鲁棒控制在操舵系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶操纵系统是船舶上非常重要的船舶运动控制系统。船舶运动动态特性除了与航行工况密切相关外,还受风、浪、流等各种干扰,所受到的水动力负载和干扰情况非常复杂。这使得船舶操纵系统中存在着很多不确定性,所以船舶操纵是极其复杂的运动,给船舶的运动控制带来了一定的难度。为在经济和可靠的前提下,实施对船舶的有效操纵控制,本文以某型船为例,对操舵系统和船舶航向控制系统的控制方法进行了设计。本文分析了操舵系统的组成和工作原理,并根据泵控型舵机电液伺服系统的组成,完成了变量泵排量控制系统、操舵系统的建模,最终建立了液压操舵系统的传递函数模型。通过对航向控制系统的分析,分别建立了船舶运动、船舶外界环境干扰以及自动舵系统的数学模型。在经典PID控制理论的基础上,进行了操舵系统和航向控制系统的PID设计以及仿真分析。通过仿真分析表明,由于系统中存在的参数不确定性以及干扰的作用,使得经典PID控制的操舵系统以及航向控制系统的精度较差。为了提高操舵系统的鲁棒性、鲁棒性能以及航向控制系统的抗干扰性,通过对操舵系统不确定性的分析,采用鲁棒控制理论分别设计了操舵系统和自动舵系统的鲁棒控制器。通过PID控制器和鲁棒控制器的仿真对比,鲁棒控制器不仅能在参数摄动时保持系统的稳定性,而且提高了操舵系统的跟随精度等性能,并且验证了采用鲁棒控制器的操舵系统可以作为闭环与整个自动舵系统实现较好匹配,保证了自动舵系统不仅在随动状态,而且在航向控制状态都有较强的鲁棒性,具有良好的操纵性能。
The heading control of the ship is very important motion control system of the ship. Except closely related to the sail conditions, the dynamic motion characteristics are subjected to disturbances such as ocean wind, ocean wave and ocean current. So the hydro-dynamic load and disturbance are complicated. These make much uncertainties occur in the heading control system. It is hardly to control the motion of the ship because the heading control is so complicated. In order to control effectively on the premise of economization and failsafe, the steering system and heading control system are designed in this paper taking example for one ship.- The compose and working principle of the steering system are analyzed. The displacement control system of the variable-displacement pump and the steering system are modeling. Then the transfer function model of hydraulic steering system is set up. Through the analysis of the heading control system, the mathematic model of ship motion, environmental disturbance and automatic pilot system are established respectively. On the basis of classical PID control theory, the PID controllers of steering system and heading control system are designed and simulated. It is showed that the precision of the PID controllers is low for the parametric uncertainties and disturbances. To improve the robustness and robust performances of steering system, the robust controller based on H_∞mixed sensitivity for the steering system is proposed through the analysis of uncertainties. And the robust controller for automatic pilot system is to improve the interference immunity. Compared with the PID controllers, the robust controller not only can stabilize when parameters are perturbed, but also improve the tracking accuracy of the steering system. It is testified that the steering system with robust controller can match well with the automatic pilot system as a close-loop system. It has stronger robustness and good performances of operation in the followup and heading control state.
引文
[1] 贾新乐,张显库.船舶运动智能控制与H_∞鲁棒控制.大连海事大学出版社,2002
    [2] 刘清.船舶操纵运动模糊神经网络控制系统研究.武汉理工大学.博士学位论文.2002
    [3] 王占林.近代液压控制.机械工业出版社,1997
    [4] 金鸿章,姚绪梁.船舶控制原理.哈尔滨工程大学出版社,2001
    [5] Sperry E. Directional stability of automatically steered bodies. Journal of the American Society of Naval Engineers, 1922
    [6] Mort N. Autopilot design for surface ship steering using self-turning controller algorithms: [PhD Thesis]. UK: University of Sheffield, 1983
    [7] 程启明,万德钧.船舶操纵的控制技术发展综述.南京:东南大学学报,1999
    [8] Amerongen J V. An autopilot for ships designed with fuzzy sets. Proc IFAC Conference on Digital Computer Applications to Process Control, The Hague, USA, 1977
    [9] Sutton R. A design study of a self-organizing fuzzy autopilot for ship control. Proc Instn Mech Engrs (pt.Ⅰ), 1991
    [10] Roland S. Burns. The use of artificial neural networks for the intelligent optimal control of surface ships. IEEE Journal of Oceanic Engineering, 1995
    [11] Hearn G E. Comparison of SISO neural control strategies for ship track keeping. IEE Proc-Control Theory Appl, 1997
    [12] 冯纯伯,田玉平,忻欣.鲁棒控制系统设计.东南大学出版社,1995
    [13] Messer A C, Grimmble M J. Robust track-keeping control, Proc. IFAC Workshop CAMS'92, Genova, Italy, 1992
    [14] Desanj D S, Donha D C, Katebi M R et al. H_∞ adaptive controllers for autopilot applications. Proc. Ship control systems Symposium, Southampton, Engl, 1997
    [15] 李洪人.液压控制系统.国防工业出版社,1990
    [16] Fossen, T. I. Guidance and control of ocean vehicles. England: John Willey and Sons, 1995
    [17] 贾欣乐,杨盐生.船舶运动数学模型—机理建模与辨识建模.大连:大连海事大学出版社,1999
    [18] 赵国良,姜仁锋.自适应控制技术与应用.人民交通出版社,1991
    [19] Astrom KJ. and Kallstrom C. G. Identification of ship steering dynamics. Automatica 12(9), 1976
    [20] Kallstrom C. G. Identification and adaptive control applied to ship steering. Publication NO. 93 of SSPA. Sweden, 1982
    [21] 杨承恩,贾欣乐,毕英君.船舶舵阻横摇及其鲁棒控制.大连:大连海事大学出版社,2001
    [22] 杨盐生.不确定系统的鲁棒控制及其在船舶运动控制中的应用.大连:大连海事大学,2000
    [23] 杨盐生.定常风下舵力保向舵角的计算.大连海运学院学报,1987
    [24] 杨盐生.船舶在非定常风中的舵力保向.大连海运学院学报,1993
    [25] 梅生伟,申铁龙,刘志康.现代鲁棒控制理论与应用.清华大学出版社,2003
    [26] 吉明,姚绪梁.鲁棒控制系统.哈尔滨工程大学,2002
    [27] 薛定宇.反馈控制系统设计与分析—MATLAB语言应用.清华大学出版社,2000
    [28] 申铁龙.控制理论及应用.清华大学出版社,1996
    [29] 俞立.鲁棒控制—线性矩阵不等式处理方法.清华大学出版社,2002
    [30] 赵慧.地震动三轴装置.Gain-Scheduled H_∞控制器的设计和研究.哈尔滨工业大学博士学位论文,2002
    [31] 宋斌,马广富,李传江等.基于H_∞鲁棒控制的扰性卫星姿态控制.系统仿真学报,2003
    [32] 梁利华.液压传动与电液伺服系统.哈尔滨:哈尔滨工程大学出版社,2005
    [33] 王广雄.控制系统设计.哈尔滨工业大学出版社,1991
    [34] 郑建华.鲁棒控制理论与倾斜导弹转弯中的应用.国防工业出版社,2001
    [35] 周昭明等.多用途货船的操纵性预报计算.船舶工程,1983
    [36] 姜长生等编著.系统理论与鲁棒控制.北京:航空工业出版社,1988
    [37] Van der Schaft, A. J. On a state space approach to nonlinear. H_∞ control. Syst. Contr. Lett, 1991
    [38] 谢文翘等.线性不确定系统的鲁棒稳定控制器.电机与控制学报,1998
    [39] 杨富文.具有参数不确定性和外界干扰的鲁棒H_∞状态反馈控制.控制理论与应用,1993
    [40] 金鸿章,李国斌.船舶特种装置控制系统.北京:国防工业出版社,1995
    [41] 吴秀恒.船舶操纵性与耐波性.人民交通出版社,1999
    [42] 王春行.液压控制系统.北京:机械工业出版社,2000
    [43] 李福义.液压技术与液压伺服系统.哈尔滨:哈尔滨船舶工程学院出版社,1992
    [44] 余武斌,李德远,黄亚农,等.潜艇舵机液压伺服控制系统数学模型分析.船舶工程,2002
    [45] Wu J C, Liu T S. Fuzzy Control Stabilization with Applications to Motorcycle Control, IEEE Trans. On Systems, Man and Cyber-netics, PartB, 1996
    [46] 孟浩.船舶航行的智能自适应研究.哈尔滨工程大学博士学位论文,2003
    [47] 李桂芳.一类非线性系统的鲁棒H_∞控制.控制与决策,2005(9)
    [48] 王新屏.H_∞滤波及其在海浪干扰中的应用.大连海事大学博士学位论文,2003
    [49] 史忠科等.鲁棒控制理论.北京:国防工业出版社,2003
    [50] 陈卫田,周绍生,颜世田等.一类不确定非线性系统的输出反馈控制.控制理论与应用,1998
    [51] 王春行.液压控制系统[M].北京:机械工业出版社,2004.1
    [52] 魏克新.MATLAB语言与自动控制系统设计[M].北京:机械工业出版社,2001.5
    [53] 吴旭东.解学书.H_∞鲁棒控制中的加权阵选择.清华大学学报,1997,37(1)
    [54] 吴旭东,解学书.H_∞鲁棒控制中的加权阵选择.清华大学学.1997,37(1)
    [55] 段广仁.线性系统理论.哈尔滨工业大学出版社,1998.2
    [56] 文元全等.新型船舶自适应舵机系统的研究.大连海事大学学报,2000,26(3)
    [57] 茂在寅男等著.徐春举等译.自动操舵装置.国防工业出版社,1978
    [58] 李殿璞.船舶运动与建模.哈尔滨工程大学出版社,1999
    [59] 薛定宇.反馈控制系统设计J分析-MATLAB语言应用[[M].北京:清华人学出版社,1996
    [60] 刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社,2004
    [61] 李宜达.控制系统设计与仿真.北京:清华大学出版社,2004
    [62] Doyle J C et al. State-Space Solutions to Standard H_2 and H_∞ Control Problems[J]. IEEE Trans On AC, 1989, 34(8)
    [63] Lundstrom P et al. Uncertainties weight selection for H_∞ and μ control method[J]. Proc of IEEE Conf on DC, Brighton, 1991
    [64] Hu J et. Practical approach to selecting weighting functions for H_∞ control and its application to a pilot plant[J]. Proc of the 1996 UKACC Int Conf on Control. IEE, Stevenage, Engl, 1996, (2)
    [65] Yang C D, Tai H C et al. Experimental approach to selecting H_∞ weighting functions for Dc servos[J]. J of Dynamic Systems, Measurement, and Control, 1997