地铁隧道施工风险机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地铁隧道工程的迅速发展,地铁隧道与地面工程相比,存在地质条件复杂、工艺多样化、作业空间受限等特点,给施工风险管理带来较大难度;另外风险管理的理论还不够完善,导致隧道施工过程中的事故(灾害)频发,故风险成为地下工程领域的研究热点问题;为了达到控制风险的目的,首先需要对风险理论进行研究,而风险机理是风险理论的重要内容;只有在掌握风险机理的前提下,才能掌握风险规律,从而有针对性地控制风险;所以,地铁隧道施工风险机理的研究对风险的控制起到关键作用。
     为了研究机理,掌握风险规律,首先利用系统动力学理论、方法对地铁隧道进行系统分析,进而认识系统内元素在工作方式及各元素在一定环境条件下相互联系、相互作用的关系,分别从力学和能量角度建立系统动力学模型,分别给出因果关系图和流图;根据建立的系统动力学模型,将运用FLAC3D软件模拟的结果嵌入到系统动力学模型中,运用/ensim软件分别从力学和能量角度进行仿真模拟,提高系统动力学模型的精度,进一步拓宽系统动力学的应用范围;为了度量系统风险,运用PHA方法对地铁隧道施工风险评估进行研究,针对PHA方法中风险等级不能定量化确定的缺陷,将模糊集理论和粗糙集理论杂合,建立基于变精度粗糙模糊集的风险评估模型,对PHA中风险等级确定方法进行改进,从而降低风险评估过程的主观性,实现PHA方法的定量化;并利用实例对本文的研究成果的适用性进行验证。
     全文具体框架如下:
     (1)对隧道施工风险理论、系统动力学理论与应用、风险模拟、风险评估等国内外研究现状进行整理、归纳,并找出研究现状中存在的问题。
     (2)针对地铁隧道系统提出问题,并确定系统分析的目的,运用系统动力学的理论、方法对地铁隧道系统进行分析,分析系统的功能、组成及结构;以围岩子系统为重点研究对象,分别从力学和能量角度建立其系统动力学模型,分析其因果关系,给出因果关系图,根据因果关系图画出流图,分别找出围岩子系统的稳定性影响因素和各种变量。
     (3)将力学数值模拟结果(FLAC3D软件)嵌入到所建立的基于力学的系统动力学模型中进行仿真模拟(Vensim软件)。运用FLAC3D软件进行力学数值模拟,主要研究不同影响因素(围岩条件、埋深、断面形状及尺寸、支护方式、施工工法等)对拱顶沉降量的影响规律,在此基础上建立基于力学的系统动力学模型方程,并检验模型的有效性,再运用Vensim软件进行模型仿真。
     (4)将能量数值模拟结果(FLAC3D软件)嵌入到所建立的基于能量的系统动力学模型中进行仿真模拟(Vensim软件)。
     首先对能量风险理论进行分析,主要包括风险与能量的基础理论、能量传递、释放、控制机理等;风险与能量的基础理论分析主要包括风险与能量的关系,地铁隧道施工风险的内涵,风险构成及其要素间的关系,能量意外释放理论的优缺点及应用范围介绍,能量意外释放理论引用的可行性,基于能量原理的风险机制;能量传递机理研究主要包括应变能传递过程的描述,能量的传递机理及传递的可能性分析;能量释放机理研究主要包括应变能的释放条件、释放机理及释放可能性分析;结合应力-应变曲线分析系统能量控制机制。
     运用FLAC3D软件进行能量数值模拟,主要研究不同影响因素(不同围岩条件、埋深、跨度等)对应变能积聚和释放的影响规律,在此基础上,建立基于能量的系统动力学模型方程,并检验模型的有效性,再运用Vensim软件进行模型仿真。
     (5)运用PHA方法对地铁隧道施工风险评估进行研究,在PHA风险等级划分的基础上,将模糊集理论和粗糙集理论杂合,采用文中所建立的基于变精度粗糙模糊集的风险评估模型确定系统风险等级。在基于变精度粗糙模糊集的风险评估模型中,将风险分为固有风险和附加风险分别进行研究;运用标准规范确定固有风险指标的等级划分标准,运用力学风险模拟分析的结果确定附加风险指标等级划分标准,运用基于变精度粗糙模糊集的风险评估模型对样本进行风险评估研究,确定风险等级,其中根据实测值运用粗糙集理论确定指标权重,降低了主观因素对评价结果的影响,使评估结果更具客观、准确。
     (6)以成都地铁2号线一期工程通惠门停车线暗挖区间隧道为例,运用PHA方法对其进行风险评估,验证PHA方法和基于变精度粗糙模糊集的风险评估模型的适用性。
With the rapid development of subway tunnel engineering, there are some characteristics in subway tunnel engineering compared with the ground engineering, such as complex geological conditions, technological diversification, confined space operations and so on, which make the risk management of construction more difficult. In addition, risk management theory is not yet perfect that leads to the tunnel construction accidents (disasters) occur frequently, so the risk of subway tunnel construction becomes the hot issue in the field of underground engineering. In order to control risk, the research on the risk theory becomes the primary task and the risk mechanism is the important content of risk theory, only when the risk mechanism is grasped, can the risk rules be grasped, so that to control the risk. Therefore, study on the risk mechanism of subway tunnel construction plays a key role in risk control.
     In order to study the risk mechanism and master the risk rule. First the idea of system dynamics is used to do the systemic analyze of the system, so as to understand the way of working of the elements in the subway tunnel system and the interactive relationship between the various elements under certain environmental conditions, to establish system dynamics model from the angle of mechanics and energy, to draw causal loop diagram and flow chart. According to the system dynamics model established, results of FLAC3D software simulation are embedded the system dynamics model, the Vensim software is used to simulate respectively from the angle of mechanics and energy, which can improve the accuracy of system dynamics model, to further expand the application range of the system dynamics. In order to measure the system risk, PHA method is used to evaluate the risk of subway tunnel construction, aiming at the defect which cannot ascertain risk level of PHA method quantitatively, combined the fuzzy set theory with rough set theory to establish risk assessment model based on variable precision rough fuzzy set to improve the method of risk classification of PHA, so that to reduce the subjectivity of the risk assessment process to realize quantitative PHA method. The research results of this dissertation are verified by practical examples. The concrete framework of the full dissertation is as follows:
     (1) The research status of tunnel construction risk theory, theory and application of system dynamics, risk simulation, risk assessment in and abroad are collated and summarized, and find out the existing problems.
     (2) In the analysis of subway tunnel system, in the first place, put forward the question of the subway tunnel system and confirm the purpose of the system analysis. The theory and method of system dynamics are used to analyse and study the subway tunnel system, the function and composition of the system. Based on the surrounding rock system as a key research object, the system dynamics models are established from the angle of mechanics and energy to analyze its causal relationship, and show the causal relationship graph to draw a flow chart according to it, finally find out the main influencing factors and various variables of the system stability.
     (3) The mechanics simulation result (FLAC3D software) is embedded into the system dynamics model based on mechanics, then the model is simulated (Vensim software). FLAC3D simulation software is used to simulate the influence law between different influential factors (surrounding rock condition, buried depth, section shape and size, support, construction and so on) and the vault settlement. On this basis, the equations of system dynamics model based on mechanics are estabished. The validity of the model will be tested. Finally, the model will be simulated by Vensim software.
     (4) The energy simulation result (FLAC3D software) is embedded into the system dynamics model based on energy, then the model is simulated (Vensim software).
     First of all, this paper analyzes energy risk theory, including risk and energy theory, the energy transfer, release, control mechanism. Basic theory analysis of risk and energy including relationship between risk and energy, the connotation of the subway tunnel construction risk, the relationship between risk constitution and key elements of risk, the advantages and disadvantages and the scope of application of the energy accidental release thory, the feasibility of the implementation of the energy accidental release theory, the risk mechanism based on energy principle. In the study of energy transfer mechanism, strain energy transfer process should be described and the energy transfer mechanism and the probability of strain energy transfer should be analyzed. In the study of energy release mechanism, the release conditions, release characteristics, release mechanism and possibility of strain energy should be analyzed. The control mechanism of strain energy should be analyzed by combining with the stress-strain curve.
     FLAC3D simulation software is used to simulate the influence law between different influential factors (surrounding rock condition, buried depth, section shape and size) and characteristic of accumulation and release of energy. On this basis, the equations of system dynamics model based on energy are estabished. The validity of the model will be tested. Finally, the model will be simulated by Vensim software.
     (5) PHA method is used to assess the risk of subway tunnel construction. Based on risk classification of PHA, combined the fuzzy set theory with rough set theory to establish risk assessment model based on variable precision rough fuzzy set to improve the method of risk classification of PHA. In the model establised, the risk is divided into the inherent risk and additional risk. The classification standard of inherent risk indexes are confirmed by using standard specification. The classification standards of additional risk indexes are confirmed by using the mechanics simulation results. Using the risk assessment model based on variable precision rough fuzzy set to study risk assessment of the sample, and to determine the risk level, the index weight is defined according to the measured values by using rough set theory, which can reduce the subjective influence to the assessment results, so as to enable the assessment results more objective, accurate.
     (6) Take the Tonghui door stop line tunnel of Chengdu Subway Line2project as an example, using the PHA method to assess the risk of it to verify the applicability of PHA method and the risk assessment model based on variable precision rough fuzzy set.
引文
[1]邓小鹏,李启明,周志鹏.地铁施工安全事故规律性的统计分析[J].统计观察,2010(9):87-89.
    [2]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.
    [3]彭立敏,施成华,安永林等.浏阳河隧道施工关键技术及风险管理研究[R].长沙:中南大学土木建筑学院,2009.
    [4]彭立敏,阳军生,施成华等.隧道邻近结构物地层及结构物变形控制技术[R].长沙:中南大学土木建筑学院,2008.
    [5]Einstein H H, Vick S G. Geological model for tunnel cost model[J].Proc Rapid Excavation and Tunneling Conf,2nd,1974,1701-1720.
    [6]Einstein H H. Risk and risk analysis in rock engineering [J].Tunnelling and Underground Space Technology,1996,141-155.
    [7]Einstein H H, Xu S, Grasso P, and Mahtab M A.Decision Aids in Tunnelling[J].World Tunnelling, April,1998,157-159.
    [8]Nilsen B, Palmstrom A, Stille H. Quality control of a subsea tunnel project in complex ground conditions [J]. Challenges for the 21st century,1992,137-145.
    [9]Heinz Duddeck. Challenges to Tunnelling Engineers[J].Tunnelling and Underground Space Technology,1996,11 (1):5-10.
    [10]Burland J B, Standing J R, Jarding F M. Building response to tunnelling:case studies from construction of the jubilee line extension [M].London:Thomas Telford Publishing,2001.
    [11]Van Hasselt D R S, Hentschel V. Amsterdam's North/South metroline[J]. Tunnelling and Underground Space Technology,1999,14 (2):191-210.
    [12]L.Y. Ding, H.L. Yu, Heng Li, C.Zhou, et al. Safety risk identification system for metro construction on the basis of construction drawings [J]. Automation in Construction,2012,27 (12):120-137.
    [13]Clark G T, Borst A. Addressing risk in Seattle's under-ground[J].PB Network, 2002, (1):34-37.
    [14]Kampmann J, Eskesen S D, Summers J W. Risk assessment helps select the contractor for the Copenhagen Metro System [A]. Proceedings of the world tunnel congress 98 on tunnels and metropolises[C].1998 (1):123-128.
    [15]Sturk R, Olsson L, Johansson J. Risk and decision analysis for large underground projects, as applied to the Stockholm ring road tunnelling[J].Tunnelling and Underground Space Technology,1996,11 (2):157-164.
    [16]Eskesen S D, Tengborg P R, Kampmann J, Veicherts T H. Guidelines for tunnelling risk management:International Tunneling Association, Working Group No.2[J].Tunneling and Underground Space Technology,2004, (19):217-237.
    [17]毛儒.隧道工程风险评估[J].隧道建设,2003,23(2):1-3.
    [18]毛儒.论工程项目的风险管理[J].都市快轨交通,2004,17(2):3-6.
    [19]毛儒.轨道交通安全风险管理[J].都市快轨交通,2007,20(4):7-9.
    [20]毛儒.有效的风险管理[J].都市快轨交通,2004,17(3):4-7.
    [21]边亦海,黄宏伟,高军.可靠度理论在确定隧道衬砌参数的应用[J].地下空间与工程学报,2005,1(1):129-132.
    [22]王梦恕.厦门海底隧道设计、施工、运营安全风险分析[J].施工技术,2005,(S1):1-5.
    [23]吴贤国,吴刚,骆汉宾.武汉长江隧道工程盾构施工风险研究[J].中国市政工程,2007(1):51-53.
    [24]麻凤海,李盾,吕培印等.地铁隧道工程悬臂式掘进机施工风险分析[J].辽宁工程技术大学学报(自然科学版),2012,3(2):145-148.
    [25]丁振明,廖秋林,李从昀.地铁工程土压平衡盾构施工风险分析[J].施工技术,2012,41(379):64-67.
    [26]徐杏华,李朝,丛敏等.地铁工程盾构法施工风险分析与规避措施[J].常州工学院学报,2012,25(1):40-43.
    [27]程远,刘志斌,刘松玉等.基于层次分析法的大跨浅埋公路隧道施工风险识别[J].岩土工程学报,2011,33(S1):191-195.
    [28]陈亮,黄宏伟,胡群芳.盾构隧道施工风险管理数据库系统开发[J].地下空间与工程学报,2005,1(6):964-967.
    [29]汤漩,吴惠明,胡珉.盾构隧道施工风险知识管理系统的设计开发[J].地下工 程与隧道,2006,(4):20-24.
    [30]黄宏伟,曾明,陈亮等.基于风险数据库的盾构隧道施工风险管理软件(TRM1.0)开发[J].地下空间与工程学报,2006,2(1):36-41.
    [31]胡群芳,黄宏伟.隧道及地下工程风险接受准则计算模型研究[J].地下空间与工程学报,2006,2(1)60-64.
    [32]胡群芳,刘爽,黄宏伟.盾构隧道施工风险数据库系统设计与开发研究[J].地下空间与工程学报,2012,8(S2):1656-1664.
    [33]同济大学,奥雅纳工程顾问(香港),中交第四航务工程勘察设计院.崇明越江通道工程风险分析研究报告[R].上海:同济大学,2003.
    [34]GB50652-2011,城市轨道交通地下工程建设风险管理规范[S].
    [35]中华人民共和国住房和城乡建设部网站.关于进一步加强地铁建设安全管理工作的紧急通知[EB/OL].[2008-11-19].http://www.mohurd.gov.cn/zcfg/jsbwj_0/jsbwjgczl/200811/t20081120_180211.html
    [36]中国中铁二院集团有限责任公司.铁路隧道风险评估与管理暂行规定[M].北京:中国铁道出版社,2008.
    [37]中华人民共和国建设部.地铁及地下工程建设风险管理指南[M].北京:中国建筑工业出版社,2007.
    [38]Forrester.Jay.W, The System Dynamics National Model[J]. International System Dynamics Coference,1984:1-2.
    [39]王其藩.系统动力学[M].上海:上海财经大学出版社,2009.
    [40]钟永光,贾晓菁,李旭等.系统动力学[M].北京:科学出版社,2009.
    [41]戚静.基于系统动力学的城市交通方式结构演变研究[J].成都:西南交通大学,2012.
    [42]李春艳.基于系统动力学的非常规突发事件发展演化研究——以地震为例[D].天津:南开大学,2012.
    [43]Slobodan p. Simonovic, Sajjad Ahmad. Computer-based Model for Flood Evacuation Emergency Planning[J]. Natural Hazards,2005,34(1):25-51.
    [44]刘铁民.重大事故动力学演化[J].中国安全生产科学技术,2006,2(6):3-6.
    [45]钟永光,钱颖,于庆东等.系统动力学在国内外的发展历程与未来发展方向[J].河南科技大学学报:自然科学版,2006,27(4):101-104.
    [46]Yufeng Ho, Chienhao Lu, Hsiao-Lin Wang. Dynamic model for earthquake disaster prevention system:a case study of Taichung City, Taiwan[C]. Proceeding of the 24th International Conference of theSystem Dynamics Society.2006.
    [47]韩传峰,王兴广,孔静静.非常规突发事件应急决策系统动态作用机理[J].软科学,2009,23(8):50-53.
    [48]张一文,齐佳音,马君等.网络舆情与非常规突发事件作州机制-基T系统动力学建模分析.情报杂志,2010,29(9):1-6.
    [49]张继勋,刘秋生.地下工程围岩稳定性分析方法现状与不足[J].水利科技与经济,2005,11(2):71-74.
    [50]任长吉.公路隧道围岩稳定性分析及支护对策研究[D].长春:吉林大学,2008.
    [51]王迎超.山岭隧道塌方机制及防灾方法[D].杭州:浙江大学,2010.
    [52]Sloan S W, Assadi A. Undrained stability of a square tunnel in a soil whose strength increases linearly with depth[J].Computers and Geotechnics,1991,12(4):1321-346.
    [53]Sterpi D. Application of the FEM to the stability of shallow tunnels [C].New Frontiers in Computational Geotechnics-Preceeding of 1st International Workshop on New Frontiers in Computational Geotechnics-banef,2002, (14-15):61-68.
    [54]Singh R, Sheorey P R, Singh D P. Stability of the parting between coal pillar workings in level contiguous seams[J].International Journal of Rock Mechanics & Mining Sciences,2002,39 (1):9-39.
    [55]Callari C. Coupled numerical analysis of strain localization induced by shallow tunnels in saturated soils [J].Computers and Geotechnics,2004,31:193-207.
    [56]Morris J P, Rubin M B, Block G I, Bonner M P. Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis[J].International Journal of Impact Engineering,2006,33 (1-12):463-473.
    [57]Alessio Contini, Annamaria Cividini, Giancarlo Gioda. Numerical evaluation of the surface displacements due to soil grouting and to tunnel excavation [J]. International Journal of Geomechanics,2007,7 (3):217-226.
    [58]秦昊,茅献彪,徐金海.软弱顶板煤巷围岩变形破坏特征数值分析[J].采矿与安全工程学报,2006,(3):289-292.
    [59]李志勇,晏莉,阳军生.浅埋偏压连拱隧道中导洞坍方数值分析与处治[J].岩土力学,2007,28(1):102-106.
    [60]汪宏,蒋超.浅埋偏压隧道洞口坍方数值分析与处治[J].岩土力学,2009,30(11):3481-3485.
    [61]陈修和,王飞,余飞.通透肋式拱梁隧道围岩破坏模式分析[J].公路,2009,(2):215-219.
    [62]王迎超,尚岳全,李焕强等.浅埋隧道出口塌方机理分析[C]//黄润秋,许强.第三届全国岩土与工程学术大会论文集.成都:四川科学技术出版社,2009:493-498.
    [63]肖建清,陈枫,徐纪成.RFPA2D软件的数据结构优化及其存储组织[J].矿业研究与开发,2004,24(6):54-56.
    [64]张晓春,缪协兴.层状岩体中洞室围岩层裂及破坏的数值模拟研究[J].岩石力学与工程学报,2002,21(1):1645-1650.
    [65]赵兴东,段进超,唐春安等.不同断面形式隧道破坏模式研究[J].岩石力学与工程学报,2004,23(S2):4921-4925.
    [66]石永生,张宏伟,王志辉.RFPA岩石破断过程分析系统软件的应用[J].洁净煤技术,2006,12(1):82-84.
    [67]王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [68]Hakuno M, Yamamoto T. Extended distinct element simulation of dynamic tunnel collapse[J].Natural disaster,1991,13 (2):35-55.
    [69]Fakhimi, Carvalho F, Ishida T, Labuz J F. Simulation of failure around a circular opening in rock[J].International Journal of Rock Mechanics and Mining Sciences, 2002,39 (4):507-515.
    [70]Hsu S C, Chiang S S, Lai J R. Failure mechanisms of tunnels in weak rock with interbedded structures [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41 (3):670-675.
    [71]Hung-I Lin, Cheng-Haw Lee. An approach to assessing the hydraulic conductivity disturbance in fractured rocks around the Syueshan tunnel, Taiwan[J].Tunnelling and Underground Space Technology,2009,24 (2):222-230.
    [72]Leandro R, Alejano, Javier Taboada, Fernando Garcia-Bastante, et al. Multi-approach back-ananysis of a roof bed collapse in a mining room excavated in stratified rock[J].International Journal of Rock Mechanics and Mining Sciences, 2008,45 (6):899-913.
    [73]王贵君.节理裂隙岩体中不同埋深无支护暗挖隧洞稳定性的离散元法数值分析[J].岩石力学与工程学报,2004,23(7):1154-1157.
    [74]马海君.大断面偏压隧道塌方加固区处理效果数值分析[J].中外公路,2007,27(5):106-108.
    [75]秦昊,茅献彪,张光振等.巷道围岩动载失稳数值分析[J].煤炭科技,2008,(1):26-27.
    [76]王吉亮,陈剑平,苏生瑞等.节理岩体隧道塌方机理离散元研究[J].中国矿业大学学报,2008,37(3):316-319.
    [77]骆驰.软弱破碎围岩地铁隧道掘进机施工力学研究[D].成都:西南交通大学,2006.
    [78]Manuel M, Luis M, Josc M. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid metro extension[J].Canadian Geotechnical Journal, 2002,39 (6):1273-1287.
    [79]王庆.成都地铁盾构施工对周边环境的影响研究[D].成都:西南交通大学,2009.
    [80]陶龙光,刘波,丁城刚等.盾构过地铁站施工对地表沉降影响的数值模拟[J].中国矿业大学学报,2003,32(3),236-240.
    [81]章新华.FLAC程序及其在双连拱隧道开挖方案比选中的应用[J].深圳土木与建筑,2006,3(1):44-47.
    [82]闫春岭,丁德馨,崔振东等.FLAC在铁山坪隧道围岩稳定性分析中的应用[J].地下空间与工程学报,2006,2(3):499-503.
    [83]刘涛等.连拱隧道动态施工模型试验与三维数值仿真模拟研究[J].岩石力学与工程学报,2006,25(9):1802-1808.
    [84]杨昌斌等.基于联拱隧道动态设计与施工的信息化监测技术[J].公路交通科技,2005,22(9):129-132.
    [85]Einstein H H, Vick S G. Geologic model for a tunnel model[C].Proceedings of Rapid excavation and tunneling conference.1974, (2):1701-1720.
    [86]Salazar G F. Stochastic and Economic Evaluation of Adaptability in tunneling Design and Construction[D].Cambridge:Department of Civil Engineering, Massachusetts Institute of Technology,1983.
    [87]Einstein H H, Dudt J P, Halabe V B, Descoeudres F. Decision aids in tunneling-Principle and practical application[M].Swiss Fed:Office of Transporation, Project Alptransit.1992.
    [88]Einstein H H, Chiaverio F K, Ppel U. Risk analysis for the adler tunnel[J].Tunnels and Tunnelling,1994,26 (11):28-30.
    [89]Einstein H H, Indermiue C, Sinifeld J, et al. Decision aids for tunneling[J].Journal of the Transportation Research Board,1996,20 (5):6-9.
    [90]Einstein H H. Risk and risk analysis in rock engineering [J]. Tunnelling and Underground Space Technology,1996,11 (2):141-155.
    [91]Einstein H H, Xu S, Grasso P, et al. Decision aids in tunneling[J].World Tunneling, 1998, (4):157-159.
    [92]Einstein H H, Indermitte C A, Sinfield J V. Creating the Basis for Risk Assessment in Tunnelling-The Decision Aids for Tunnelling (DAT) [J].International Conference on Reducing Risk in Tunnel Design and Construction Basel.1998.
    [93]Einstein H H. The Decision Aids for Tunnelling An Update [J].Transportation Research Record,2004.
    [94]Min S Y, Lee J S, Einstein H H. Design and construction of a road tunnel in Korea including Application of decision aids for tunneling-A case study [J].Tunnelling and Underground Space Technology,2008,23 (2):91-102.
    [95]Nilsen B, Palmstr m A, Stille. H. Quality control of a Sub-sea Tunnel Project in Complex Ground Conditions[A].In:Proc.of ITA World Tunnel Congress'99[C].Oslo:[s.n.].1992,137-145.
    [96]Sturk R, Olsson L, Johansson J. Risk and decision analysis for large underground projects, as applied to the Stockholm Ring Road Tunnels[J].Tunnelling and Underground Space Technology,1996,11 (2):157-164.
    [97]Olsson L, Sturk R. The Northern Link, soft tunnelling through the Bellevue park Risk analysis 1, fault trees[R].Vgverket rapport RAP 0037, R/YT, Stoekholm:1994.
    [98]Kampmann J, Eskesen S D, Summers J.W. Risk assessment helps select the contractor for the Copenhagen Metro System[A].In: Proceedings of the World Tunnel Congress98 on Tunnels and Metropolises[C].1998, (1):123-128.
    [99]Snel A J M, Van Hasselt D.R.S. Risk management in the Amsterdam North/South Metro line:A matter of process-communication instead of calculation [A]. In: Proceedings of the world tunnel congress99[C].1999, (2):79-186.
    [100]Weiss E H. and Vigl L. "Mediation"-A proper tool for risk assessment in tunneling projects [A].Proceedings of the A ITES-ITA 2001 world tunnel congress[C],2001, (3):583-588.
    [101]Clark G T, Borst A. Addressing risk in Seattle's underground[J].PB Network, 2002, (1):34-37.
    [102]Kolic D. Risk analysis for design and construction aspects of Mala Kapela tunnel[A]. Proceedings of the ITA world tunnelling congress [C].2003, (3):513-519.
    [103]Yiqiang Xiang, Chengxi Liu, Chunfeng Chao. Risk analysis and assessment of public safety of Submerged Floating Tunnel [J]. Procedia Engineering,2010 (4): 117-125.
    [104]Henrik Bjelland, Terje Aven. Treatment of uncertainty in risk assessments in the Rogfast road tunnel project[J]. Safety Science,2013,55 (6):34-44.
    [105]Rita L. Sousa, Herbert H. Einstein. Risk analysis during tunnel construction using Bayesian Networks:Porto Metro case study [J]. Tunnelling and Underground Space Technology,2012,27 (1):86-100.
    [106]范益群,钟万勰,刘建航.时空效应理论与软土基坑工程现代设计概念[J].清华大学学报(自然科学版),2000,40(S1):49-53.
    [107]白峰青.隧洞工程的风险设计及决策[D].天津:天津大学,1996.
    [108]白峰青,卢兰萍,姜兴阁.地下工程的可靠性与风险决策[J].辽宁工程技术大学学报(自然科学版),2000,19(3):237-239.
    [109]李林,李树丞,王道平.基于风险分析的项目工期的估算方法研究[J].系统工程,2001,19(5):77-81.
    [110]王明德,沈劲利.工程变更决策程序之研究-多属性效用理论之应用[C]//海峡两岸及香港高校土木及结构工程交流与研讨会.上海:同济大学,1986:154-163.
    [111]徐上进.风险管理方法在隧道施工中的应用[J].山西建筑.2003,29(3):176-177.
    [112]吴贤国,王锋.R=P×C法评价水下盾构隧道施工风险[J].华中科技大学学报 (城市科学版),2005,22(4):44-46.
    [113]张国亮,张振刚.地下工程施工中的风险分析[J].西部探矿工程,2005,(3):214-216.
    [114]蒋宗鑫,傅志峰,王先宝等.基于地质信息的地铁隧道施工风险预警系统研究[J].铁道建筑,2012(1):66-68.
    [115]董路钰.复杂地质条件下轨道交通隧道施工风险评估研究[D].重庆:重庆大学,2012.
    [116]安永林,黄戡,彭立敏等.隧道施工风险人-机-环境系统综合评估[J].中南大学学报(自然科学版),2012,43(1):301-307.
    [117]黄慷,杨林德.崇明越江盾构隧道工程耐久性失效风险研究[J].现代隧道技术,2004,41(2):8-13.
    [118]陶履彬,张奎鸿,汪炳鉴.长江口越江工程桥隧方案比选风险评估[J].桥涵工程,2004(1),42-47.
    [119]陈龙.城市软土盾构隧道施工期风险分析与评估研究[D].上海:同济大学,2004.
    [120]McFest-Smith I. Risk assessment for tunneling in adverse geological conditions [A].Proceedings of the international conference on tunnels and underground structures[C].Singaproe:2000:625-632.
    [121]McFest-Smith I, Harman K W. MS risk evaluation system for financing and insuring tunnel projects [A].Proceedings of world tunnel congress and 13th ITA assembly, Singapore[C].2004, B22.
    [122]McFest-Smith I. Risk Assessment and Management For Tunneling Projects Hong Kong Association of Project Management [C].Hong Kong, Feb 2005.
    [123]McFest-Smith I. Risk Assessment and Management For Tunnelling Projects In Hong Kong[C].HKIE Geotechnical Division,28th Annual Seminar May 2006.
    [124]McFest-Smith I. Tunelling In The Himalayas[C].Risk Assessment And Management For Tunnelling In Extreme Geological Conditions World Tuunel Congress, ITA-AITES, Agra, India, September 2008.
    [125]McFest-Smith I. Risk Assessment And Management for Three Major Transportation Tunnel Projects In S.E.Asia Beacons Transport India Conf. [C].New Delhi, May 2008.
    [126]李锋.翔安隧道强风化层施工的风险管理[D].上海:同济大学,2007.
    [127]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4),649-655.
    [128]茂盛(亚洲)工程顾问有限公司.上海外滩通道改建工程风险管理工作指南[R].深圳:茂盛(亚洲)工程顾问有限公司,2007.
    [129]同济大学.崇明越江通道工程风险分析研究[R].2005.
    [130]铁道部工程管理中心,中铁西南科学研究院.宜万线野三关隧道工程风险评估和控制的研究[R].2004.
    [131]中南大学防灾科学与技术研究所,铁道第四勘测设计院.广深港客运专线狮子洋隧道工程灾害与风险分析研究[R].2006.
    [132]中南大学防灾科学与技术研究所.浙江沿海疏港高速公路工程灾害与风险分析研究[R].2007.
    [133]翟世鸿,董晖.武汉长江公路隧道技术难点及风险前期研究[J].现代隧道技术,2005,(5):32-39.
    [134]郭鹏,李志强,张凤爱等.承秦高速公路隧道施工风险管理研究[J].桥梁与隧道工程,2012(1):95-99.
    [135]周正宇,苏洁.浅埋暗挖法穿越既有桥梁的施工风险控制[J].北京交通大学学报,2012,36(3):12-18.
    [136]牛康.地铁盾构施工风险评估与风险规避研究[J].中国安全生产科学技术,2011,7(5):42-46.
    [137]张智博.南京长江隧道大型泥水盾构施工风险分析及对策[J].探矿工程(岩土钻掘工程,2011,38(6):65-69.
    [138]杨小伟,闫天俊,倪正茂等.武汉地铁越江隧道施工风险分析与控制[J].安全与环境工程,2012,19(3):107-110.
    [139]郭瑞军.交通运输系统工程[M].北京:国防工业出版社,2008.
    [140]Coyle R G. On the scope and purpose of Industrial Dynamics[J].International Journal of Systems Science,1973,4 (3):397-406.
    [141]Peter F. Drueker. Managing for the Future[M].USA:Penguin Group,1997.
    [142]刁心宏.房柱式采矿地压动态控制及人工智能应用研究[D].沈阳:东北大学,2001.
    [143]王光钦,丁桂保,刘长虹,杨杰.弹性力学[M].北京:中国铁道出版社,2004.
    [144]夏喆.企业风险传导的机理与评价研究[D].武汉:武汉理工大学,2007.
    [145]杨官涛.地下采场结构参数优化及稳定性的能量突变分析[D].长沙:中南大学,2007.
    [146]关宝树,杨其新.地下工程概论[M].成都:西南交通大学出版社,2001.
    [147]刘元雪,施建勇等.盾构法隧道施土数值模拟[J].岩土土程学报,2004,26(2):239-243.
    [148]蒋晓丽.沈阳地铁隧道暗挖区间施工稳定性研究[D].沈阳:东北大学,2008.
    [149]孟令兴.系统动力学建构下交通枢纽型经济的发展理论与实证研究[D].成都:西南交通大学,2007.
    [150]刘舒燕.交通运输系统工程(第二版)[M].北京:人民交通出版社,2006.
    [151]胡群芳,秦家宝.2003-2011年地铁隧道工程建设施工事故统计分析[C]//第二届全国工程风险与保险研究学术研讨会暨中国土木工程学会工程风险与保险研究分会第一届第三次全体理事会论文集,2012.
    [152]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [153]沈周,傅洪贤,赵晓勇.铁路单线隧道钻爆扰动范围的研究[J].工程爆破,2010,16(3):32-36.
    [154]赵忠虎,鲁睿,张国庆.岩石破坏全过程中的能量变化分析[J].矿业研究与开发,2006,26(5):8-11.
    [155]Zheng Zaisheng. Energy transfer process during rock deformation[J].Science in China Series B,1991,34 (1):104-117.
    [156]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学版),2008,40(2):26-31.
    [157]陈先国.隧道结构失稳及判据研究[D].成都:西南交通大学,2002.
    [158]花建锋.市场能量释放理论研究[D].天津:天津大学,2003.
    [159]李长洪,蔡美峰,乔兰,王双红.岩石全应力-应变曲线及其与岩爆关系[J].北京科技大学学报,1999,21(6):513-515.
    [160]王清印,崔援民,赵秀恒等.预测与决策的不确定性数学模型[M].北京:冶金工业出版社,2001.
    [161]刘保相.粗糙集对分析理论与决策模型[M].北京:科学出版社,2010.
    [162]Shafer G. Mathematical Theory of Fvidence[M]. Princeton University Perss,1976.
    [163]Zdaeh L. Fuzzy sets as a basis for theory of possibility[J].Fuzzy Sets and Systems,1978,1 (1):3-28.
    [164]刘开第编着.不确定性信息数学处理及其应用[M].武汉:华中理工大学出版社,1998.
    [165]程干生.属性识别理论模型及其应用[J].北京大学学报(自然科学版),1997,33(1):12-20.
    [166]史秀志,周健.隧道围岩分级判别的未确知均值聚类模型[J].土木建筑与环境工程,2009,31(2):62-67.
    [167]吴凤东,胡乃联,王长龙.基于未确知测度理论的煤矿井下“六大系统”安全评价模型[J].煤炭学报,2011,36(10):1731-1735.
    [168]孟祥磊.基于未确知测度的施工安全分析模型及应用[D].长沙:中南林业科技大学,2011.
    [169]宁贵康.基于未确知测度的施工现场安全管理评价研究[D].邯郸:河北工程大学,2010.
    [170]菅利荣着.面向不确定性决策的杂合粗糙集方法及其应用[M].北京:科学出版社,2008.
    [171]鲍新中,刘澄.一种基于粗糙集的权重确定方法[J].管理学报,2009,6(6):729-732.
    [172]王珏.粗糙集应用及其应用研究[D].西安:西安电子科技大学,2005.
    [173]Pawlak Z. Rough sets:theoretical aspects of reasoning about data[M].Kluwer Academic Publishers, Dordrecht,1991.
    [174]史忠植.发现知识[M].北京:清华大学出版社,2002.
    [175]张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法[M].北京:科学出版社,2008.
    [176]GB50218-1994,工程岩体分级标准[S].
    [177]TB10003-2005,铁路隧道设计规范[S].
    [178]崔玖江.隧道与地下工程修建技术[M].北京:科学出版社,2005.
    [179]严薇,林娴,周朝长.熵度量法在地下工程围岩稳定性分级中的应用[J].重庆 建筑大学学报,2007,29(1):75-77.
    [180]曾杰,靳晓光,高永等.公路隧道围岩动态分级方法研究[J].重庆建筑大学学报,2007,29(6):76-79.
    [181]周翠英,张亮,黄显艺.基于改进BP网络算法的隧洞围岩分类[J].地球科学,2005,30(4):480-486.
    [182]裘军良,夏永旭.人工神经元网络在公路隧道围岩判别中应用[J].广西交通科技,2003,28(4):15-18.
    [183]刘保相.粗糙集对分析理论与决策模型[M].北京:科学出版社,2010.
    [184]吴顺祥.灰色粗糙集模型及其应用[M].北京:科学出版社,2009.
    [185]张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法[M].北京:科学出版社,2008.
    [186]曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998.
    [187]殷焕武.基于粗糙集属性重要度的岗位评价方法及其应用[J].管理学报,2010,7(5):683-685.
    [188]陈洁.基于风险辨识的港口物流服务供应商选择与优化研究[D].上海:上海海事大学,2012.