由核磁共振图像构建头/脑真实模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑是神经系统中最重要的部分。人类的大脑除了具有和基本的生存相关的功能以外,还具有发现和利用自然界基本规律的能力。而脑科学研究的目的,就是要发现生物的大脑、尤其是人的大脑处理和利用信息的机制。这些机制的发现,将为人类更充分地利用各种信息资源、提高生产效率和生活水平提供前所未有的更为广泛有效的解决办法。
     本文主要利用核磁共振成像MRI(Magnetic Resonance Imaging)图像序列,展开了以下几方面的研究:
     (1)图像的去噪。对图像去噪的方法进行了比较,根据图像的特点,采用了自适应维纳滤波方法,维纳滤波是基于最小二乘滤波原则寻找图像的估值来实现图像滤波的。
     (2)体数据的获取。采用灰度阈值技术和数学形态学的操作获取头的数据;在对脑的分割中,本文提出了一种根据脑图像特点和相邻图像在几何结构上具有相似性的特点,构建了自适应模板匹配检测脑的方法:首先选择其中最易处理的图片应用阈值化算法和形态学方法提取出脑轮廓,然后根据相邻图像之间形态具有相似性的特点,再利用形态学算法实现脑体数据分割的操作。在数据的离散上,设计了一种合适的边缘搜索、离散和合理的数据存储结构。
     (3)真实头模型的构建。在构建剖分模型上,用基于最短对角线(在两层轮廓中心偏离较大的情况下,对轮廓进行了对中变换)和基于3D Delaunay的方法构建了计算模型;基于表面绘制的思想,实现了头和脑的可视化。
     (4)利用扫描线法以及改进的Delaunay方法进行了平面任意区域的FEM三角剖分,二维区域的单元划分是有限元计算的第一步,剖分结果的正确性保证了整个有限元分析结果的可靠性。
The brain is the most important part of the nerve system. The purpose of the investigation of brain is to discover the principle of the human brain. It's important for us to use all kinds of information resource.
    The main aspects of the thesis are as below:
    (1) Image De-noising: Given some commonly used filter results and the comparisons of them, and choose the wiener filter algorithm. Wiener method is based on statistics estimated from a local neighborhood of each pixel.
    (2) Acquisition of Head and Brain Volumetric Data and Development Real Head and Brain Reconstruction and Visualization Algorithms: By using threshold technique and morphological operations such as dilate and erosion, head segmented data were obtained. To obtain the brain segmented data, construct an initial template, design and developed a naval algorithm to make the initial template dynamic change with image slice to get the brain data; Designed a framework for searching, sampling and storing contour data.
    (3) Uniformed contours stacked together and constructed real Boundary Element Method (BEM) calculation models for E/MEG research respectively by minimum distance method and 3D-Delaunary based triangulation growth method. Finally developed visualization algorithm based on surface rendering for the purpose of integration of structure and function information.
    (4) Using scan line algorithm and improved Delaunay algorithm to generate triangulation meshes. Mesh generation of 2D area is the first step of finite element calculation. The validity of the triangulation guarantees the correctness of the result of the finite element calculation.
引文
1. Cufflin B N: A method for localizing EEG sources in realistic head models. IEEE Trans on Biomed Eng., 42: 68-71,1995.
    2. Bin He. High-resolution source imaging of brain electrical activity. IEEE Engineering in Medicine and Biology, 123-129, Sept. 1998.
    3. Freeman W: Use of spatial deconvolution to compensate for distortion of EEGby volume conductor. IEEE Trans. on Biomedical Engineering, 27: 421-429, 1980.
    4. Sidman R, Vincenent D, Smith D, Lee L: Experiment tests of the cortical imaging technique-applications to the response to median nerve stimulation and the location of epileptiformdischarges. IEEE Trans. on Biomedical Engineering, 39: 437-444,1992.
    5. Srebrao R, Oguz R M, Hughlett K, Purdy P D.: Estimating regional brain activity from evoked potential field on the scalp. IEEE Trans. on Biomedical Engineering, 40: 509-516,1993.
    6. He B, Wang Y, Pak S, Ling Y: Cortical source imaging from scalp electroencephalograms. Med&Bio Eng& Comput. 34 Supp 1. Part 2: 257-258, 1996.
    7. He B, Wang Y, Wu D: Imaging brain electrical activity using a 3D realistically shaped inhomogeneous head model. Proc. of IEEE /EMBS, 1167-1169, 1998.
    8. Wang Y, He B: A computer simulation study of cortical imaging from scalp potentials. IEEE Trans. on Biomedical Engineering, 45: 724-735, 1998.
    9.王云华.脑电逆问题数值方法的研究[博士论文].北京:清华大学,1992.
    10.饶利芸.生物医学电磁逆问题的数值计算方法研究[博士学位论文].天津:河北工业大学,1998
    11.饶利芸,颜威利,汪友华等.生物医学电磁逆问题及其数值计算方法.国外医学生物医学工程分册,1997,20(5):274~283
    12. Keppel E. Approximating Complex Surfaces by Triangulation of Contour Lines. IBM Journal Res. Develop, January, 1975.
    13. Christiansen H N, Sederberg T W. Conversion of Complex Contour Line Definitions into Polygonal Element Mosaics. Computer Graphics, 12(2), 187-192, 1978.
    14. Ganapathy S, Dennehy T G. A New General Triangulation Method for Planar contours. Computer Graphics, 16(3),69-75, 1982
    15. A. Hilton and J. Illingworth. Marching Triangles: Delaunay Implicit Surface
    
    Triangulation. T. CNSSP Technical Report 01, January, 1997.
    16. Lorensen W.E, Cline H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics, 21(4),163-169,1987.
    17.管伟光.体数据可视化技术在医学中的应用.中国科学院自动化研究所博士论文.1995.
    18.唐泽圣等.三维数据场可视化,清华大学出版社1999年12月.
    19. Y.S. Hun and W.E. Smyder: Discontinuity-Preserving Vector smoothing on multivariate MR images via vector mean filed annealing. Proc. ASPIE Math. Methods Med. Imag., 69-80,1992.
    20. Annunziation M et al. Segmentation of multi-slices NMR images. Proceedings of the 7th International conference on Image Analysis and Processing. Progress in Image Analysis and Processing Ⅲ, Singapore: World Scientific, 117-120, 1994.
    21. D. Geiger and F. Girosi,: Parallel and deterministic algorithm for MRF's surface reconstruction. IEEE Trans. on Pattern Anal. Machine Intell. Vol. 13,332-335, 1991.
    22. S. German and D. Geman: Stochastic relaxation Gibbs distributions and the beyesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell., Vol. 13, 401-442,1991.
    23. C.L. Huang, W.Y. Cheng and C.C. Chen: Color images segmentation using scale apace filter and Markov random field. Pattern Recog., Vol. 25, 1217-1229,1992.
    24. Gregson P. H. Automatic segmentation of the heart in 3D MR images. Canadian conference on electrical and computer engineering, New York: IEEE, 1994,2:584-587.
    25. Dzung L. Pham, Jerry L. Prince. An Adaptive Fuzzy C-Means Algorithm for Image Segmentation in the Presence of Intensity Inhomogeneities. Proc. SPIE Vol. 3338, Medical Imaging 1998.
    26. Kass, A. Witkin, and D. Terzopoulos. 'Snake: active contour models' Int' J. Comp. Vis., vol. 1, no. 4, pp. 321-331, 1987.
    27. D. Terzopoulos and K. Fleischer, "Deformable models," The Visual Computer, vol. 4, pp. 306- 331, 1988.
    28. F. Leymarie and M.D. Levine: Tracking deformable objects in the plane using an active contour model., IEEE Trans. on Pattern Anal. Machine Intell. 15(6): 617-634,1993.
    29. R. Durikovic , K. Kaneda and H. Yamashita: Dynamic contour: a texture approach and contour operations. The Visual Computer, 11:277-289,1995.
    30. R. Mallacdi, J.A. Sethianand B.C. Vermuri: shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Anal. Machine Intell. 17(2): 158-175,1995.
    
    
    31. L.D. Cohen: On active contour models and balloons. CVGIP: Image Understanding, 53(2): 211-218, March, 1991.
    32. L.D. Cohen and I. Cohen: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. on Pattern Anal. Machine Intell.,15(11): 1131-1147, Nov. 1993
    33. C. Davatzikos and J.L. Prince: An active contour model for mapping the cortex. IEEE Trans. on Medical Imaging, 14(1): 65-80, March, 1995.
    34. C. Xu and J.L. Prince, "Snakes, shapes, and gradient vector flow," IEEE Tans. Imag. Proc., vol. 7, no. 3, pp. 359-369, 1998.
    35. C. Xu, D. L. Pham, and J. L. Prince, "Medical Image Segmentation Using Deformable Models," SPIE Handbook on Medical Imaging—Volume Ⅲ: Medical Image Analysis, edited by J. M. Fitzpatrick and M. Sonka, May 2000.
    36. Cheng Kuosheng, Lin Jzausheng, Mao Chi-wu. The application of competitive Hopfield neural network to medical image segmentation. IEEE Trans. on Medical Imaging, 15(4): 560-567, 1996.
    37. Fangeras, Three dimensional computer vision. MIT Press, Cambridge, 1993.
    38. Azriel Rosenfeld, Image Modeling, Academic Press, 1981
    39. A. Blake and A. Z isserman, Visual reconstruction. MIT Press, Cambridge, 1987.
    40. Gerbrands J J. Segmentation of Noisy Images. Delft University of Technology, The Netherlands, 1998.
    41. Z. Liang, Tissue Classification and Segmentation of Dual-echo MR Images, IEEE Eng, In Medicine and Biology, March. 1993.
    42. Christiansen H N, Sederberg T W. 1978. Conversion of Complex Contour Line Definitions into Polygonal Element Mosaics. Computer Graphics, 12(2), 187—192.
    43. Wallin. Constructing Isosurfaces from CT Data. IEEE CG&A. Nov..1991.
    44. M. J. Laszlo. Fast Generation and Display of Isosurface Wireframes. CVGIP: Graphical Models and Image Processing. Vol. 54. NO. 6. 1992.
    45. W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics. Vol. 21. No. 4. 1987.
    46. J. Wilhelms, et al. Topological Considerations in Isosurface Generation. San Diego Workshop on Volume Visualization. 1991.
    47. J. Wilhelms and A. V. Gelder. Octrees for Faster Isosurface Generation. CAN Trans. On Graphics. Vol. 11. No. 3. 1992.
    48. A. Hilton and J. Illingworth. Marching Triangles: Delaunay Implicit Surface
    
    Triangulation CVSSP Technical Report 01. January 1997.
    49.沈海戈,柯有安:医学体数据三维可视化方法的分类与评价.中国图象图形学报,Vol.5(A),No.7,545-550,July,2000.
    50. LoSH. A new mesh generation scheme for arbitrary planar domains. International Journal of Numerical Methods in Engineering, 1985 21(8):1403-1426
    51. Luc Vincent. Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms. IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 2, NO. 2, 176-201, April 1993