低渗透油层微观孔隙内流体分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究低渗透油层与高渗透油层孔隙结构的差异,从微观上找出低渗透油层驱油效率低的原因,本文以润湿性实验、驱油实验和岩心微观解剖实验为基础,结合理论分析和软件计算,研究了不同渗透率、不同润湿性岩心的孔隙结构特征、微观剩余油分布规律及其与孔隙结构的关系,取得的成果如下:
     研制了岩心微观解剖实验方法并完成了设备组装。该方法综合荧光显微镜与金相显微镜的观测结果,利用景深扩展软件、测量软件,结合荧光分析技术,可实现对低渗透天然岩心自然断面上的孔隙半径、孔喉比、平面配位数、平面迂曲度、形状因子等微观参数和剩余油饱和度的测量。
     选取5块低渗透岩心依次进行了润湿性实验、驱油实验和岩心微观解剖实验。为了研究低渗透岩心与高渗透岩心孔隙结构上的差异,另外选取5块中高渗透岩心同时进行实验,以便于对比分析。
     对拟进行驱油实验和岩心微观解剖实验的10块天然岩心分别测量了洗油前、洗油后和水洗后的润湿性。结果表明,低渗透岩心以亲水为主;驱油实验时常用的洗油方法严重地改变岩心的润湿性,使其更加偏于亲油。通过一定时间的水洗,可基本消除这种影响,使岩心的润湿性基本恢复到初始状态。因此,研究岩心的润湿性时应在洗油前或水洗后进行。
     测量完天然岩心水洗后的润湿性后,开展了驱油实验,并立刻进行了岩心微观解剖实验,拍摄了岩心自然断面上的金相和荧光两种模式的照片,测量了各岩心的孔隙半径、喉道半径、孔喉比、平面配位数、平面迂曲度、形状因子等参数。实验结果表明:(1)随着渗透率的减小,岩心平均孔隙半径减小,但这一趋势并不明显,说明孔隙半径对渗透率的影响不显著;(2)孔喉比随渗透率的减小而增大。分类特征明显,低渗透岩心与高渗透岩心的孔喉比存在明显的差异;(3)渗透率越小,平面配位数越小,这说明低渗透岩心孔隙连通差;(4)随着渗透率的减小,平面迂曲度变大,这说明低渗透率岩心中孔隙的空间展布情况较高渗透岩心复杂;(5)低渗透岩心的形状因子较高渗透岩心小很多,说明低渗透岩心孔喉截面形状更加复杂,不利于油水在其中的流动。(6)孔喉比大、形状因子小是低渗透岩心与高渗透岩心最显著的差异。
     通过金相模式和荧光模式两种照片的对比,研究了岩心中微观剩余油分布规律。结果表明:(1)在油湿和中性润湿岩心中,孔隙半径越小,存在剩余油的概率越大。而水湿岩心中的剩余油主要存在于大孔隙中;(2)无论水湿还是油湿岩心,随着孔喉比的增加,孔隙中存在剩余油的概率均增大;(3)无论水湿还是油湿岩心,随着平面配位数的增加,存在剩余油的概率均减小,说明改变孔隙微观上的连通情况有助于提高采收率;(4)无论水湿还是油湿岩心,随着迂曲度的增加,存在剩余油的概率均增大,说明孔隙形状越复杂,越不利于驱出剩余油;(5)水湿和中性润湿岩心中形状因子越小,存在剩余油的概率越大。而在油湿岩心中,随着形状因子的减小,存在剩余油的概率变小;(6)低渗透油层孔喉狭小、形状复杂,油滴在孔道中的卡断是形成剩余油的主要形式;(7)孔喉比大、形状因子小是低渗透油层驱油效率低的主要原因。
     油滴从喉道进入孔隙的过程中,毛管压力由大变小,毛管力始终是水驱油的动力。间断的油滴在从喉道进入孔隙时更加容易被捕获形成剩余油。一旦剩余油在孔隙中形成,就无法建立有效的压力梯度将其驱出。低渗透油层由于喉道细小,以油滴形式捕集下来的剩余油占有更大比重。孔喉比大所造成的卡断是低渗透油层驱油效率低的主要原因。
In order to learn the difference of pore structure between low permeability layer and high permeability layer, find out the reason why the displacement efficiency in low permeability layer is lower than that in high permeability layer, the character of pore structure, distribution law of microscopic remaining oil along with its relation with pore structure in cores with different permeability and different wettability was researched based on the wettability experiment, oil displacement experiment and the core dissecting experiment,. The outcome of this study is as bellowed.
     The technique of core micro-anatomy experiment was developed and the equipment assembly was completed. By the combination of fluorescence microscope and the metallography microscope, by the union of depth of field expansion software and measurement software and the fluorometric analysis technique, this method can realize the measurement on microscopic parameter such as pore radius, the pore-throat ratio, the plane coordinate number, the plane circuitous degree, the shape factor and the measurement on remaining oil satruation of natural cross section in low permeability cores.
     The wettability experiment was carried on 5 piece of low permeability cores, and the flooding experiment, the core micro-anatomy experiment was carried in turn. The same experiment was carried on 5 piece of high permeability cores in order to contrast the pore structure between low permeability cores and high permeability cores.
     Wettability of 10 piece of natural cores that after and before washing oil was measured.The result indicated that the often used oil washing method may change the wettability of cores seriously, which causes it more pro-oil bias. Through flooding of a certain time, this impaction can be basically eliminated, and the wettability of the cores return to the initial state. Then the experiment should be carried on before the procedure of washing oil or after water flooding when the wettability of cores are studied.
     After the measurement on wettability, the oil displacement experiment was launched before the core dissecting experiment. Both metallographic picture and fluorescent picture of nature fractured surface in cores were shoot, the parameters of cores including pore radius, throat radius, ratio between pore and throat, plane coordinate number, plane tortuous degree and form factor were measured. The result of experiment shows that: (1) With the increase of permeability, the average pore radius of cores increase, but this trend was not apparent which indicates the impact of the pore radius on permeability was not significant; (2) with the increase of permeability, the ratio between pore and throat decrease. The classification feature is obvious, there is a significant differences in ratio between pore and throat between low permeability cores and high permeability cores; (3) the greater the permeability is, the greater the plane coordinate number is, which indicates that low permeability cores have poor pore connectivity; (4) With the increase of permeability, plane tortuous degree become smaller, which indicates that the distribution of pore is more complex in low permeability cores than that in high permeability cores; (5) the form factor in low permeability cores is much smaller than that in high permeability cores, which shows that the pore-throat section shape in low permeability cores is too complex to allow the flowing of water and oil in it; (6) the most significant difference between the low permeability and high permeability cores is that the ratio between pore and throat is greater and form factor is smaller in low permeability cores.
     According to the comparison between two kinds of photographs of the metallographic type and the fluorescent type, the distribution law of the microcosmic remaining oil in cores was studied. The result indicates that: (1) In the oil-wet and intermediately wet cores, the smaller the pore radius is, the larger the probability of the existence of remaining oil is. However, the remaining oil in the water-wet cores is mainly contained in large pores. (2) Whether the cores are water-wet or oil-wet, with the increase of the pore-throat ratio, the probability of the existence of remaining oil in the pore would both increase. (3) Whether the cores are water-wet or oil-wet, with the increase of the coordinate number, the probability of the existence of remaining oil would both decrease. It indicates that improving the microcosmic connected conditions of pores is conducible to enhance oil recovery. (4) Whether the cores are water-wet or oil-wet, with the increase of tortuous degree, the probability of the existence of remaining oil would both increase. It shows that it is much harder to displace the remaining oil when the pore shape is more complex. (5) The smaller the shape factor in the water-wet cores and intermediately wet cores is, the larger the probability of the existence of remaining oil. While in the oil-wet cores, as the shape factor decreases, the probability of the existence of remaining oil would also decrease. (6) As the pore throat in the low permeability layer is narrow and the shape is complex, the resection of oil globule in the channel is the primary form to generate remaining oil. (7) Large pore-throat ratio and small shape factor is the main reason for the low displacement efficiency in the low permeability oil layer.
     When the oil droplet moves from the pore throat to the pore, capillary pressure gets bigger and is the driving force all through the displacement. Discontinuous oil droplets tend to be easily captured and become remaining oil when moving from the pore throat into the pore. Once remaining oil is formed, it is impossible to establish effective pressure gradient to drive it out. The size of the pore is very small in the low permeability layer and the remaining oil in the form of the oil droplets due to capture accounts for a big percentage. Disconnection due to the big ratio in size of the pore to the throat is the main reason for the low displacement efficiency in the low permeability layer.
引文
[1]裘怿楠,陈子琪.油藏描述[M].北京:石油工业出版社,1996:1-10.
    [2]油气田开发标准.北京:石油工业出版社,1996:1-12.
    [3]耿龙祥,曹玉珊,易志伟,等.濮城油田砂岩储集层物性下限标准研究[J].石油勘探与开发,1999,26(1):81-83.
    [4] MORROW W N R. Physics and thermodynamics of capillary action in porous media[J]. Industrial and Engineering Chemistry Research, 1970,63:32-56.
    [5]黄述旺,蔡毅,魏萍,等.储层微观孔隙结构特征空间展布研究方法[J].石油学报,1994(增刊):76-80.
    [6]周宏伟,谢和平.孔隙介质细观渗流DLA效应的实验研究[J].石油学报,2001,22(3):52-57.
    [7]于俊波,郭殿军,王新强.基于恒速压泵技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25.
    [8]胡志明,把智波,熊伟,等.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51-55.
    [9]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1998:2-5.
    [10]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998:7-10.
    [11]胡志明.低渗透油层的微观孔隙结构特征研究及应用[D].中国科学院渗流流体力学研究所硕士论文,2006:1-10.
    [12] Robert. M. Sneider等著,叶秋成译.储集层研究提高勘探成功率[M].油气勘探译丛书,石油科技情报研究所,1985:5-8.
    [13]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003:4-7.
    [14]任晓娟.低渗砂岩储层孔隙结构与流体微观渗流特征研究(D).西北大学博士学位论文,2006:1-2.
    [15]王道富.鄂尔多斯盆地特低渗透油田开发[M].石油工业出版社,北京1-5.
    [16]沈平平.油水在多孔介质中的运动理论与实践[M].北京:石油工业出版社,2003:1-2.
    [17]雅第安.E.薛定谔.多孔介质中的渗流物理[M].北京:石油工业出版社,1982:1-5.
    [18]孟江.水驱油藏剩余油微观分布模拟研究[D].成都理工大学博士学位论文,2007:3-6.
    [19]徐安娜,穆龙新,裘亦楠.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J].石油勘探与开发,1998,25(5):23-27.
    [20]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):47-56.
    [21]俞启泰.注水油藏大尺度未波及剩余油的三大富集区[J].石油学报,2000,21(2):38-40.
    [22]俞启泰.关于剩余油研究的探讨[J].石油勘探与开发,1997,24(2):46-50.
    [23]彭仕宓,黄述旺.油藏开发地质学[M].北京:石油工业出版社,1998:31-50.
    [24]周瑜,邓君,石维民.濮城油田沙河街组二段剩余油的分布[J].石油与天然气地质,2001,22(3):253-255.
    [25]李淑霞,陈月明,冯其红.利用井间示踪剂确定剩余油饱和度的方法[J].石油勘探与开发,2001,28(2):73-75.
    [26]曾庆娟,刘同敬.高含水期示踪剂及碳氧比测井测定剩余油精度评价[J].特种油气藏,2003,10(5):71-73.
    [27] David Rspain. Petrophysical evaluation of a slope fan/Basin Floor Fan complex: Cherry Canyon Formation, Ward Country,Texas[J] . AAPGBulletin, 1992,76(6):805-827.
    [28] Hearn C L, Ebanks W J. Geological factors influencing reservoir performance of the H artzog Drafield[J]. Wyoming. Petrol. Tech. 1984, 36:1335-1334.
    [29] Ebanks W J. Flow unit concept integrated approach to reservoir description for engineering projects[J]. AAPG Annual meeting, AAPG Bulletin, 1987, 87(5): 551-552.
    [30] Nick P, Valenti, Valenti R M and Koederitz L F. Aunified theory on residual oil saturation and irreducible water saturation[J]. SPE77545, 2002.
    [31] Chatize I, Morrow N R, Lim H T. Magnitude and Detailed Structure of Residual Oil Saturation[J]. sol, pet, Eng. J, 1983,(4): 311-326.
    [32]韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1999.
    [33]赵永胜.储层三维地质模型难使数值模拟摆脱困境[J].石油学报,1998,19(3):135-137.
    [34]吴胜和,马晓芬,王仲林.温米油田开发阶段高分辨率层序地层学研究[J].石油学报,1999,20(5):33-38.
    [35]陆健林,李国强,樊中海.高含水期油田剩余油分布研究[J].石油学报,2001,22(5):48-52.
    [36]孙焕泉.油藏动态模型和剩余油分布模式[M].北京:石油工业出版,2002:15-18.
    [37]魏斌,郑浚茂.高含水油田剩余油分布研究[M].北京:地质出版社,2002:62-69.
    [38]罗明高.开发地质学[M] .北京:石油工业出版社,1996:61-68.
    [39] Murphy R P, Owens W W. The use of special coring and logging procedures for defining reservoir residual oil saturations[C]. SPE3793, 1973.
    [40] Du Y, GuanL. Interwell tracer tests: lessons learnted from past field studies[C]. SPE93140, 2005.
    [41] Joseph S T, Zhang Peixin. Effect of mobile oil on residual oil saturation measurement by interwell tracing method[C]. SPE64627, 2000.
    [42] Cockin A P, Malcoln L T, McGuire P L, etal. Design, implementation and simulationan alysis of a single-well chemical tracer test to measure the residual oil saturation to hydrocarbon miscible gas at Prudhoe bay[C]. SPE48951, 1998.
    [43] Matteson A, Tomanic J P, Herron M M, etal. NMR relaxation of clay/brine mixtures[C]. SPE66185, 2000.
    [44] Ramsin Y. Nuclear magnetic resonance and carbon/oxygen logging improve determination of residual oil saturation: a case study from the minas field[C]. SPE54388, 1999.
    [45] Maute R E, Gournay L S. Determination of residual oil saturation with the borehole gravity meter[C]. SPE13707, 1985.
    [46]谢俊,张金亮.剩余油描述与预测[M].北京:石油业出版社,2003:1-131.
    [47]冯少太,常士奘.国外剩余油饱和度的测量技术[J] .断块油气田,1994,1(1):28-32.
    [48]俞启泰.俞启泰油田开发论文集[M].北京:石油工业出版社,1999:503-509.
    [49] Lenormand R. Fluid in Porous Media[R]. Report 40814, Institute Francais Dupetrole, 1993.
    [50]郭尚平,黄延章,周娟等.物理化学渗流微观机理[M].北京科学出版社,1990:20-51.
    [51]郭尚平.物理化学渗流原理与应用[M].重庆重庆人学出版社,1989:32-68.
    [52]陈亮,彭仕密,聂吕谋.胡状集油田胡十二断块剩余油微观形成机理研究[J] .断块油气田,1997,4(4):43-45.
    [53]朱九成,郎兆新,黄延章.指进和剩余油分布的实验研究[J].石油大学学报,1997,21(3):40-42.
    [54]孔令荣,曲志浩,万发宝等.砂岩微观孔隙模型两相驱替实验[J].石油勘探与开发,1991,(4):79-84.
    [55]冯慧洁,聂小斌,徐国勇,等.砾岩油藏聚合物驱微观机理研究[J] .油田化学,2007,24(3):232-237.
    [56]李洪玺,刘全稳,何家雄.物理模拟研究剩余油微观分布[J] .新疆石油地质,2006,27(3):351-353.
    [57]贾忠伟,杨清彦,兰玉波.水驱油微观物理模拟实验研究[J].大庆石油地质与开发,2002,21(1):46-50.
    [58]苏娜,黄健全,韩国辉.微观水驱油实验及剩余油形成机理研究[J].断块油气田,2007,14(6):50-52.
    [59]朱义吾.长庆油田延安组油层光刻显微空隙模型水驱研究[J].石油学报,1989,(3),40-47.
    [60]孙卫,曲志浩,李劲峰.安塞特低渗油田见水后的水驱油机理及开发效果分析[J].石油实验地质,1999,21(3):256-259.
    [61]曲志浩,孔令荣.低渗透油层微观水驱油特征[J].西北大学学报(自然科学版),2002,32(4):329-334.
    [62]何秋轩,高永利,任晓娟.沈阳油田储层微观驱油效率研究[J].西南石油学院学报,1996,18(2):20-24.
    [63]李向良,李奎祥.利用计算机层析(CT)确定岩心的基本物理参数[J].石油勘探与开李玉彬发,1999,26(6):86-91.
    [64] Wang S Y, et al. Reconstruction of oil saturation distribution histories during immiscible liquid-liquid displacement by computer-assisted tomography. AIChE Jour. 1984,30(4):642-646.
    [65] Wellington S L, Vinegar H J. X-ray computerized to mography. JPT, Aug. 1987,885-898.
    [66] Sedgwick G E, Miles-dixon E. Application of X-ray imaging techniques to oil sands experiments. JCPT, 1988,27(2):104-110.
    [67] Withjack E M. Computed tomography for rock-property determination and fluid-flow visualization. SPE Formation Evaluation. Dec 1988, 696-704.
    [68] Petrovic A M, Siebert J E and Rieke P E. Soil bulk density analysis in three dimensions by computed tomographic scanning. Soil Sci. Soc. Am. Jour., 1982, 46(3):445~450.
    [69] Ander S H, Gantzer C J, Boone J M, etal. Rapid nondestructive bulk density and soil water content determination by compute dtomography. Soil Sci. Soc. Am.Jour., 1988, Vol.52, 35~40.
    [70]戴贤忠,李小孟,王家新,等. CT在油气藏储量计算参数测定中的应用[J].石油学报,1993,14(4):60-68.
    [71] Schembre J M, Kovscek A R. 2004. Thermally Induced Fines Mobi-lization:It's Relationship to wettability and Formation Damage.
    [72] Sun W, Qu Z, Tang G。2004. Characterization of water injectionin low permeability rock using sandstone micromobles。Journal of Petroleum Technology, 56(5):71-72.
    [73]刘池洋,赵红格,王锋,等.鄂尔多斯盆地西缘(部)中生代构造属性[J].地质学报, 2005. 79(6):737-747.
    [74]孙卫,史成恩,赵惊蛰,等. X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用[J].地质学报,2006,80(5):775-776.
    [75]张顺康,陈月明,侯健.岩石孔隙中微观流动规律的CT层析图像三维可视化研究[J] .石油天然气学报,2006,28(4):102-107.
    [76]张顺康,陈月明,侯健.岩心CT微观驱替实验的图像处理研究[J].大庆石油地质与开发,2007,26(1):10-12.
    [77]许险峰,徐锡金,霍霞.共聚焦激光扫描显微镜技术[J].激光生物光报,2003,12(2):156-159.
    [78] WHITE JG, AMOS WB. Confocal microscopy comes of age[J] . Nature,1987,328(6126):183-184.
    [79] MINSKY M. Memoir on inventing me confocal scanning microscope[J]. Scanning,1988,128-138。
    [80] EGGER MD. The development of confocal microscopy[J]. TINS,1989,l2:11.
    [81] WILSON T. Three-dimensional imaging in confocal systems[J] . J Microsc, l989,153(pt2):161-169.
    [82] PADDOCK S W. Confocal laser scanning microscopy[J]. Biotechniques,1999,27(5):992-1004.
    [83]应凤祥,杨式升,张敏.激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学报,2002,20(1):75-79.
    [84]孙先达,索丽敏,张民志.激光共聚焦扫描显微镜检测技术在大庆探区储层分析研究中的新进展[J].岩石学报,2005,21(5):1479-1488.
    [85]文玲,李时平.五号桩油田沙三下湖相浊积扇砂体的扫描电镜研究[J].电子显微学报,2003,22(6):614-615.
    [86]包书景.扫描电镜及能谱仪在河南油田石油地质研究中的应用[J].电子显微学报,2003,22(6):607-607.
    [87]任康绪.扫描电镜对低渗透储油层砂岩基质内孔隙铸体法分析的剖析[J].化工矿产地质,1997,19(1):69-72.
    [88]李时平,白光勇,王彪.临盘油田盘二断块沙三下段储层的扫描电镜分析[J].石油大学学报,1996,20(1):123-126.
    [89]李学万,宋柏荣,高占琴.扫描电镜在辽河油田变质岩储层研究中的应用[J].电子显微学报,2005,24(4):335-336.
    [90]文玲.靖安油田延长组低孔低渗储层的扫描电镜研究[J].电子显微学报,2003,22(4):352-357.
    [91]胡书毅,尤少燕.济阳坳陷下第三系冲积扇储层的扫描电镜研究[J].电子显微学报,2004,23(4):471-471.
    [92]谢然红,肖立志.储层流体及其在岩石孔隙中的核磁共振弛豫温度特性[J].地质学报,2007,81(2):280-284.
    [93]岳文正,陶果,赵克超.用核磁共振及岩石物理实验求地层束缚水饱和度及平均孔隙半径[J].测井技术,2002,26(1):22-26.
    [94]杨正明,姜汉桥,周荣学.用核磁共振技术测量低渗含水气藏中的束缚水饱和度[J].石油钻采工艺,2008,30(3):56-58.
    [95]李艳,范宜仁,邓少贵.核磁共振岩心实验研究储层孔隙结构[J].勘探地球物理进展,2008,31(2):129-133.
    [96]刘曰强,乔向阳,袁昭.用核磁共振研究低渗储层渗流能力及驱替机理[J].吐哈油气,2004,9(3):277-280.
    [97]张鹏翼.用核磁共振资料评价储层物性、储油能力及渗流能力[J] .吐哈油气,2002,7(3):257-259.
    [98]谢然红,肖立志,刘天定.原油的核磁共弛豫物性[J].西南石油大学学报,2007,29(5):21-25.
    [99]李天降,李子丰,赵彦超.核磁共振与压汞法的孔隙结构一致性研究[J].天然气工业,2006,26(10):57-61.
    [100]郭公建,谷长春.水驱油孔隙动用规律的核磁共振实验研究[J] .西安石油大学学报(自然科学版),2005,20(5):45-50.
    [101]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-46.
    [102]王为民,郭和坤,孙佃庆.用核磁共振成像技术研究聚合物驱油过程[J].石油学报,1997,18(4):54-61.
    [103]鲁国甫,杨永利,冯毅.应用核磁共振成像技术研究特高含水期剩余油分布[J].江汉石油学院学报,2001,第23卷增刊:98-99.
    [104]范宜仁,倪自高,邓少贵,等.储层性质与核磁共振测量参数的实验研究[J] .石油实验地质,2005,27(6):624-626.
    [105]张松扬,范宜仁.核磁共振测井技术评述[J].勘探地球物理进展,2002,25(4):21-26.
    [106] Fatt I. The net work model of porousm id ia I. Capillary pressure characteristics[J] . Trans AME, 1956:144-159.
    [107] Du llien F A, Francis S, KaiY. Hydraulic continuity of residual welting phase in porous media[J]. Colloid and interface science, 1991: 210-218.
    [108] Dullien F A, Zarcone I F, Maedonald A C. The effects of surface roughness on the capillary-pressure curves and the heights f capillary rise in glass bead packs[J]. Journal of Colloid and Interface science, 1989:362-372.
    [109] Jerauld G R, Salter S J. The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore level modeling[J] . Transport in Porous Media, 1990:103-151.
    [110] Koplik J, Redner S, Wilk inson D. Transport and dispersion in random networks with percolation disorde[J]. Physical Review A, 1988, 37(7): 2619-2636.
    [111] Bryant S, BluntM . J. Prediction of relative permeability in simple porous media[J]. Physical ReviewA, 1992: 2004-2011.
    [112] Mcdougal S R, Sorbie K S. The impact of wettability on waterflooding pore-scale simulation[J]. SPE Reservoir Engineering, 1995:208-213.
    [113] Wilk inson D., Willemsen J F. Invasion Percolation-a New Form of Percolation Theory[J]. Journal of Physics A: Mathem atical and Genera, 1983:3365-3376.
    [114] AHRaoush R, Thompson K E, Willson C S. Comparison of network generation techniques for unconsolidated porous media systems[J]. Soil Science Society of America Journal, 2003:687-1700.
    [115]高慧梅,姜汉桥,陈民锋.多孔介质孔隙网络模型的应用现状[J].大庆石油地质与开发,2007,26(2):74-79.
    [116]王金勋,吴晓东,杨普华,等.孔隙网络模型法计算气液体系吸吮过程相对渗透率[J].天然气工业,2003,23(2):8-11.
    [117]吴晓东,潘新伟,王金勋,等.气藏水束缚堵塞规律的研究[J].石油大学学报,2005,29(1):41-43.
    [118]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(4):46-51.
    [119]侯健,李振泉,关继腾,等.基于三维网络模型的水驱油微观渗流机理研究[J].力学学报,2005,37(6):783-787.
    [120]高慧梅,姜汉桥,陈民锋.多孔介质孔隙网络模型的应用现状[J] .大庆石油地质与开发,2007,26(2):74-79.
    [121]李振泉,侯健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [122] Rintou IM D, Torquato S, Yeong C. Structure and transport properties of a porousm agnetiegel via x-ray microtom ography [J]. Physical Review E, 1996: 2663-2669.
    [123] Okabe H, BluntM J. Multiple-point statistics to generate geologically realistic pore-scale representations[C]. Proceedings of the society of core analysts annual meeting, 2003, 22-25.
    [124] Mohanty K K, Davis H T, Scriven L E. Physics of Oil Entrapment in Water-wet Rock [J]. SPE Reservoir Engeneering 1987, 2(1):113-128.
    [125] Blunt M,King P。Relative Permeabilities from two and three-dimensional pore-scale network modeling [J]. Transport in Porous Media, 1991, 407-433.
    [126]李振泉,侯健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [127]陈民锋,姜汉桥.基于孔隙网络模型的微观水驱油驱替特征变化规律研究[J].石油天然气学报,2006,28(5):91-96.
    [128]王克文,孙建孟,关继腾.聚合物驱后微观剩余油分布的网络模型模拟[J].中国石油大学学报,2006,30(1):72-76.
    [129]姚军,陶军,李爱芬.利用三维随机网络模型研究油水两相流动[J].石油学报,2007,28(2):94-98.
    [130]陆大卫,王春.剩余油饱和度测井评价新技术[M].北京石油工业出版社,2003:112-123.
    [131]张龙海,周灿灿,刘国强.孔隙结构对低孔低渗储集层电性及测井解释评价的影响[J].石油勘探与开发,2006,33(6):671-676.
    [132]李秋实,周荣安,张金功.阿尔奇公式与储层孔隙结构的关系[J].石油与天然气地质,2002,23(4):364-366.
    [133]刘玉山,杨耀忠.油气藏数值模拟核心技术进展[J] .油气地质与采收率,2002,9(5):31-34.
    [134]蒋迁学,杨艳丽.油藏数值模拟技术发展综述[J] .河南石油,2000,(5):19-22.
    [135]辛治国,冯伟光.利用密闭取心现场实验快速判断油层水淹状况[J].海洋石油,2008,28(1):63-67.
    [136]文政,赖强,魏国章,等.应用密闭取心分析资料求取饱和度参数[J].大庆石油学院学报,2006,30(5):17-20.
    [137]刘佃忠,张东荣.利用动态监测资料研究分析剩余油分布规律[J].内蒙古石油化工,2003,29:119-120.
    [138]马新仿,张士诚,郎兆新.储层岩石孔隙结构的分形研究[J].中国矿业,2003,12(9):46-48.
    [139]贺伟,钟孚勋,贺承祖.储层岩石孔隙的分形结构研究和应用[J].天然气工业,2000,20(2):67-72.
    [140]何琰,吴念胜.确定孔隙结构分形维数的新方法[J].石油实验地质,1999,21(4):372-376.
    [141] Musket. M., Physical principles of oil production, Mc. Graw-hill, New york Toronte. London. 1949.
    [142] Purcell, W.R, Capillary pressures-their measurement using mercury and calculation of permeability there form, AIME 1949,Vol. 186, 39-48.
    [143] Brown,A.W., Capillary pressure investigation, Trans, AIME, 1951, Vol, 193, 67-74.
    [144]辛长静,何幼斌,董桂玉.毛管压力曲线在储层微观非均质性研究中的应用[J].河南石油,2006,20(3):57-60.
    [145]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-26.
    [146]廖明光,李士伦,谈德辉.砂岩储层渗透率与压汞曲线特征参数间的关系[J] .西南石油大学学报,2001,23(4):5-9.
    [147]张文达,朱盘良,梁舒.砂岩压汞毛细管压力曲线评价储层的新参数及地质意义[J].石油实验地质,1994,16(4):384-388.
    [148]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,13(1):23-25.
    [149]王尤富,凌建军.低渗透砂岩油层岩石孔隙结构特征参数研究[J].特种油气藏,1999,6(4):25-30.
    [150]林景晔.砂岩储集层孔隙结构与油气运聚的关系[J].石油学报,2004,25(1):44-46.
    [151]蔡忠.储集层孔隙结构与驱油效率关系研究[J] .石油勘探与开发,27(6):45-49.
    [152]徐霜,张兴焰,闰志军,等.低渗透储层微观孔隙结构及其微观剩余油分布模式[J] .西部探矿工程,2005,113(9):57-60.
    [153]王夕宾,钟建华,王勇,等.濮城油田南区沙二上4-7砂层组储层孔隙结构及与驱油效率的关系[J].应用基础与工程科学学报,2006,14(3):324-332.
    [154]王夕宾,刘玉忠,钟建华,等.乐安油田草13断块沙四段储集层微观特征[J].石油大学学报,2005,29(3):6-10.
    [155]陈永生.油田非均质对策[M].北京:石油业出版社,1993.
    [156]张继成,李朦,穆文志.聚合物驱后宏观和微观剩余油分布规律[J].齐齐哈尔大学学报,2008,24(1):3-36.
    [157]彭红利,周小平,姚广聚.大孔道油藏聚驱后微观剩余油分布规律及提高采收率实验室研究[J].天然气勘探与开发,2005,28(3):62-67.
    [158]宋考平,李世军,方伟.用荧光分析方法研究聚合物驱后微观剩余油变化[J].石油学报,2005,26(2):92-95.
    [159]郭舜玲.荧光显微技术[M].北京:石油工业出版社,1994.
    [160]曹志壮,陈义贤,于天欣.定量荧光技术在低孔低渗储集层中的应用研究[J].录井工程,2005,16(3):19-24.
    [161]文慧俭,申家年,耿长喜.荧光图像技术定量识别油层水淹程度[J].断块油气田,2007,14(3):56-59.
    [162]李玉桓,朱宜南.荧光图像技术判断油层水淹状况研究[J].录井技术,2000,11(2):1-4.
    [163]左铁秋,耿长喜,马德华.应用荧光显微图像技术评价油层水淹程度[J].大庆石油地质与开发,2005,第24卷,增刊,116-118.
    [164]郭双亭,李玉桓,朱宜南.荧光图象技术判断油层水淹状况研究[J].河南石油,2003,14(3):13-17.
    [165]王淑芝,李松花,王兆安,等.利用岩屑孔隙物质的荧光性判别油水层[J].大庆石油地质与开发,2003,22(5):13-16.
    [166] Mason G, Morrow N R. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes [J]. J. of Colloid and Interface Science,1991,141(1):262-274.
    [167]贾忠伟,杨清彦,兰玉波,等.水驱油微观物理模拟实验研究[J].大庆石油地质与开发,2002,21(1):46-50.
    [168]李传亮.孔喉比对地层渗透率的影响[J].油气地质与采收率,2007,14(5):78-81.
    [169]朱坚亭,许元泽.非牛顿流体流经波纹管流动的阻力特性[J].力学学报,1990,22(5):619-624.
    [170]刘春泽,程林松,夏惠芬.粘弹性聚合物溶液对残余油膜的作用机理[J].西南石油学院学报,2006,28(2):85-90.
    [171]罗蛰潭,王允诚.油气储集层的孔隙结构.北京:科学出版社,1986:40-49.