.2011,6(2):e16985.
    [115]Chen H, Ruan YC, Xu WM, et al. Regulation of male fertility by CFTR and implications in male infertility [J]. Hum Reprod Update.2012,18(6):703-713.
    [116]Teixeira S, Sa R, Grangeia A. Immunohystochemical analysis of CFTR in normal and disrupted spermatogenesis [J]. Syst Biol Reprod Med,2013,59(1):53-59.
    [117]Li HG, Liao AH, Ding XF, et al. The expression and significance of CATSPER1 in human testis and ejaculated spermatozoa [J]. Asian J Androl.2006,8(3):301-306.
    [118]Avenarius MR, Hildebrand MS, Zhang Y, et al. Human male infertility caused by mutations in the CATSPER1 channel protein [J]. Am J Hum Genet.2009,84(4):505-510.
    [119]Smith JF, Syritsyna O, Fellous M, et al. Disruption of the principal progesterone-activated Ca2+ channel in a CatSper2-deficient infertile patient [J]. Proc Natl Acad Sci USA.2013,110 (17):6823-6828.
    [120]Carlson AE, Burnett LA, del Camino D. et al. Pharmacological targeting of native CatSper channels reveals a required role in maintenance of sperm hyperactivation [J]. PLoS One. 2009,4(8):e6844.
    [121]Li H, Ding X. Guan H, Xiong C. Inhibition of human sperm function and mouse fertilization in vitro by an antibody against cation channel of sperm 1:the contraceptive potential of its transmembrane domains and pore region [J]. Fertil Steril.2009,92(3): 1141-1146.
    [122]Li H, Ding X, Guo C, et al. Immunization of male mice with B-cell epitopes in trans-membrane domains of CatSperl inhibits fertility [J]. Fertil Steril.2012,97(2):445-452.
    [123]Quill TA, Wang D, Garbers DL. Insights into sperm cell motility signaling through sNHE and the CatSpers [J]. Mol Cell Endocrinol.2006,250(1-2):84-92.
    [124]Brenker C, Goodwin N, Weyand I, et al. The CatSper channel:a polymodal chemosensor in human sperm [J]. EMBOJ.2012,31(7):1654-1665.
    [125]Alasmari W, Barratt CL, Publicover SJ, et al.The clinical significance of calcium-signalling pathways mediating human sperm hyperactivation [J]. Hum Reprod.2013,28(4):866-876.
    [126]Munoz-Garay C, Vega-Beltran JLD, Delgado R, et al. Inwardly rectifying K'channels in spermatogenic cells:functional expression and implication in sperm capacitation [J]. Dev Biol.2001,234:261-274.
    [127]Cohen-Dayag A, Tur-Kaspa I, Dor J, et al. Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors [J]. Proc Natl Acad Sci USA. 1995,92:11039-11043.
    [128]Nadja Mannowetz, Natasha M Naidoo, Seung-A Sara Choo, et al. Slol is the principal potassium channel of human spermatozoa [J]. eLife.2013,2:e01009