三自由度并联驱动转台工程设计及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三自由度并联驱动转台是在实验室环境下模拟舰船在水中的摇摆和运动的一种实验设备,可以在实验室完成舰船上舰载飞机灯光导引系统的性能实验。本课题中的三自由度并联驱动转台可以仿真舰船在水面的横摇、纵摇和升沉三个自由度的运动,它对舰载飞机灯光助降系统的相关装置和灯光装置导引仿真系统的开发具有重要的实用价值。
     本论文所研究的三自由度并联驱动转台是机、电、液一体化综合的产物,它还涉及到机构学、运动学、动力学、以及控制系统等方面的知识。本文主要完成了机械本体的设计、液压伺服系统的设计并建立了伺服控制系统的数学模型,对其仿真分析。
     首先,根据系统的性能指标,对转台进行了机械本体的工程设计,并对其空间运动姿态进行了位置正解和反解的分析,它是机构运动分析的基本任务,也是机构速度、加速度、受力分析、误差分析、空间分析、动力分析和机构综合等的基础。
     其次,对三自由度并联驱动转台进行了轨迹规划和生成,计算出转台在运动过程中的最大速度和最大加速度。根据转台的运动指标,选取了电液伺服阀、恒压变量泵、伺服液压缸和位移传感器等的型号,完成了转台液压系统的原理图和实际安装图。
     最后,建立了单出杆油缸、电液伺服阀、位移传感器的数学模型,得出系统的传递函数。并在无扰和有扰的情况下,对系统进行了仿真分析。由于系统不能满足控制精度要求,对系统进行了PID校正,得出了比较满意的电液位置伺服控制系统。
Under laboratorial environment, 3-DOF parallel Motion Platform is a empirical equipment that simulates vibration warship and movement of the warship on the water surface, it can accomplish carrier plane illuminated guidance performance test of the system. The 3-DOF paralleled motion platform in the topic can simulate horizontal rolling, vertical rolling and ascending and descending of the warship on the water surface, it is important use value to the development of carrier plane illuminated landing equipment and illuminated guidance emulation equipment of the system.3-DOF parallel Motion Platform studied in the topic is a product that integrated mechanical, electronic and hydraulic technology. It involves many knowledge fields, such as mechanism, kinematics, kinetics and control system etc. The paper mainly accomplished the design of mechanical entity and hydraulic servo system and established mathematical model of servo control system, emulated and studied the system.First, according to the performance index of the system, designs the mechanical entity and analyses the forward and backward solution about its motion pose and position. It is not only the basic task of analysis of machine motion, but also the basis of speed, acceleration, the analysis of mechanics, the analysis of deviation, the analysis of space, the analysis of kinetics and mechanism integration of the machine.Secondly , the paper accomplishes the contrail layout and generating about the motion platform, compute its max speed and acceleration in the course of motion. According to the motion index of the platform, the models of electro-hydraulic servo valve, constant force variable pump, servo pneumatic cylinder, displacement sensor etc are selected, the simplified schematic and installation drawing of hydraulic system of motion platform.
    
    Finally , the mathematical model of pneumatic cylinder , electro-hydraulic servo valve, displacement sensor are established, the transfer function of the system is gained. The author does some simulation analysis about the system with disturbance and without disturbance. Because the system need not control accuracy of the system, the author applies PID emendation, gains more satisfactory electro-hydraulic position servo control system.
引文
[1] 茅坪,吴文晓等.舰载直升机着舰模拟技术研究.直升机技术.2001,(1):14-19页
    [2] 倪树新.航母载机着舰引导系统的体制研究.光电系统.2000,(2):8-19页
    [3] 朱大勇,莫文凯.航母飞机着舰引导与姿态监视技术新进展.激光杂志.1999,(5):4-6页
    [4] 邱志成,谈大龙等.并联机器人研究现状.机械制造.2000,(4):27-29页
    [5] 黄真,孔令富等.并联机器人机构学理论及控制.北京:机械工业出版社,1996:12-56页303-346页
    [6] 文福安,杨光.并联机器人机构概述.机械科学与技术.2000,(1):69-72页
    [7] 王旭永,吴江宁.六自由度并联平台的空间位置运动算法及实现.机电工程.1995,(4):19-21页
    [8] Lung-Wen Tsai. Six-Degree-of-Freedom Parallel "Minimanipulator" with Three Inextensible Limbs. US Patent 5,279,176. January 18,1994: 29-37页
    [9] N. Sima'an, Glozman. DESIGN CONSIDERATIONS OF NEW SIX DEGREES-OF-FREEDOM PARALLEL ROBOTS. Proceedings of the 1998 IEEE International Conference on Robotics&Automation. Leuven, Belgium, May 1998:1327-1333P
    [10] 王旭永,王显正等.三自由度并联驱动平台机构的位置逆解和分析.上海交通大学学报.1998,(1):102-104
    [11] 王旭永,王显正等.六自由度并联驱动平台机构的位置姿态精度控制.仪器仪表学报.1997,(6):596-600页
    [12] 黎启柏.电液比例控制与数字控制系统.北京:机械工业出版社,1997
    [13] 黎启柏,朱建辉.三自由度平台电液比例比环控制系统.液压与气动.2002,(4):19-21页
    [14] 李福义.液压技术与液压伺服系统.哈尔滨:哈尔滨工程大学出版社, 1992:98-227页
    [1
    
    [15] 乔俊伟,詹永麒.6自由度并联平台结构参数优化.机械设计.2000,(3):44-46页
    [16] William K. Durfee, Husni R. Idris. Real Time Control of the MIT Vehicle Emulator System. Proceedings of the 1991 American Control Conference, Boston, MA, 1991: 1-SP
    [17] 路甬祥,胡大紘.电液比例控制技术.北京:机械工业出版社,1988
    [18] 陶永华,尹怡欣等.新型PID控制及应用.北京:机械工业出版社,1999
    [19] 胡寿松.自动控制原理.北京:科学出版社,2001:219-265页
    [20] 李福义.平台的电液伺服阀控单出杆油缸系统分析.哈尔滨船舶工程学院学报.1993,14(3):55-63页
    [21] 王占林.液压伺服控制.北京航空学院出版社,1987:207-224页
    [22] 余武斌,刘义成.六自由度转台液压系统的研制.液压与气动.2002,(2):3-5页
    [23] 于晖,孙立宁.虎克铰工作空间研究及其在6-HTRT并联机器人中的应用.中国机械工程.2002,13(21):1830-1834页
    [24] 王奇志,张祥德.一类3-6 Stewart平台的机构位置正解.机械科学与 技术.1999,18(2):242-245页
    [25] 金琼,杨廷力.一类新型三平移并联机器人机构的位置分析.东南大学学报.2001,31(5):31-38页
    [26] 张兆印,佟俊华.六自由度并联机器人控制算法分析与实现.微电子学与计算机.1994(3):33-36页
    [27] 程卫国,冯峰.MATLAB 5.3精要、编程及高级应用.北京:机械工业出版社,2000
    [28] 姜广文.舰载机灯光引导系统仿真转台的研究.哈尔滨工程大学硕士论文.2002
    [29] 申永胜.机械原理教程.北京:清华大学出版社,1999:21-29页
    [30] 诸文俊.机械设计基础.西安:西安交通大学出版社,1998
    [31] 刘卓夫.减摇鳍加载系统的设计与控制.哈尔滨工程大学硕士论文.2001
    [32] 张志虎.减摇水舱台架试验及仿真方法研究.哈尔滨工程大学硕士论文.2001
    [33] 王占林.近代液压控制.北京:机械工业出版社,1997
    
    [34] 魏克新.MATLAB语言与自动控制系统设计.机械工业出版社,1997
    [35] 胡国清.机电控制工程理论与应用基础.机械工业出版社,1997
    [36] 刘长年.液压伺服系统优化设计理论.冶金工业出版社,1989
    [37] 徐绚武.恒压变量泵的节能、应用和发展.液压传动.1998(3):5-11页
    [38] 杨德荣,权龙.用电液伺服阀补偿同步偏差的同步控制方法.液压与气动.2001(9):7-9页
    [39] Hunt K H. Kinematic Geometry of Mechanisms. Clarendon Press, Oxford, 1978: 371-426P
    [40] McAree P R, Daniel R W. A fast robust solution to the Stewart platform forward kinematics. Robotic Systems, 1996, 13 (7): 402-247P
    [41] Morgan A. Solving Polynomial Systems using Continuation for Engineering and Scientific Problems. Prentice-Hall, Englewood Cliffs, NJ, 1987: 277-282P
    [42] 成大先.机械设计手册.第四版.第1卷.北京:化学工业出版社,2002
    [43] 成大先.机械设计手册.第四版.第2卷.北京:化学工业出版社,2002
    [44] 成大先.机械设计手册.第四版.第4卷.北京:化学工业出版社,2002
    [45] 张崇巍,李汉强.运动控制系统.武汉:武汉理工大学出版社,2002
    [46] 焦晓红,芳一鸣.并联机器人轨迹跟踪离散变结构鲁棒控制器设计.工业仪表与自动化.2001(5):3-5页,20页
    [47] 孔德庆,倪雁冰.并联机床轨迹控制方法的研究.组合机床与自动化加工技术.2003(1):45-47页
    [48] 詹凡忠.并联杆系机床结构干涉.机械设计与制造工程.2000,29(5):27-29页
    [49] 任兴明,袁运钊.摇摆台控制系统设计.现代雷达.1994(1):96-101页
    [50] 曹健,李尚义.电液伺服系统的二自由度PID控制.机床与液压.2001(6):54-55页
    [51] 刘庆和,斐忠才.新型电液负载仿真台的研制.机床与液压.1997(5):3-4页
    [52] Tuna Balkan, M.A. Sahir Arikan. A Kinematic Structure-based Classification and Compact Kinematic Equations for Six-dof Industrial Robotic Manipulators. Mechanism and Machine Theory. 2001(36): 817-832P
    
    [53] B. Raghavan , B. Roth. Inverse Kinematics of the General 6R Manipulator and Related Linkages. Transactions of the ASME Journal of Mechanical Design. 1993(115): 502-508P
    [54] R. P. Paul. Robot Manipulators. Mathematics Programming and Contorl. 1981(6): 215-221P
    [55] K. H. Kunt.Structural Kinematics of in-parallel-actuated Robot Arms. ASME Journal of Mechanisms. 1996(4):705-712P
    [56] N. Sima' an , D. Glozman. Design Considerations of New Six degrees-of-freedom Parallel Robots. International Conference on Robotics & Automation. 1998(5):1327-1333P
    [57] Mahmut Reyhanoglu. Feedback Stabilization for a Special Class of Underactuated Mechanical Systems. Conference on Decision & Control. 1999(11):1658-1663P
    [58] A. Astolf i. Discontinuous Control of Noholonomic Systems. Systems and Control Letters.1996(29):91-95P
    [59] M. Reyhanoglu , A. J. van der Schaft , N.H. Mclamroch. Feedback Control of a Planar Manipulator with an Unactuated Elastically Mounted End Effector. IEEE International Conference on Robotics and Automation. 1999(11):2805-2810P