脊索瘤放化疗抵抗机制的初步研究及骨肉瘤耐药细胞系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     药物耐药是限制肿瘤的化疗疗效的主要问题。肿瘤可能是在治疗前就对化学药物耐受,而耐药也能通过最初对化疗敏感的肿瘤的治疗过程中获得。这些继发耐药的一个令人沮丧的特征是这些肿瘤不但对最初用于治疗它们的药物耐药,而且对其他不同作用机制的药物产生交叉耐药。耐药,不管是原发还是继发,被认为将对超过90%的转移癌患者治疗失败,而且耐药的微转移肿瘤细胞也可能降低在后续处理中的化疗的作用。显然,如果肿瘤耐药能被克服,那么肿瘤患者存活率的提高将是非常显著的。许多因素将影响化疗药物的敏感性。这些包括限制到达肿瘤的药物数量,影响肿瘤微环境的机制等。肿瘤细胞耐药可以在多个水平发生,包括增加药物排出,减少药物摄入,药物失活,药物靶点的改变,药物造成的损害作用,凋亡的逃逸。
     脊索瘤比较少见,是具有局部侵袭的骨原发恶性肿瘤,来源于脊索残存物。肿瘤主要发生在中轴骨,好发于颅底区域的蝶骨和骶尾部。脊索瘤通常生长缓慢,低度恶性,对原发肿瘤的控制仍是治疗上的主要挑战。脊索瘤的治疗方法主要依赖于外科手术,手术切除加术后放疗是目前最好的治疗方法。化学治疗对脊索瘤不是主要选择,多因为对化疗药物的细胞毒性抵抗所致,而新近发现的靶向制剂可能提供新的选择。
     骨肉瘤是一种常见的骨原发恶性肿瘤,其化疗后常有多药耐药现象发生,严重影响患者的治疗效果和预后,因此对其耐药性的检测、耐药机制及逆转的研究一直是众多学者研究的热点。在体外建立多药耐药的细胞模型已逐渐成为研究骨肉瘤多药耐药性的有利工具。紫杉醇作为一种化疗药物,在本中心开展了大量的临床、基础研究并作为骨肉瘤化疗的基础药物,其在临床初始化疗缓解后常会产生耐药性,严重影响患者治疗效果,因此采用紫杉醇诱导建立骨肉瘤多药耐药细胞模型,对探讨骨肉瘤细胞多药耐药机制和耐药逆转治疗具有重要意义。
     研究目的:
     探讨多药耐药基因1(MDR1)、缺氧诱导因子1α(HIF-1α)蛋白、多药耐药相关蛋白(MRP1)在脊索瘤中的表达与脊索瘤病理特征及放化疗抵抗之间的关系。研究脊索瘤CM-319细胞的放化疗敏感性。建立骨肉瘤耐紫杉醇细胞系,探讨骨肉瘤多药耐药的发生机制。
     研究内容:
     1、脊索瘤细胞系CM-319的生物学鉴定:通过免疫细胞化学染色、细胞周期分析、透射电镜、糖原染色等分析CM-319的生物学特性。
     2、脊索瘤细胞系中放化疗相关基因的检测:采用RT-PCR、间接免疫荧光、免疫细胞化学Envision法及western blott法对脊索瘤细胞系CM-319中HIF-1α和MDR1、MRP1基因及蛋白的表达进行检测,探讨HIF-1α和MRP1与脊索瘤化疗耐药、放疗抵抗的关系。
     3、脊索瘤组织MDR1、HIF-1α和MRP1的表达及临床意义:选取2000年1月至2008年12月接受手术治疗的50例脊索瘤患者的组织石蜡标本,用免疫组化Envision法检测MDR1、HIF-1α、MRP1蛋白的表达情况,并分析其与放化疗抵抗的关系。
     4、脊索瘤细胞系对放化疗的敏感性研究:通过细胞系体外照射及不同化疗药物对细胞系的敏感性实验,观察脊索瘤细胞系对放疗及化学药物的敏感性。
     5、人骨肉瘤耐药细胞系MG-63/PTX、SOSP-9607/PTX、OS-9901/PTX的建立及多药耐药机制研究:采用紫杉醇大剂量间断冲击培养法,诱导建立三株紫杉醇耐药骨肉瘤细胞系,并运用MTT法检测6种药物敏感性变化及细胞生长规律变化,流式细胞仪分析亲本细胞系和耐药细胞系的细胞膜表面P-gp蛋白表达率、罗丹明123排出情况,RT-PCR检测细胞内耐药基因的变化,免疫细胞化学检测细胞内P-gp蛋白的表达,western blot法检测细胞内P-gp蛋白的表达。
     研究结果:
     1、脊索瘤细胞系CM-319呈上皮样生长,CK、EMA、S-100、Vimentin阳性,富含糖原,染色体为亚三倍体核型,侵袭能力低于骨肉瘤,异种成瘤能力100%。
     2、脊索瘤细胞系中能检测到HIF-1α及MRP1mRNA的表达,但未检测到MDR1mRNA的表达(P<0.01)。间接免疫荧光染色及免疫细胞化学染色结果提示脊索瘤存在HIF-1α及MRP1的表达。western blot法提示CM-319中存在HIF-1α和MRP1的表达,而不表达MDR1。
     3、50例脊索瘤组织MDR1的阳性表达率为10%,与髓核的表达(20%)、骨软骨瘤的表达(13.3%)无统计学差异。HIF-1α、MRP1的阳性表达率分别为80%和74%,均明显高于髓核表达的20%、26.7%,骨软骨瘤的表达的20 %和26.7%,具有统计学意义(P<0.01),同时相关性分析显示肿瘤组织中HIF-1α与MRP1两者之间具有正相关性(r=0.8,P<0.01),其两者与MDR1相比呈负相关性。结合临床资料分析,脊索瘤肿瘤组织中MDR1、HIF-1α、MRP1的表达与患者性别、年龄、发病次数相比无统计学意义。
     4、紫杉醇相对于其他化疗药物对CM-319有较高的抑制率,高浓度紫杉醇与卡铂联合用药对CM-319的抑制有协同作用。紫杉醇作用细胞后电镜下观察到细胞的凋亡现象,细胞周期检测发现细胞阻滞在S期和G2/M期,抑制了细胞的生长。小剂量射线能对紫杉醇起到化疗增敏作用,低浓度紫杉醇能对射线起到放疗增敏作用。
     5、历时12个月建成人骨肉瘤耐药细胞系MG-63/PTX、SOSP-9607/PTX、OS-9901/PTX能在含PTX 1μg/mL的培养基中稳定生长并传代,其对PTX的耐药指数为69.8、24.4、26.88,并与卡铂、顺铂、表柔比星、氨甲喋呤、阿霉素等多种化疗药物存在不同程度的交叉耐药性;罗丹明排出实验显示耐药细胞内罗丹明含量明显低于亲本细胞;RT-PCR结果显示在耐药细胞系中存在MDR1基因的表达,而在亲本细胞系中无MDR1基因的表达。免疫细胞化学、流式细胞仪及western blot实验均显示在耐药细胞中存在P-gp的表达。
     研究结论:
     1、CM-319作为稳定的脊索瘤细胞系,具有上皮组织和间叶组织的特征,性质稳定,为继续研究脊索瘤的放化疗及多药耐药提供基础。CM-319表达肿瘤放化疗抵抗相关的基因HIF-1α和MRP1,而不表达MDR1。脊索瘤组织中同样表达HIF-1α和MRP1,而不表达MDR1。HIF-1α和MRP1的表达呈正相关,与脊索瘤的放化疗抵抗相关。
     2、CM-319细胞对多种化疗药物不敏感,紫杉醇相对于其他药物有较高的杀伤率,紫杉醇与放射线对脊索瘤的治疗能起到增敏作用。
     3、MDR1/P-gp在多药耐药的特性上起着至关重要的作用,三株骨肉瘤多药耐药细胞亚系的成功建立为进一步研究骨肉瘤耐药特征及逆转方法打下基础。
Background
     Drug resistance is a major problem that limits the effectiveness of chemotherapies used to treat cancer. Tumors may be intrinsically resistant to chemotherapy prior to treatment. However, drug resistance can also be acquired during treatment by tumors that are initially sensitive to chemotherapy. A frustrating property of such acquired resistance is that the tumors not only become resistant to the drugs originally used to treat them, but may also become cross-resistant to other drugs with different action mechanisms. Drug resistance, whether intrinsic or acquired, is believed to cause treatment failure in over 90% of patients with metastatic cancer, and resistant micrometastic tumor cells may also reduce the effectiveness of chemotherapy in the followed treatment. Obviously, if drug resistance could be overcome, the impact on survival rate would be highly significant. There are many factors that affect drug sensitivity. These include mechanisms such as those that limit the amount of drug reaching the tumor and those affecting the tumor micro-environment. Here we will provide an overview of cancer cell-specific mechanisms of drug resistance and highlight examples that have clinical relevance. Cancer cell resistance to chemotherapy can occur at many levels, including increased drug efflux and decreased drug influx; drug inactivation; alteration in drug target; processing of drug-induced damage; and evasion of apoptosis.
     Chordomas are rare, slowly growing, locally aggressive neoplasms of bone that arise from embryonic remnants of the notochord. These tumors typically occur in the axial skeleton and have a proclivity for the spheno-occipital region of the skull base and sacral regions. Chordomas are usually relatively slow-growing, lowgrade malignancies. Control of primary disease remains the major challenge. The therapeutic approach to chordoma has traditionally relied mainly on surgical control. More recently, particularly with the advent of charged particle radiotherapy, radiation therapy has been demonstrated to be a valuable modality for local control. Medical therapy continues to be suboptimal in chordomas, which is relatively refractory to cytotoxic chemotherapy. However, new targeted agents may offer therapeutic alternatives.
     Osteosarcomas are the most frequent malignant bone tumors. Further studies have shown that multidrug resistance (MDR) to chemotherapeutic agents is a major barrier to the successful treatment of osteosarcomas. As the basic drug of chemotherapy, paclitaxel will create drug resistance after initial effective chemotherapy.
     Objective
     The expression of HIF-1αand MRP1 and their relationship with clinicopathological features and resistance to chemotherapy and radiotherapy were investigated tin chordoma. The sensitivity of chordoma cell line to chemoradiation in vitro was studied. To establish drug-resistant human osteosarcoma cell lines to plataxel based on three osteosarcoma cell lines and to explore the molecular mechanism of osteosarcoma multidrug resistance.
     Methods
     1. Characteristics of chordoma cell line CM-319 were analysed through immunocytochemical technique, cell cycle, transmission electron microscope and glycogen staining.
     2. The expression of HIF-1α, MDR1 and MRP1 was detected with reverse transcription polymerase chain reaction (RT-PCR), indirect immunofluorescence staining, immunocytochemical technique (ChemMateTM Envision) and western blot. The relationship between HIF-1α, MRP1 and resistance to chemotherapy and radiotherapy was statistically analyzed.
     3. The integrated clinical data were retrospectively analyzed through 50 patients who had undergone radical operation from Jan. of 2000 to Dec. of 2008 in Orthopedics Oncology Institute of Chinese PLA, and the paraffin-embedded tissues of the chordoma samples were collected. The expression of HIF-1α, MRP1 and MDR1 was detected with immunohistochemical technique (ChemMateTM Envision).The relationship between HIF-1α, MRP1 and resistance to chemotherapy and radiotherapy, clinicopathological features were statistically analyzed.
     4. The sensitivity of chordoma cell lines to chemoradiation: through chemoradiation in vitro irradiation, and different chemical drugs, the sensitivity of the cell was observed by radiotherapy and chemotherapy.
     5. Resistant cell lines MG-63/PTX, SOSP-9607/PTX and OS-9901/PTX were developed by pulse drug exposure to paclitaxel. The growth curves and drug resistance in drug resistant cell lines to anticancer agents were detected by MTT assay. Flow cytometry assay was used to evaluate P-gp expression and Rhodamine 123 accumulation assay of both drug resistant cell lines and their parental cell lines. Multidrug resistant genes in cells were investigated with RT-PCR and the characteristics were determined by light microscopy, electron microscopy, and flow cytometry. P-gp was detected by western blot.
     Results
     1. Under phase contrast microscope, chordoma cells showed epithelial arrangement, simple layer strapping growth, and overlapping phenomenon occurred. Cells were CK, EMA, S-100 and Vimentin positive, rich in glycogen, hypo-triploid karyotype. Invasion ability in vitro was lower than osteosarcoma, and the cell line had a 100% ability of translated tumor formation.
     2. The positive expression of HIF-1αand MRP1 was detected in CM-319 in normal oxygen conditions, while MDR1 was not detected by RT-PCR(P<0.01) and western blot. The positive expression of HIF-1αprotein was detected in cytoplasm and nucleus, and MRP1 mostly in cytoplasm with indirect immunofluorescence staining and immunocytochemical technique.
     3. The positive expression rate of MDR1 in 50 patients who suffered from chordoma was 10%, while 13.3% in osteochondroma and 20% in nucleus pulposus. There is no significant difference between chordoma and nucleus pulposus or osteochondroma (P>0.05).The positive expression rate of HIF-1αand MRP1 in 50 patients was 80% and 74%, respectively, and significantly higher than that in the patients with osteochondroma (20% and 26.7 %, P<0.01) and in nucleus pulposus (20% and 26.7 %, P<0.01). There was positive correlation between the expression of HIF-1αand MRP1 (r=0.8, P < 0.01). In 50 patients, a negative correlation trend was found between the expression of HIF-1α, MRP1 and tumor size, ages of patients as well as recurrence rate.
     4. Paclitaxel had much higher inhibition rate in chordoma than other chemical drugs. High concentration of paclitaxel combined with carboplatin showed synergism to the inhibition of CM-319. Cell apoptosis phenomenon was observed under electron microscope. Block of cell cycle which inhibited cell growth was detected in S period and the G2/M period through FCM, inhibiting cell growth. Paclitaxel showed higher chemotherapy sensitivity under the condition of low-dose X-rays, and also X-ray radiation showed radiation sensitivity under the low concentration of paclitaxel.
     5. Three human osteosarcoma multidrug resistant cell lines MG-63/PTX, SOSP-9607/PTX and OS-9901/PTX were successfully established during a 12-month period with stable resistance to paclitaxel (1μg /mL). The resistance index was respectively 69.8, 24.4 and 26.88 to paclitaxel and drug resistant cells also exhibited cross-resistance to many other chemotherapeutic agents (Carboplatin, Cisplatin, Epirubicin, Methotrexate and Adriamycin, etc). FCM showed the concerntration of Rhodamine 123 in drug resistant cell lines was far lower than parental cell lines. MDR1, MRP1, LRP and ABCG2 genes were expressed in drug resistant cell lines, while in parental cell lines MDR1 was not expressed. P-gp expression was found in drug resistant cell lines with immunohistochemical method, FCM and western blot method.
     Conclusions
     1. CM-319,as a stable chordoma cell line, has the characteristics of epithelium and mesenchymal tissue, which provides a basis for the mechanism of chemoradiation and drug resistance. The overexpression of HIF-1α, MRP1 plays an important role in the resistance to chemotherapy and radiotherapy of chordoma cell line. And the expression of MDR1 was not detected. The expression of HIF-1αis positively correlated with the expression of MRP1. Overexpression of MRP1 and HIF-1αmay play a vital role in resistance to chemotherapy and radiotherapy and better predicting the prognosis in patients suffered from chordoma.
     2. CM-319 was not sensitive to many anticancer drugs, but paclitaxel was an exception. Paclitaxel and radiation together could sensitize the chemoradiation effect.
     3. MDR1/P-gp may play a crucial role in the characteristic of multidrug resistance. Human osteosarcoma multidrug resistant cell lines can be used for the study of drug resistance, reversal and MDR mechanisms.
引文
1. Bertino JR. Karnofsky memorial lecture. Ode to methotrexate. J Clin Oncol. 1993; 11(1): 5-14.
    2. Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR. ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res. 1991; 51(20):5579-5586.
    3. Gorlick R, Bertino JR. Clinical pharmacology and resistance to dihydrofolate reductase inhibitors. In Antifolate Drugs in Cancer Therapy, Jackman AL (ed). Humana Press: Totowa. NJ, 1999.
    4. Guo W, Healey JH, Meyers PA, Ladanyi M, Huvos AG, Bertino JR, Gorlick R. Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res. 1999; 5(3): 621-627.
    5. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M. Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood. 2002; 100(10): 3832-3834.
    6. Wang Y, Zhao R, Goldman ID. Decreased expression of the reduced folate carrier and folylpolyglutamate synthetase is the basis for acquired resistance to the pemetrexed antifolate (LY231514) in an L1210 murine leukemia cell line. Biochem Pharmacol. 2003; 65(7): 1163-1170.
    7. Takara K, Sakaeda T, Okumura K. An update on overeoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des.2006; 12(3): 273-286.
    8. Han Y, Sugiyama YC. Expression and regulation of breast cancerresistance protein and multidrug resistance associated protein in BALB /c-mice. Biol Pharm Bull.2006; 29 (5): 1032-1035.
    9. Steinbach D, Wittig S, Cario G, Viehmann S, Mueller A, Gruhn B, Haefer R, Zintl F, Sauerbrey A. The multidrug resistance associated-protein 3 (MRP3) is associated with a poor outcome in Childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype. Blood. 2003, 102 (13): 4493-4498.
    10. Pratt S, Shepard RL, Kandasamy RA, Johnston PA, Perry W 3rd, Dantzig AH. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther. 2005; 4 (5): 855-863.
    11. Uggla B, Stahl E, WagsaterD, Paul C, Karlsson MG, Sirsj? A, Tidefelt U. BCRP mRNA expression V. clinical outcome in 40 adult AML patients. Leuk Res. 2005; 29(2): 141-146.
    12. Herlevsen M, 0xford G, Owens CR, Conaway M, Theodorescu D. Depletion of major vault protein increases doxorubicin sensitivity and nuclear accumulation and disrupts its sequestration in lysosomes. Mol Cancer Ther. 2007; 6 (6): 1804-1813.
    13. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 2003; 10(2): 159-165.
    14. Goldman B. Multidrug resistance: can new drugs help chemotherapy score against cancer? J Natl Cancer Inst. 2003; 95(4): 255-257.
    15. Roe M, Folkes A, Ashworth P, Brumwell J, Chima L, Hunjan S, Pretswell I, Dangerfield W, Ryder H, Charlton P. Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg Med Chem Lett. 1999; 9(4): 595-600.
    16. Starling JJ, Shepard RL, Cao J, Law KL, Norman BH, Kroin JS, EhlhardtWJ, Baughman TM, Winter MA, Bell MG, Shih C, Gruber J, Elmquist WF, Dantzig AH. Pharmacological characterization of LY335979: a potent cyclopropyldibenzosuberane modulator of P-glycoprotein. Adv Enzyme Regul. 1997; 37: 335-347.
    17. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989; 16(4): 215-237.
    18. Takebe N, Zhao SC, Ural AU, Johnson MR, Banerjee D, Diasio RB, Bertino JR. Retroviral transduction of human dihydropyrimidine dehydrogenase cDNA confers resistance to 5-fluorouracil in murine hematopoietic progenitor cells and human CD34+- enriched peripheral blood progenitor cells. Cancer Gene Ther. 2001; 8(12): 966-973.
    19. Sakamoto M, Kondo A, Kawasaki K, Goto T, Sakamoto H, Miyake K, Koyamatsu Y, Akiya T, Iwabuchi H, Muroya T, Ochiai K, Tanaka T, Kikuchi Y, Tenjin Y. Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray. Hum Cell. 2001; 14(4): 305-315.
    20. Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR. Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res. 2003; 63(23): 8097-8102.
    21. Green JA, Robertson LJ, Clark AH. Glutathione S-transferase expression in benign and malignant ovarian tumours. Br J Cancer. 1993; 68(2): 235-239.
    22. Shiga H, Heath EI, Rasmussen AA, Trock B, Johnston PG, Forastiere AA, et al. Prognostic value of p53, glutathione Stransferase pi, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res. 1999; 5(12): 4097-4104.
    23. Boyer J, McLean EG, Aroori S, Wilson P, McCulla A, Carey PD, LongleyDB, Johnston PG. Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin and irinotecan. Clin Cancer Res. 2004; 10(6): 2158-2167.
    24. Kojima A, Hackett NR, Crystal RG. Reversal of CPT-11 resistance of lung cancer cells by adenovirus-mediated gene transfer of the human carboxylesterase cDNA. Cancer Res. 1998; 58(19): 4368-4374.
    25. Schwartz PM, Moir RD, Hyde CM, Turek PJ, Handschumacher RE. Role of uridine phosphorylase in the anabolism of 5-fluorouracil. Biochem Pharmacol. 1985; 34(19): 3585-3589.
    26. Houghton JA, Houghton PJ. Elucidation of pathways of 5-fluorouracil metabolism in xenografts of human colorectal adenocarcinoma. Eur J Cancer Clin Oncol. 1983; 19(6): 807-815.
    27. Evrard A, Cuq P, Ciccolini J, Vian L, Cano JP. Increased cytotoxicity and bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase. Br J Cancer. 1999; 80(11): 726-1733.
    28. Hughes LR, Stephens TC, Boyle FT. Raltitrexed (tomudex), a highly polyglutamatable antifolate thymidylate synthase inhibitor.In Antifolate Drugs in Cancer Therapy, Jackman AL (ed). Humana Press: Totowa, NJ, 1999; 147-165.
    29. Barnes MJ, Estlin EJ, Taylor GA, Aherne GW, Hardcastle A, McGuire JJ, Pearson AD, Newell DR. Impact of polyglutamation on sensitivity to raltitrexed and methotrexate in relation to drug-induced inhibition of de novo thymidylate and purine biosynthesis in CCRF-CEM cell lines. Clin Cancer Res. 1999; 5(9): 2548-2558.
    30. Peters GJ, Kohne CH. Fluoropyrimidines as antifolate drugs. In Antifolate Drugs in Cancer Therapy, Jackman AL (ed). Humana Press: Totowa, NJ, 1999.
    31. Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003; 3(5): 330-338.
    32. Deffie AM, McPherson JP, Gupta RS, Hedley DW, Goldenberg GJ. Multifactorial resistance to antineoplastic agents in drug-resistant P388 murine leukemia, Chinese hamster ovary, and human HeLa cells, with emphasis on the role of DNA topoisomeraseⅡ. Biochem Cell Biol. 1992; 70(5): 354-364.
    33. Friche E, Danks MK, Schmidt CA, Beck WT. Decreased DNA topoisomeraseⅡin daunorubicin-resistant Ehrlich ascites tumor cells. Cancer Res. 1991; 51(16): 4213-4218.
    34. Burkhart CA, Kavallaris M, Band Horwitz S. The role of beta-tubulin isotypes in resistance to antimitotic drugs. Biochim Biophys Acta. 2001; 1471(2): O1-O9.
    35. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem. 1997; 272(27): 17118-17125.
    36. Chaney SG, Sancar A. DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst. 1996; 88(19): 1346-1360.
    37. Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 2002; 62(17): 4899-4902.
    38. Houghton JA, Tillman DM, Harwood FG. Ratio of 2’-deoxyadenosine-5’-triphosphate/thymidine-5’-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin Cancer Res. 1995; 1(7): 723-730.
    39. Grem JL, Fischer PH. Enhancement of 5-fluorouracil’s anticancer activity by dipyridamole. Pharmacol Ther. 1989; 40(3): 349-371.
    40. Issa JP. The epigenetics of colorectal cancer. Ann N Y Acad Sci 2000; 910: 140-153; discussion 153-155.
    41. King BL, Carcangiu ML, Carter D, Kiechle M, Pfisterer J, Pfleiderer A, Kacinski BM. Microsatellite instability in ovarian neoplasms. Br J Cancer. 1995; 72(2): 376-382.
    42. Paulson TG, Wright FA, Parker BA, Russack V, Wahl GM. Microsatellite instability correlates with reduced survival and poor disease prognosis in breast cancer. Cancer Res. 1996; 56(17): 4021-4026.
    43. Herfarth KK, Brent TP, Danam RP, Remack JS, Kodner IJ, Wells SA Jr, Goodfellow PJ. A specific CpG methylation pattern of the MGMT promoter region associated with reduced MGMT expression in primary colorectal cancers. Mol Carcinog. 1999; 24(2): 90-98.
    44. Brown R, Hirst GL, Gallagher WM, Mcllwrath AJ, Margison GP, van der Zee AG, Anthoney DA. hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene. 1997; 15(1): 45-52.
    45. Bras-Goncalves RA, Rosty C, Laurent-Puig P, Soulie P, Dutrillaux B, Poupon MF. Sensitivity to CPT-11 of xenografted human colorectal cancers as a function of microsatellite instability and p53 status. Br J Cancer. 2000; 82(4): 913-923.
    46. Fallik D, Borrini F, Boige V, Viguier J, Jacob S, Miquel C, Sabourin JC, Ducreux M, Praz F. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 2003; 63(18): 5738-5744.
    47. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000; 408(6810): 307-310.
    48. Ljungman M. Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia. 2000; 2(3): 208-225.
    49. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994; 9(6): 1799-1805.
    50. Petak I, Tillman DM, Houghton JA. p53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. Clin Cancer Res. 2000; 6(11): 4432-4441.
    51. Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001; 29(Pt6): 684-688.
    52. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B. Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A. 1999; 96(25): 14517-14522.
    53. Rantanen V, Engblom P, Raitanen M, Hietanen S, Haarala M, Grénman S, Syrj?nen S. Mutations of TP53 do not correlate with the sensitivity to paclitaxel--a study using 27 gynaecological cancer cell lines. Eur J Cancer. 2002; 38(13): 1783-1791.
    54. Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW, Galloway DA. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med. 1996; 2(1): 72-79.
    55. Johnson KR, Fan W. Reduced expression of p53 and p21 WAF1/CIP1 sensitizes human breast cancer cells to paclitaxel and its combination with 5-fluorouracil. Anticancer Res. 2002; 22(6A): 3197-3204.
    56. Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP. The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. 2004; 96(22): 1659-1668.
    57. Hengartner MO. The biochemistry of apoptosis. Nature. 2000; 407(6805): 770-776.
    58. Miyashita T, Reed JC. Bcl-2 gene transfer increases relative resistance ofS49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res. 1992; 52(19): 5407-5411.
    59. Teixeira C, Reed JC, Pratt MA. Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res. 1995; 55(17): 3902-3907.
    60. Herbst RS, Frankel SR. Oblimersen sodium (Genasense bcl-2 antisense oligonucleotide): a rational therapeutic to enhance apoptosis in therapy of lung cancer. Clin Cancer Res. 2004; 10(12 Pt 2):4245-4248.
    61. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999; 33: 29-55.61
    62. Mild G, Bachmann F, Boulay JL, Glatz K, Laffer U, Lowy A, Metzger U, Reuter J, Terracciano L, Herrmann R, Rochlitz C. DCR3 locus is a predictive marker for 5-fluorouracil-based adjuvant chemotherapy in colorectal cancer. Int J Cancer. 2002; 102(3): 254-257.
    63. Ryu BK, Lee MG, Chi SG, Kim YW, Park JH. Increased expression of cFLIP(L) in colonic adenocarcinoma. J Pathol. 2001; 194(1): 15-19.
    64. Zhou XD, Yu JP, Liu J, Luo HS, Chen HX, Yu HG. Overexpression of cellular FLICE-inhibitory protein (FLIP) in gastric adenocarcinoma. Clin Sci (Lond). 2004; 106(4): 397-405.
    65. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002; 3(6): 401-410.
    66. Zaffaroni N, Pennati M, Colella G, Perego P, Supino R, Gatti L, Pilotti S, Zunino F, Daidone MG. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci. 2002; 59(8): 1406-1412.
    67. Kato J, Kuwabara Y, Mitani M, Shinoda N, Sato A, Toyama T, Mitsui A, Nishiwaki T, Moriyama S, Kudo J, Fujii Y. Expression of survivin inesophageal cancer: correlation with the prognosis and response to chemotherapy. Int J Cancer. 2001; 95(2): 92-95.
    68. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001; 411(6835): 355-365.
    69. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003; 284(1): 31-53.
    70. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000; 19(13): 3159-3167.
    71. Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves JA, Wolf MK, Krebs AD, Averbuch SD, Ochs JS, Grous J, Fandi A, Johnson DH. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phaseⅢtrial-INTACT 2. J Clin Oncol. 2004; 22(55): 785-794.
    72. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, Von Pawel J, Pluzanska A, Gatzemeier U, Grous J, Ochs JS, Averbuch SD, Wolf MK, Rennie P, Fandi A, Johnson DH. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phaseⅢtrial-INTACT 1. J Clin Oncol. 2004; 22(5): 777-784.
    73. Ng SS, Tsao MS, Nicklee T, Hedley DW. Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res. 2001; 7(10): 3269-3275.
    74. Nguyen DM, Chen GA, Reddy R, Tsai W, Schrump WD, Cole G Jr, Schrump DS. Potentiation of paclitaxel cytotoxicity in lung and esophageal cancer cells by pharmacologic inhibition of thephosphoinositide 3-kinase/protein kinase B (Akt)-mediated signaling pathway. J Thorac Cardiovasc Surg. 2004; 127(2): 365-375.
    75. Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V, Gregorc V, Ligorio C, Cancellieri A, Damiani S, Spreafico A, Paties CT, Lombardo L, Calandri C, Bellezza G, Tonato M, CrinòL. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst. 2004; 96(15): 1133-1141.
    76. Yu H, Jove R. The STATs of cancer-new molecular targets come of age. Nat Rev Cancer. 2004; 4(2): 97-105.
    77. Huang M, Dorsey JF, Epling-Burnette PK, Nimmanapalli R, Landowski TH, Mora LB, Niu G, Sinibaldi D, Bai F, Kraker A, Yu H, Moscinski L, Wei S, Djeu J, Dalton WS, Bhalla K, Loughran TP, Wu J, Jove R. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene. 2002; 21(57): 8804-8816.
    78. Lin A, Karin M. NF-kappaB in cancer: a marked target. Semin Cancer Biol. 2003; 13(2): 107-114.
    79. Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M, Cheng AL. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol. 2002; 63(9): 1709-1716.
    80. Cusack JC. Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev. 2003; 29(Suppl 1): 21-31.
    81. Richardson P. Clinical update: proteasome inhibitors in hematologic malignancies. Cancer Treat Rev. 2003; 29(Suppl 1): 33-39.
    82. Hanlon K, Rudin CE, Harries LW. Investigating the targets of MIR-15aand MIR-16-1 in patients with chronic lymphocytic leukemia (CLL). PLoS One. 2009; 25; 4(9): e7169.
    83. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A. 2008; 105(13):5166-5171.
    84. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O, Riker AI, Tan M. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010; 285(28):21496-214507.
    85. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006; 130(7):2113-2129.
    86. Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X, Yin H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 2010; 399(1):1-6.
    87. Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y. Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer. 2010; 46(9):1692-1702.
    88. Zhu W, Shan X, Wang T, Shu Y, Liu P. miR-181b modulates multidrug resistance by targeting BCL-2 in human cancer cell lines. Int J Cancer. 2010; 127(11):2520-2529.
    89. Zhang H, Li M, Han Y, Hong L, Gong T, Sun L, Zheng X. Down-regulation of miR-27a might reverse multidrug resistance ofesophageal squamous cell carcinoma. Dig Dis Sci. 2010; 55(9):2545-2551.
    90. Rosen G, Tan C, Sanmaneechai A, Beattie EJ Jr, Marcove R, Murphy ML. The rationale for multiple drug chemotherapy in the treatment of osteogenic sarcoma. Cancer. 1975;35(3 Suppl): 936-945.
    91. Wittig JC, Bickels J, Priebat D, Jelinek J, Kellar-Graney K, Shmookler B, Malawer MM. Osteosarcoma: a multidisciplinary approach to diagnosis and treatment.Am Fam Physician. 2002; 65(6):1123-1132.
    92. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971; 5(9):2325-2327.
    93. McDaid HM, Bhattacharya SK, Chen XT, He L, Shen HJ, Gutteridge CE, Horwitz SB, Danishefsky SJ. Structure-activity profiles of eleutherobin analogs and their cross-resistance in Taxol-resistant cell lines. Cancer Chemother Pharmacol. 1999; 44(2):131-137.
    94. Yuan JH, Zhang RP, Zhang RG, Guo LX, Wang XW, Luo D, Xie Y, Xie H. Growth-inhibiting effects of taxol on human liver cancer in vitro and in nude mice. World J Gastroenterol. 2000; 6(2):210-215.
    95. Yuan JH, Wang XW, Luo D, Xie Y, Xie H. Anti-hepatoma activity of taxol in vitro. Acta Pharmacol Sin. 2000 May; 21(5):450-454.
    96. Srivastava RK, Sasaki CY, Hardwick JM, Longo DL. Bcl-2-mediated drug resistance: inhibition of apoptosis by blocking nuclear factor of activated T lymphocytes (NFAT)-induced Fas ligand transcription. J. Exp Med. 1999; 190(2):253-265.
    97.戴旭东主篇.中国癌症研究进展[M].第一版北京:军事医学科学出版社,2000:591.
    98. Picci P, Sangiorgi L, Bahamonde L, Aluigi P, Bibiloni J, Zavatta M, Mercuri M, Briccoli A, Campanacci M. Risk factors for local recurrences after limb-salvage surgery for high-grade osteosarcoma of the extremities. Ann Oncol.1997; 8: 899-903.
    99. Luksch R, Perotti D, Cefalo G, Gambacorti Passerini C, Massimino M, Spreafico F, Casanova M, Ferrari A, Terenziani M, Polastri D, Gambirasio F, Podda M, Bozzi F, Ravagnani F, Parmiani G, Fossati Bellani F. Immunomodulation in a treatment program including pre-and post-operative interleukin-2 and chemotherapy for childhood osteosarcoma. Tumori. 2003; 89 (3):263-268.
    100. Liebau C, Roesel C, Schmidt S, Karreman C, Prisack JB, Bojar H, Merk H, Wolfram N, Baltzer AW. Immunotherapy by gene transfer with plasmids encoding IL-12/ IL-18 is superior to IL-23/ IL-18 gene t ransfer in a rat osteosarcoma model. Anticancer Res. 2004; 24 (5A): 2861-2867.
    101.郝新保,范清宇,张殿中,裘秀春,殷剑宁,张惠中,王晓宁.巨噬细胞融合瘤苗对大鼠骨肉瘤的主动免疫治疗.第四军医大学学报. 1999; 20(12):1042-1044.
    102. Nagamori M, Kawaguchi S, Murakami M, Wada T, Inobe M, Ishii S, Uede T. In vivo immunogenicity of osteosarcoma cells that express B7-1a, an alternatively spliced form of B7-1. Anticancer Res. 2002; 22(4): 2009-2013.
    103. Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. Lab Invest.2006; 86(8):748-766.
    104. Maitra A, Roberts H, Weinberg AG, Geradts J. Loss of p16 (NK4a) expression correlates with decreased survival in pediatric osteosarcomas. Cancer. 2001; 95: 34-38.
    105. Wang H, Wang S, Nan L, Yu D, Agrawal S, Zhang R. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to humanbreast cancer: in vitro and in vivo activities and mechanisms.Clin Cancer Res.2001;7(11): 3613-3624.
    106. Sato N, Mizumoto K, Maehara N, Kusumoto M, Nishio S, Urashima T, Ogawa T, Tanaka M. Enhancement of drug-induced apoptosis by antisense oligodeoxynucleotides targeted against Mdm2 and p21WAF1/CIP1. Anticancer Res. 2000; 20(2A): 837-842.
    107. Ketola A, Maatta AM, Pasanen T, Tulimaki K, Wahlfors J. Osteosarcoma and chondrosarcoma as targets for virus vectors and herpes simplex virus thymidine kinase/ganciclovir gene therapy. Int J Mol Med. 2004; 13 (5):705-710.
    108. Ko SC, Cheon J, Kao C, Gotoh A, Shirakawa T, Sikes RA, Karsenty G, Chung LW. Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res. 1996; 56(20):4614-4619.
    109. Shirakawa T, KO SC, Gardner TA, Cheon J, Miyamoto T, Gotoh A, Chung LW, Kao C. In vivo suppression of osteosarcoma pulmonary metastasis with intravenous osteocalcin promoter-based toxic gene therapy. Cancer Gene Ther.1998; 5(5):274-280.
    110. Majumdar AS, Hughes DE, Lichtsteiner SP, Wang Z, Lebkowski JS, Vasserot AP. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 2001, 8(7):568-578.
    111. Mayer MN, Grier CK. Palliative radiation therapy for canine osteosarcoma. Can Vet J. 2006; 47(7): 707-709.
    112. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010; 60(5): 277-300.
    113. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: Incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control. 2001; 12(1):1-11.
    114. Wippold FJ 2nd, Koeller KK, Smirniotopoulos JG. Clinical and imaging features of cervical chordoma. AJR Am J Roentgenol. 1999, 172 (5): 1423-1426.
    115. Mirra J, Nelson S, Della Rocca C et al. Chordoma. In: Fletcher CD, Unni K, Mertens F, eds. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon, France: IARC Press. 2002:316-317.
    116. Koh JS, Chung JH, Lee SY, CHO KJ. Parachordoma of the tibia: report of a rare case. Pathol Res Pract. 2000; 196 (4): 269-273.
    117. Scolyer RA, Bonar SF, Palmer AA, Barr EM, Wills EJ, Stalley P, Schatz J, Soper J, Li LX, McCarthy SW. Parachordoma is not distinguishable from axial chordoma using immunohistochemistry. Pathol Int. 2004; 54 (5): 364-370.
    118. Dabska M. Parachordoma: a new clinicopathologic entity. Cancer. 1977; 40 (4): 1586-1592.
    119. Higinbotham NL, Phillips RF, Farr HW Hustu HO. Chordoma. Thirty-five-year study at Memorial Hospital. Cancer. 1967; 20 (11):1841-1850.
    120. Catton C, O’Sullivan B, Bell R, Laperriere N, Cummings B, Fornasier V, Wunder J. Chordoma: Long-term follow-up after radical photon irradiation. Radiother Oncol. 1996; 41(1):67–72.
    121. Chambers PW, Schwinn CP. Chordoma. A clinicopathologic study of metastasis. Am J Clin Pathol. 1979; 72 (5):765–776.
    122.范清宇,马保安,周勇,张明华,沈万安,李钊.骶骨肿瘤的综合治疗.中华骨科杂志.2002; 22(8): 488-491.
    123.张殿忠,马保安,范清宇,常恒,文艳华.人脊索瘤细胞系CM-319的建立及其生物学特性的观察.中华肿瘤杂志.2003; 25(3):234-236.
    124. Scheil S, Brüderlein S, Liehr T, Starke H, Herms J, Schulte M, M?ller P. Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosomes Cancer. 2001; 32(3): 203-211.
    125. Elena O, Christopher J, Hunter. The Role of Extracellular Factors in Human Metastatic Chordoma Cell Growth In Vitro. Spine. 2007; 32(26):2957-2964.
    126. Ricci-Vitiani L, Pierconti F, Falchetti ML, Petrucci G, Maira G, De Maria R, Larocca LM, Pallini R. Establishing tumor cell lines from aggressive telomerase-positive chordoma of the skull base. Technical note. J Neurosurg. 2006; 105 (3): 482-484.
    127. Yang C, Hornicek FJ, Wood KB, Schwab JH, Choy E, Iafrate J, Rosenberg A, Nielsen GP, Xavier RJ, Mankin H, Duan Z. Characterization and analysis of human chordoma cell lines. Spine (Phila Pa 1976). 2010; 35 (13): 1257-1264.
    128. Neaud V, Faouzi S, Guirouilh J, Le Bail B, Balabaud C, Bioulac-Sage P, Rosenbaum J. Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology. 1997; 26 (6): 1458-1466.
    129. Larbcharoensub N, Leopairat J, Sirachainan E, Narkwong L, Bhongmakapat T, Rasmeepaisarn K, Janvilisri T. Association between multidrug resistance-associated protein 1 and poor prognosis in patients with nasopharyngeal carcinoma treated with radiotherapy and concurrent chemotherapy. Hum Pathol. 2008; 39(6): 837-845.
    130. Enokida H, Shiina H, Igawa M, Ogishima T, Kawakami T, Bassett WW, Anast JW, Li LC, Urakami S, Terashima M, Verma M, Kawahara M, Nakagawa M, Kane CJ, Carroll PR, Dahiya R. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of humanprostate cancer. Cancer Res. 2004; 64 (17): 5956-5962.
    131. Fukushima K, Murata M, Hachisuga M, Tsukimori K, Seki H, Takeda S, Asanoma K, Wake N. Hypoxia inducible factor 1 alpha regulates matrigel-induced endovascular differentiation under normoxia in a human extravillous trophoblast cell line. Placenta. 2008; 29 (4):324-331.
    132. Semenza GL, Wang GL. A nuclear factor Induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992; 12 (12): 5447-5454.
    133. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 2001; 15 (7): 1312-1314.
    134. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004; 5 (5): 429-441.
    135. Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell. 2004; 5 (5): 405-406.
    136. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002; 62(12): 3387-3394.
    137. Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M. Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia. 2006; 8 (2): 143-152.
    138. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor-1. J Biol Chem.1995; 270 (3): 1230-1237.
    139. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000; 88 (4): 1474-1480.
    140. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 toregulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004; 5 (5): 429-441.
    141. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3 (10): 721-732.
    142. Wartenberg M, Hoffmann E, Schwindt H, Grünheck F, Petros J, Arnold JR, Hescheler J, Sauer H. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett. 2005; 579 (20): 4541-4549.
    143. Casali PG, Messina A, Stacchiotti S, Tamborini E, Crippa F, Gronchi A, Orlandi R, Ripamonti C, Spreafico C, Bertieri R, Bertulli R, Colecchia M, Fumagalli E, Greco A, Grosso F, Olmi P, Pierotti MA, Pilotti S. Imatinib mesylate in chordoma. Cancer. 2004; 101(9): 2086-2097.
    144. Tamborini E, Miselli F, Negri T, Lagonigro MS, Staurengo S, Dagrada GP, Stacchiotti S, Pastore E, Gronchi A, Perrone F, Carbone A, Pierotti MA, Casali PG, Pilotti S. Molecular and biochemical analyses of platelet-derived growth factor receptor (PDGFR) B, PDGFRA, and KIT receptors in chordomas. Clin Cancer Res. 2006; 12(23):6920–6928.
    145. Casali PG, Stacchiotti S, Grosso F, et al. Adding cisplatin (CDDP) to imatinib (IM) re-establishes tumor response following secondary resistance to IM in advanced chordoma. J Clin Oncol. 2007;25(18 suppl): Abstract 10038.)
    146. Limburg H. Individual chemotherapy of ovarian cancer by means of tissue and culture method. In: Dendy PP, ED: Human tumors in short term culture. Techniques and clinical application [M]. 1st ed. London: Academic press. 1972; 29-38.
    147.陈天泽.肿瘤化疗药敏试验研究现况.中国肿瘤临床.1990; 17(5): 260-262.
    148.鲁润龙.细胞生存、死亡与癌变.合肥:中国科学技术大学出版社[M].第四军医大学博士学位论文1996; 215-227.
    149.王承龙,赖玉平,唐发德,肖健云,田勇泉,邓波,罗均利.HNE1细胞株光动力学治疗前后形态学的动态变化.中国耳鼻咽喉颅底外科杂志. 2000; 6(1): 32-35.
    150. Bacus SS, Gudkou AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R. Taxol-induced apotosis depends on MAP Kinase pathways (ERK and p38) and is independent of p53. Oncogene. 2001; 20(2): 147-155.
    151. Hussain M, Gadgeel S, Kucuk O, Du W, Salwen W, Ensley J. Paclitaxel, cisplatin, and 5-fluoronracil for patients with advanced or recurrent squamous cell carcinoma of the head and neck. Cancer. 1999; 86(11):2364-2369.
    152. Trudeau ME. PhaseⅠ-Ⅱstudies of docetaxel as a single agent in the treatment of metastatic breast cancer. Semin Oncol. 1999; 26(3 suppl 8):21-26.
    153. Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med. 1997; 48(5):353-374.
    154. Chan HS, Grogan TM, Haddad G, DeBoer G, Ling V. P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst. 1997; 89(22):1706-1715.
    155.赵廷宝,范清宇,张明华,郑联合,何立宏.紫杉醇联合卡铂术前治疗骨肉瘤的疗效观察.中华临床医药杂志. 2002, 3 (11): 10-11.
    156. Aust S, Obrist P, Jaeger W, Klimpfinger M, Tucek G, Wrba F, Penner E, Thalhammer T. Subcellular localization of the ABCG2 transporter in normal and malignant human gallbladder epithelium. Lab Invest. 2004; 84(8):1024-1036.
    157. Runge D, K?hler C, Kostrubsky VE, J?ger D, Lehmann T, Runge DM,May U, Stolz DB, Strom SC, Fleig WE, Michalopoulos GK. Induction of cytochrome P450 (CYP) 1A1, CYP1A2, and CYP3A4 but not of CYP2C9, CYP2C19, multidrug resistance (MDR-1) and multidrug resistance associated protein (MRP-1) by prototypical inducers in human hepatocytes. Biochem Biophys Res Commun. 2000; 273(1):333-341.
    158. Snow K, Judd W. Characterization of adriamycin- and amsacrine-resistant human leukaemic T cell lines. Br J Cancer. 1991; 63 (1): 17-28.
    159. Brooks TA, Minderman H, O’Loughlin KL, Pera P, Ojima I, Baer MR, Bernacki RJ. Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Mol Cancer Ther. 2003; 2 (11): 1195-1205.
    160. Zhu X, Sui M, Fan W. In vitro and in vivo characterizations of tetrandrine on the reversal of P-glycoprotein-mediated drug resistance to paclitaxel. Anticancer Res. 2005; 25 (3B): 1953-1962.
    161. Burns BS, Edin ML, Lester GE, Tuttle HG, Wall ME, Wani MC, Bos GD. Selective drug resistant human osteosarcoma cell lines. Clin Orthop Relat Res. 2001; (383):259-267.