深水多波束测深侧扫声纳显控系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是海洋的世纪,认识研究海洋是人类探索未知的需要,也是解决日益严峻的陆地资源匮乏、人口膨胀性增长等问题的重要途径,因此世界上各个国家都在不遗余力的探索海洋、研究海洋、开发和利用海洋资源。海底地形地貌信息作为基础数据,在保障航运安全、建设海洋工程、开发海洋资源、发展海洋科学、维护海洋权益等各个方面都占据了极为重要的地位,受到了世界各国的普遍重视。声纳技术是当前对海底地形地貌探测的唯一有效手段,其中多波束声纳技术以其高精度全覆盖式扫海探测优势被国际海道测量组织规定为高精度海底地形探测的唯一方法。
     然而由于深水多波束声纳系统涉及组成设备众多、实时探测数据量巨大、原始探测数据处理复杂等因素,使得深水多波束声纳显控系统在实时条件下只能进行简单的设备控制和数据展示,造成了人机交互不够友好、不能快速准确的实时展示多源探测信息、现场处理能力较差等不足。
     本文针对当前国内外深水多波束声纳显控系统存在的不足展开了深入研究,主要包括:针对深水多波束测深侧扫声纳设备的复杂工作机制的安全友好的控制操作方法、针对深水多波束测深侧扫声纳系统海量实时探测数据的高效稳定的数据采集方法、针对深水多波束测深侧扫声纳系统实时测深数据、实时侧扫数据、实时水体数据等多源实时探测数据的快速丰富的科学数据实时表达方法等,并基于这些研究成果,设计并实现了设计并实现了基于我国首次研发的深水多波束测深侧扫声纳设备的显控系统。实验结果表明,该系统能够以多视图同步方式对实时多源动态探测成果进行2D/3D可视化表达,为深水多波束声纳设备提供安全友好的控制终端,为用户提供稳定便捷的探测数据服务,增强现场处理能力和数据发掘能力。
     本文的主要创新点包括:
     (1)针对深水多波束声纳系统实时测深数据由于构建可视化海底DEM时的海量性、动态性、不规则性等特点,为提高海量原始测深数据构建动态不规则海底DEM的效率提出了:
     A.快速声速改正方法;
     B.快速波束位置解算方法;
     C.快速条带式动态网格化方法;
     D.动态不规则金字塔构建方法;
     从而使得深水多波束声纳系统原始实时测深数据能够快速且相对准确的构建为规则格网形式的不规则动态海底DEM,设计并使用GPU友好型渲染方法,实现了全球框架下的不规则动态海底地形的三维实时渲染。
     (2)提出了实时侧扫数据的条带式增量更新方法,动态增量式直接构造侧扫图像,通过直接屏幕贴图实现了实时侧扫图像的快速绘制。
     (3)提出了基于极坐标变换的实时水体数据重采样方法,直接构造扇形水体图像,实现了实时水体图像的快速绘制。
     (4)提出了一种基于状态保护与转移机制的声纳设备控制方法,实现了安全友好的交互式声纳设备控制。
     (5)提出了一种基于本地缓存池的多线程实时数据采集方法,有效提高了声纳主控计算机采用广播方式推送各类实时数据至显控系统时的实时数据采集成功率。
     实验结果表明该系统满足深水多波束测深侧扫声纳设备的显控需求,能够保障声纳设备作业安全、增强现场作业能力和数据发掘能力。
The 21st century has been called "the century of ocean". Research on the ocean is not only the scientic need, but also the important way to solve the increasingly severe problem such as land resources shortage, population expansion growth et al. All contries in the world spare no effort in the oncean research, exploraiong, development and utilization of the ocean resources. Submarine terrain and landform information has a very important position as the basis in shipping safety, marine project, ocean research, national interests and so on. Sonar technology is the only effective means currently on the submarine bathymetry. Because of the advantage of the multi-beam sonar system like high efficiency, high precision and full coverage, The International Hydrographic Organization set the multi-beam sonary system is only method for the high precision seabed terrain detection.
     However the deep water multi-beam sonar system consists of numerous equipment, produces large amounts of data in real-time, and processes the data complex, the display and control system for it could not show the multi-source detecting data fast and precision in real-time.
     The purpose of this paper is to design and implement the first display and control system for deep water multi-beam bathymetric sidescan sonar in China, to provie the safe and friendly terminal for the sonar device control, to provide user the stable and convenient detecting data service, to provie the multi-views of the detecting data in real-time, to enhance the field processing power and data mining capabilities. The main research work includes:A sonar device control method based on the state protection and transition was proposed to achieve the safe and friendly operation; A efficient and stable real-time data acquisition method was proposed for the deep water multi-beam bathymetric sidescan sonar system mass detecting data; Some scientific data real-time expression method were proposed to show the deep water multi-beam bathymetric sidescan sonar system detecting data fast and precisely.
     The main innovation is as follows:
     (1) Aiming at the features of the deep water multi-beam bathymetric sidescan sonar system sounding data, to improve the constructin efficiency of thedynamic irregular seafloor DEM,4 methods were propsed to construct the dynamic irregular detecting seafloor terrain, to realize 3D rendering of the massive detecting seabed terrain under global frame in real-time:
     A. Rapid sound wave velocity correction method
     B. Rapid beam footprint position calculating method
     C. Rapid dynamic strip-map gridding method
     D. Dynamic irregular pyramid construction method
     (2)To improve the drawing efficiency of the backscattering image in real-time, a real-time massive side scan data strip-map updating method was proposed.
     (3)To improve the drawing efficiency fo the water column image in real-time, a real-time massive water column data resample method based on polar coordinate was proposed.
     (4)To control the sonar device safely and friendly, a sonar device control method based on the state protection and transition was proposed.
     (5) To improve the multi-source real-time data acquisition success rate, a real-time data acquisition method using multi-thread thchnique based on the local data cache pool was proposed.
     The experiment shows that this system could meet the display and control demands of deep water multi-beam bathymetric side scan sonar, could improve the safety and efficiency of the filed operation.
引文
[1]NOAA.U.S. Ocean ActionPlan[EB/OL]. http://ocean.ceq.gov/actionplan.pdf,2005.
    [2]金永明.日本《海洋基本计划草案》概要[N].中国海洋报,2008.03.11(3).
    [3]国务院.国务院关于印发全国海洋经济发展规划纲要的通知[EB/OL].http://www.gov.cn/zwgk/2005-08/13/content_22246.thm,2003.
    [4]NERC.Ocean 2025-Harnessing Marine Research for the Future[EB/OL]. http://www.nerc.ac.uk/press/releases/2007/02-oceans2025.asp,2007.
    [5]国家海洋局,科学技术部国防科学技术工业委员会等.国家“十一五”海洋科学和技术发展规划纲要[EB/OL].http://www.soa.gov.cn/hyj ww/xzwgk/gjhyjwj/hykj/webinfo/2008/09/1252915436076518.thm, 2008.
    [6]任建国.我国海洋科学“十一五”发展战略与优先资助领域[J].中国科学基金.2007,21(1):7-13.
    [7]秦臻.海洋开发与水深技术M].北京:海洋出版社,1984.
    [8]李家彪.多波束勘测原理技术与方法[M].北京:海洋出版社,1999.
    [9]赵建虎, 刘经南.多波束测深及图像数据处理[M].武汉:武汉大学出版社,2008.
    [10]沈文君.海域划界技术方法[M].北京:海洋出版社,2003.
    [11]宋学春.我国“大洋一号”科学考察船胜利返航[EB/OL]http://www.people.com.cn/GB/keji/1056/2255299.html,2003.
    [12]陈惠玲, 李振韶.我国首次获得深海热液硫化物和极端环境下的生物样品[EB/OL].http://old.cgs.gov.cn/NEWS/Geology%20News/2005/20050922/20050922001.thm,2005.
    [13]徐冬梅.“海洋四号”海底探宝船返航取得4项成果[EB/OL].http://www.people.com.cn/GB/keji/1057/2169395.html,2003.
    [14]杨金森.海洋强国兴衰史略[M].北京:清华大学出版社,1997.
    [15]田坦.声纳技术(第二版).哈尔滨:哈尔滨工程大学出版社,2009.
    [16]Reson. SeaBat[EB/OL]. http://www.reson.com/products/seabat/,2012.
    [17]L-3 ELAC Nautik. SeaBeam[EB/OL]. http://www.elac-nautik.de/products-survey_systems-multibeam/nautik/cb4c5f8563dad37922238 bbf8bbe61b7/,2012.
    [18]Kongsberg Maritine. SIS-Seafloor Information System[EB/OL]. http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/F463BE337323A51EC1256E46 002F0470?OpenDocument,2012.
    [19]Geng X. Precise Acoustic Bathymetry[D]. Victora:University of Victora,1999.
    [20]Robert C., Tyce. Deep Seafloor mapping systems-a review[J]. MTS Journal,1987, 20(4).
    [21]黄谟涛,翟国庆,欧阳永忠等.多波束测深技术研究进展与展望[J].海洋测绘,2001,21(3):2-7.
    [22]陈非凡.多波束条带测深仪研究发展动态[J].海洋技术,1999,18(2).
    [23]Geng Xueyi, Zielinski A. Precise Multibeam Asoustic Bathymetry[J]. Marine Geodsy, 1999,22:157-167.
    [24]张嫦娥.多波束测深系统性能对比—新一代地形地貌观测设备[J].海洋技术,1992,11(4).
    [25]刘经南, 赵建虎.多波束测深系统的现状和发展趋势[J].海洋测绘,2002,22(5).
    [26]刘忠臣, 周兴华, 陈义兰, 胡光海.浅水多波束系统及其最新技术发展[J].海洋测绘,2005,25(6).
    [27]Mayer L. Shallow Water Multibeam Sonar Historical Overview and Modern Requirement[C]. Ocean Mapping Group, University of New Brunswick, Canada,1996.
    [28]De Mostier C, Lonsdale P F, Shor AN. Simulataneous Operation of the Sea Beam Multibeam Echo-Sounder and the SeaMARC Ⅱ Bathymetric Sidescan Sonar System[J]. IEEE Journal of Oceanic Engineering,1990,15(2):84-94.
    [29]L-3 ELAC Nautik. HydroStar Online Version 3[EB/OL].http://www.elac-nautik.de/_uploads/images/pdf/L-3%20ELAC%20Nautik%20Hydro Star-ONLINE.pdf,2012.
    [30]Reson.SeaBat 7150[EB/OL]. http://www.reson.com/products/seabat/seabat-7150/,2010.
    [31]HYPACK, Inc. Pypack &Hysweep[EB/OL]. http://www.hypack.com/new/Sales/Prodects/HYSWEEP/tabid/59/Default.aspx,2012.
    [32]QPS. QINSY &QLOUD[EB/OL]. http://www.qps.nl/display/news/2009.12/20/Qloud+Performance+Improvement,2009.
    [33]Oceanic Imaging Consultants. GeoDAS [EB/OL]. http://www.ociinc.com/geodas.html, 2012.
    [34]周传德,秦树人,尹爱军.科学可视化理论及智能虚拟现实系统[M].北京:科学出版社, 2007.
    [35]徐青.地形三维可视化技术[M].北京:测绘出版社,2000.
    [36]靳海量.海量三维地形数据实时绘制技术研究[M].江苏:中国矿业大学出版社,2009.
    [37]Clark, James. Hierarchical geometric Models for Visible Surface Algorithms[J]. Communications of the ACM,1976,190(10:547-554.
    [38]Cohen, Jo D Manocha. Appearance Preserving Simplification[EB/OL]. http://www.cs.unc.edu/-geom/APS/APS.pdf,1998.
    [39]Erikson, Carl. Polygonal Simplification:An Overview[EB/OL]. http://citeseer.ist.psu.edu/110958.html,1996.
    [40]Michael J DeHaemer Jr. Michael Zyda:Simplification of Objects Rendered by Polygonal Approximations[EB/OL]. http://movesinstitute.org/-zyda/pubs/CG.15.2.pdf,1997.
    [41]Stephan Rottger, Wolfgang Heidrich. Real-Time Generation of Continuous Levels of Detail for Height fields[EB/OL]. http://www.cs.ubc.ca/-heidrich/Papers/WSCG.98.pdf,1998.
    [42]Stephan Rotter, Thomas Ertl. Hardware Accelerated Terrain Rendering by Adaptive Slicing[EB/OL]. http://www.usf.de/downl_jsf01/Stephan_Rottger_Shadow_Volumes_without_stencil_Buffer.pdf 2001.
    [43]De Floriani, Paola Meggillo. Multiresolution Models for Topographic Surface Description[EB/OL]. http://www.disi.unige.it/person/DeflorianiL/publications.html,2001.
    [44]Hugues Hoppe. Progressive Meshes[EB/OL]. http://research.microsoft.com/-hoppe/pm.pdf, 1996.
    [45]Hugues Hoppe. View-Dependent Refinement of Progressive Meshes[EB/OL]. http://research. Microsoft.com/-hoppe/vdrpm.pdf,1997.
    [46]Hugues Hoppe. Smooth View-Dependent Level-of_Detial Control and Its Application to Terrain Rendering[EB/OL]. http://research.microsoft.com/-hoppe/svdldciatr.pdf,1998.
    [47]Hugues Hoppe, DeRose T, Duchamp, et al. Mesh Optimization[EB/OL]. http://research.microsoft.com/-hoppe/meshopt.pdf,1993.
    [48]Peter Lindstrom, David Koller, et al. Level-of-Detail Management for Real-time Rendering of Phototextured Terrain[EB/OL]. http://smartech.gatech.edu/bitstream/1853/3551/1/95-06.pdf.
    [49]Peter Lindstrom, David Koller, William Ribarsky, et al. Real-time, Continuous Level of Detail Rendering of Height Fields[EB/OL]. http://www.gvu.gatech.edu/people/peter.lindstrom/papers/siggraph96/siggraph96.pdf,1996.
    [50]Peter Lindstrom, David Koller, Willam Ribarsky. An Integrated Global GIS and Visual Simulation System[EB/OL]. http://graphics.stanford.edu/-dk/pspers/integrated-global-gis.pdf, 1998.
    [51]汤晓安, 陈敏, 何亦征等.一种基于视觉特征的地形模型数据提取与快速显示方法[J].测绘学报,2002,31(3):266-269.
    [52]Garland Michael, Heckbert P. Multiresolution Modeling for Fast Rendering[EB/OL]. http://citeseer.ist.psu.edu/244089.thml,1994.
    [53]Garland Michael, Heckbert P. Fast Polygonal Approximation of Tdrrains and Height Fields[EB/OL]. http://graphics.cs.uiuc.edu/-garland/CMU/scape/scape.pdf,1995.
    [54]Garland Michael, Heckbert P. Surface Simplification Using Quadric Error Metrics[EB/OL]. http://graphics.cs.uiuc.edu/-garland/CMU/Papers/quadrics.pdf,1997.
    [55]Mark Duchaineauy, Murray Wolinsky, et al. ROAMing Terrain:Real-time Optimally Adapting Meshes[EB/OL]. http://www.llnl.gov/graphics/ROAM/roam.pdf,1997.
    [56]Peter Lindstrom, Valerio Pascucci. Visualization of Large Terrain Made Easy[EB/OL]. http://www-static.cc.gatech.edu/-lindstrom/papers/vis2001a/paper.pdf,2001.
    [57]Peter Lindstrom, Valerio Pascucci. Terrain Simplification Simplified:A General Framework for View-Dependent Out-of-Core Visualization[EB/OL]. http://www.gvu.gatech.edu/people/peter.lindstrom/papers/tvcg2002/paper.pdf,2002.
    [58]Evans W, Kirkpatrick D, Townsend G. Right-Triangulated Irregular Network[EB/OL]. http://citeseer.ist.psu.edu/evans01righttriangulated.html,2001.
    [59]Floriani L D, Puppo E. A Hierarchical Triangle-Based Model for Terrain Description.[C]. Theories and Methods of Spatio-Temporal Reasoning in Geographic Space.1992, Berlin: SpringerVerlag,236-251.
    [60]Bollm C. View Independent Progressive Meshes(VIPM)[EB/OL]. http://www.cbloom.com/3d/techdocs/vipm.txt,2000.
    [61]Ulrich thatcher. Chunked LOD:Rendering massive terrains using chunked level of detail control[EB/OL]. http://www.vterrain.org/LOD/Papers,2003.
    [62]徐章炜.基于高速网的虚拟地球原型和协议研究[D].北京:北京大学,2000.
    [63]Xiaohong Bao, Renato Pajarola. LOD-based Clustering Techniques for Optimizing Large-scale Terrain Storage andVisualization[EB/OL]. http://www.ics.uci.edu/-pajarola/pub/UCI-ICS-02-16.pdf,2002.
    [64]Xiaohong Bao, Renato Pajarola. LOD-based Clustering techniques for Efficient Large-scale Terrain Storage and Visualization[EB/OL]. http://www.ics.uci.edu/-xbao/,2003.
    [65]Xiaohong Bao, Renato Pajarola, Michael Shafae. AMART:An Efficient Technique for Massive Terrain Visualization from out-of-core[EB/OL]. http://www.ics.uci.edu/-xbao/,2004.
    [66]陈刚, 夏青,万刚.地形RSG模型的动态构网算法[J].测绘学报,2002,31(1):44-48.
    [67]陈刚, 杨明果, 王科伟.地形TIN模型的实时连续LOD算法设计与实现[J].测绘学院学报,2003,20(4):286-289.
    [68]Claudio T Silva. Out-of-Core Algorithms for Scientific Visualization and Computer Graphics[EB/OL].http://cis.poly.edu/chiang/vis02-tutorial4.pdf,2002.
    [69]Renato Pajarola. Access to Large Scale Terrain and Image Databases in Geoinformation Systems. Dissertation:ETH Zurich[EB/OL]. http://www.graphics.ics.uci.edu/pdfs/Largescale.pdf, 1998.
    [70]Paolo Cignoni, Fabil Ganovelli, et al. Planet-Sized Batched Dynamic Adaptive Meshes(P-BDAM)[EB/OL]. http://www.crs4.it/vic/data/papers/ieeeviz03-pbdam.pdf,2004.
    [71]Vitter J.S. External memory algorithms and data structures:dealing with massive data[J]. ACM Computing Surveys.2001,33(2):209-271.
    [72]雷桑诺夫, 布列霍夫斯基.海洋声学基础[M].北京:海洋出版社,1985.
    [73]梁开龙.水下地形测量[M].北京:测绘出版社,1995.
    [74]周丰年, 赵建虎, 周才杨.多波束测深系统最优声速公式的确定[J].台湾海峡,2001,20(4):4 11-419.
    [75]叶久长.声速计算公式比较[J].海洋测绘,198891):17-20.
    [76]管铮.在我国使用声速改正公式的精度分析[J].海洋测绘,1995(1):47-51.
    [77]姜小俊.海底浅层声学探测空间数据集成与融合模型及GIS表达研究[D].杭州:浙江大学,2009.
    [78]De Moustier C. Signal Processing for Swith Bathymetry and Concurrent Seafloor Acoustic Imaging. Canadian Government,1993:329-354.
    [79]De Moustier C, Matsumoto H. Seafloor Acoustic Remote Sensing with Multibeam Echo-souders and Bathymetric Sidescan Sonar System[J]. Marine Geophysical Researches,1993,15:27-42.
    [80]Hughes Clark J E, Garder J V, Torresan M, et al. The Limits of Spatial Resolution Achievable Using a 30khz Multibeam Sonar:Model Predictions and Field Resultes[C]. The MTS IEEE Oceans 98 Conference, Nice, France,1998.
    [81]Kleinrock M C. Practical geological comparison of some seafloor survey instruments[J]. Geophysical Research Letters,1992,19(13):1407-1410.
    [82]J Scott Ferguson. Daniel Chayes. A generic swath-mapping data format[J]. Marine Geodesy, 1992,15.
    [83]陈非凡,吴英姿,徐新盛.多波束条带测深技术的研究[J].海洋技术,1998,17(2).
    [84]Spiess F. N. Seafloor research and ocean technology[J]. MTS Journal,1987,21(2):5-17.
    [85]Lingsch S. C., Robinson C. S. Acoustic imagery using a multibeam bathymetric system[J]. Maring Geodesy,1992,15:81-95.
    [86]Timo P J. Trials and experimental results of the ECHOS XD multibeam echo sounder[J]. IEEE Journal of Oceanic Engineering,1989,14(4):306-313.
    [87]Goff J A, Kleinrock M C. Quantitative comparison of bathymetric survey systems[J]. Geophysical Research Letters,1991,18(7):1253-1256.
    [88]Rougeau C. Integrated acoustic technologies from new shallow water survey system. Marine Geodesy,1992,15:187-198.
    [89]Tonchia H. evaluation of a deep water wide swath echo sounder for hydrographic surveys[C]. Proceedings of OCEANS 94/OSATES conference,1994.
    [90]杨凡林,赵建虎,周丰年等.多波束声纳测深瞬间到达角和旅行时的精确确定[J].武汉大学学报:信息科学版,2006,31(3):218-220.
    [91]Robert Tyce, Scott Ferguson, Peter Lemmond. NECOR SeaBeam data collection and processing development. MTS Journal,1987,21(2).
    [92]范震寰.多波束测深关键技术研究[D].南京:南京航空航天大学,2005.
    [93]冉玉萍.浅水多波束测深仪显控软件研究[D].哈尔滨:哈尔滨工程大学,2007.
    [94]俞武.实时多波束处理与采集系统设计与实现[D].哈尔滨:哈尔滨工程大学,2007.
    [95]赵建虎.多波束测深及图像数据处理方法研究[D].武汉:武汉大学,2002.
    [96]吴自银, 金翔龙, 高金耀等.地形地貌多源数据综合成图关键技术[J].海洋学报,2003,25(1):143-148.
    [97]金翔龙,高金耀,李家彪.我国多波束数据综合处理成图技术的现状和对策[C].中国地球物理学会年刊.武汉:中国地质大学出版社,2000.
    [98]陈友元.便携式多波束测深仪实时测控与数据可视技术研究[D].哈尔滨:哈尔滨工程大学,2005.
    [99]赵建虎, 刘经南.多波束测深系统的归位问题研究[J].海洋测绘,2003,23(1):9-25.
    [100]赵建虎,张红梅,John E Hughes Clarke多波束测量中换能器瞬时精密高程的确定[J].武汉大学学报:信息科学版,2006,31(11):983-986.
    [101]Zhao Jianhu, Liu Jingnan. Development of method in Precision Multibeam Acoustic Bathymetry[J]. Geo-Spatial Information Science,2003,6(3):71-74.
    [102]Kohonen T. Self-organization and Associative Memory[M]. Berlin:Springer Verlag,1987.
    [103]Anderson A. H., Kak A. C. Digital Ray Tracing in Two Dimensional Refractive Fields [J].Acouct. Soc. Am.1982,72(5):1593-1606.
    [104]关定华.声与海洋[M].北京:海洋出版社,1982:1-40。
    [105]夏伟,黄谟涛等Douglas-Peucker算法在多波束测深数据抽稀中的应用[J].测绘科学,2009,34(3).
    [106]陈非凡.多波束条带测深仪的动态测量误差评估[J].海洋技术,1999,18(1):41-45.
    [107]黄谟涛,翟国庆,王瑞.海洋测量异常数据的检测[J].测绘学报,1999,28(3):269-277.
    [108]赵建虎,刘经南.船姿分析及其对多波束测量的影响[J].武汉大学学报:信息科学版,2001,26(2):144-149.
    [109]杨凡林,赵建虎,张红梅等RTK高程和Heave信号的融合及精度分析[J].武汉大学学报:信息科学版,2007,32(3):225-228.
    [110]Liu Jiyu, Chen Xiaoming.The Confidence Evaluation on GPS Kinematic Data[C].IUGG XXI General Assembly, Boulder, USA,1995.
    [111]李良雄.差分GPS水深测量系统延时及其船姿分析[D].武汉:武汉测绘科技大学,2000.
    [112]朱庆, 李德仁.多波束测深数据的误差分析与处理[J].武汉测绘科技大学学报,1998,23(1):43-46.
    [113]Zhao Jianhu, Liu Jingnan.The Deteremination of Height of Sea Surface with GPS[C]. GPS/GNSS 2002 International Symposium, Wuhan, china,2002.
    [114]Zhao Jianhu, Hughes Clark J E, Brucker S, et al. On-the-fly GPS Tide Measurement Along Saint John River[J]. International Hydrographic Review,2004,5(3):48-58.
    [115]Yang Fanlin, Zhao Jianhu.Analysis and Eliminating the Error of Wave in Measuring Tide With GPS[C]. GPS/GNSS 2002 International Symposium Wuhan, China,2002.
    [116]Erol B, Celik R N, Erol S. Using GPS and Leveling Data in Local Precise Geoid Determination and Case Study[J]. Geophysical Research Abstract,2003(5):43-56.
    [117]Han Shaowei, Rizos C. Sea Surface Determination Using Long-range Kinematic GPS Positioning and Laser Airborne Depth Sounder Technique[J]. Marine Geodesy.1999,22:195-203.
    [118]Chang C C, Lee H W. Preliminary Test of Tide-Independent Bathymetric Measurment Based on GPS[J]. Geomatics Research Australasia,2002,76:23-26.
    [119]Kantha L H. Tide-a Modern Perspective[J]. Marine Godesy,1998,21:275-297.
    [120]孔祥元, 郭际名, 刘宗泉.大地测量学基础[M].武汉:武汉大学出版社,2001.
    [121]朱华统.大地坐标系的建立[M].北京:测绘出版社,1986.
    [122]张哲,顾锦华,谢从涛,王莹.多波束数据处理系统技术研究[J].海洋测绘,2010,30(2).
    [123]刘经南.坐标系统的建立与变换[M].武汉:武汉测绘科技大学出版社,1995.
    [124]朱华统.常用大地坐标系及其变换[M].北京:解放军出版社,1990.
    [125]赵建虎, 张红梅,John E Hughes Clarke局部无缝垂直参考基准面的建立方法研究[J].武汉大学学报:信息科学版,2006,31(5):448-450.
    [126]熊应乾,杜德文,姜莉莉等.多波束数据处理中的UTM直角坐标与经纬度坐标转换技术[J].海洋科学进展.2006,24(2):246-253.
    [127]Oliver M A, Webster B. Kriging:a method of interpolation for geographical information systems[J]. Internationa journal of geographical information systems,1990,4(3):313-332.
    [128]Lan C B. Machine contouring using minimum curvature[J]. Geophysics,1974, 39(1):39-48.
    [129]朱求安, 张万昌, 余钧辉.基于GIS的空间插值方法研究[J].江西师范大学学报:自然科学版,2004,2(1):183-188.
    [130]唐秋华,周兴华,丁继胜等.多波束反向散射强度数据处理研究[J].海洋学报,2006,2:51-55.
    [131]Lingsch S, Robinson C. Processing, Presentation, and data Basing of Acoustic Imagery[J]. Stennis Space Center, MS 39522-50001 USA,1995:1582-1591.
    [132]TIAN Tan, GUAN Hao. A study of detecting and imaging small targets on seabed[J]. Acoustic Imaging.1997,23:563-568.