慢性间歇性低压低氧对豚鼠心脏的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间歇性低氧是指一定时间暴露于低氧环境,而其余时间处于常氧环境。间歇性低氧是机体某种生理和病理状态下的低氧形式。研究表明:慢性间歇性低压低氧(chronic intermittent hypobaric hypoxia,CIHH),类似缺血预适应(ischemic preconditioning,IPC),具有明显的心脏保护作用,表现为增强心肌对缺血/再灌注损伤的耐受性、限制心肌梗死面积和形态学改变、抗细胞凋亡、促进缺血/再灌注心脏舒缩功能的恢复,以及抗心律失常。尽管CIHH对心脏的保护作用不容质疑,但其作用机制远未阐明。众所周知,氧自由基是缺血/再灌注和低氧/复氧诱发的心肌细胞膜损伤的一个重要原因。内源性抗氧化系统在CIHH心肌保护中的作用报道不一致。抗氧化是否参与了CIHH的心肌保护作用需要更进一步的研究。
     Na+,K+-ATP酶即钠钾泵是存在于细胞膜上的膜蛋白,主要由α亚基和β亚基组成,其功能主要是维持细胞内外钠钾离子的浓度梯度。当心肌缺血时,导致细胞内钠离子浓度升高,细胞内钙离子浓度增加造成钙超载,钙超载是心肌缺血引起损伤的重要因素之一。钠钾泵可以排出细胞内多余的钠离子,从而使细胞内钠离子降低,使钠钙交换体的功能增强排出细胞内多余的钙离子。有研究报道,心肌缺血或缺血/再灌注会抑制钠钾泵的活性。CIHH可减弱心肌缺血时钙离子的增加,这可能有钠钾泵的参与。是否CIHH对钠钾泵有影响尚无研究。有研究表明,活性氧簇(ROS)与钠钾泵关系密切,可显著抑制钠钾泵。在心肌缺血或缺血/再灌注时会有ROS的大量生成,这可能是心肌缺血或缺血/再灌注引起钠钾泵抑制的原因之一。
     本实验应用离体心脏灌流技术、细胞动缘系统、全细胞膜片钳技术及分子生物学方法,探讨了CIHH对豚鼠心脏缺血再灌注损伤的保护作用及抗氧化酶和Na,K-ATPase在CIHH对豚鼠心脏保护中所起的作用。研究分为三部分(1)CIHH对豚鼠缺血/再灌注心脏的保护作用:利用Langendorff离体心脏灌注系统,建立离体豚鼠心脏缺血/再灌注模型,观察CIHH对豚鼠心脏缺血/再灌注损伤的影响。(2)抗氧化酶在CIHH心脏保护中的作用:在豚鼠离体灌流心脏,通过药理学及分子生物学方法探讨抗氧化酶在CIHH心脏保护中的作用。(3)钠钾泵在CIHH心脏保护中的作用:利用细胞动缘及膜片钳技术观察CIHH对钠钾泵的作用及钠钾泵在CIHH心脏保护中的作用。
     第一部分CIHH对豚鼠心肌缺血再灌损伤的保护作用
     目的:观察CIHH对豚鼠心肌缺血再灌损伤是否有保护作用。
     方法:132只雄性成年豚鼠(250±20g)随机分为两组:非间歇性低氧组(non-CIHH)与间歇性低氧组(CIHH)。其中CIHH又分为CIHH处理14天组(CIHH14)、CIHH处理28天组(CIHH28)和CIHH处理42天组(CIHH42),而non-CIHH又相应分为non-CIHH14、non-CIHH28和non-CIHH42。CIHH处理组动物于低压氧舱分别接受14,28天、42天模拟5000米海拔高度(PB=404 mmHg, PO2=84 mmHg)的低压低氧处理,每天6小时。non-CIHH组动物除了不接受低氧处理外,其它处理均与CIHH组动物相同。离体心脏利用Langendorff灌流给予缺血(30min)/再灌注(60min)处理,观察心脏功能的变化。TTC染色方法测定心肌梗死面积。
     结果:
     1 CIHH14, 28, 42组豚鼠的体重(BW),全心/体重(THW/BW)、右心室/左心室重量(RVW/LVW、右心室/体重(RVW/BW)与相应non-CIHH组无显著差异。
     2基础状态下,除CIHH28和CIHH42组的CF较相应non-CIHH组增加外,其余心功能与non-CIHH组动物均无显著性差异。心脏停灌缺血30 min后再灌注60min, CIHH28和CIHH 42组的心功能参数,如LVDP,LVEDP,±dp/dtmax恢复都较相应non-CIHH组明显好转。
     3 CIHH28和CIHH 42天能明显降低缺血/再灌注后心肌梗死面积。
     小结:CIHH28和CIHH 42天增强成年豚鼠心脏对缺血/再灌注损伤的抵抗能力。
     第二部分抗氧化酶在CIHH心脏保护中的作用
     目的:探讨抗氧化酶在CIHH心脏保护中的作用。
     方法:142只雄性成年豚鼠(250±20g)随机分为两组:非间歇性低氧组(non-CIHH)与间歇性低氧组(CIHH)。CIHH处理组动物于低压氧舱分别接受28天、5000米海拔高度(PB=404 mmHg, PO2=84 mmHg)的低压低氧处理,每天6小时。non-CIHH组动物除了不接受低氧处理外,其它处理均与CIHH组动物相同。离体心脏利用Langendorff灌流给予缺血(30min)/再灌注(60min)处理,观察心脏功能的变化。生化方法测定心肌SOD、CAT和GPX的活性及MDA的含量。免疫印迹方法测定心肌SOD及CAT的蛋白含量。
     结果:
     1基础状态下, CIHH组心肌MDA含量与non-CIHH组相比无显著性差异。心脏停灌缺血30min后再灌注60min,各组MDA含量均明显升高,CIHH组MDA含量升高明显低于相应non-CIHH组(P<0.01)。
     2基础状态下, CIHH组心肌总SOD、SOD-2和CAT活性较non-CIHH组相比均明显增加,SOD-1和GPX活性与non-CIHH组相比无显著性差异。心脏停灌缺血30min后再灌注60min ,各组总SOD、SOD-1、SOD-2和CAT活性MDA含量均明显下降,但CIHH组总SOD、SOD-2和CAT活性仍明显高于相应non-CIHH组(P<0.01)。
     3预先应用CAT不可逆性阻断剂,可完全消除CIHH对缺血/再灌注心脏的保护作用;应用抗氧化酶复合物SOD+CAT可模拟CIHH的心肌保护作用。
     4 CIHH可对抗外源性H2O2引起的心功能降低及氧化应激。小结:CIHH通过上调抗氧化酶而发挥心肌保护作用。
     第三部分钠钾泵在CIHH心脏保护中的作用
     目的:探讨钠钾泵在CIHH心脏保护中的作用。
     方法:雄性成年豚鼠(250±20g)随机分为两组:非间歇性低氧组(non-CIHH)与间歇性低氧组(CIHH)。CIHH处理组动物于低压氧舱分别接受14,21,28,42天, 5000米海拔高度(PB=404 mmHg, PO2=84 mmHg)的低压低氧处理,每天6小时。non-CIHH组动物除了不接受低氧处理外,其它处理均与CIHH组动物相同。利用膜片钳技术记录心肌细胞钠钾泵电流。利用细胞动缘探测系统测定心肌细胞的长度及收缩力的大小。
     结果:
     1模拟缺血20分钟再灌30分钟可明显缩短细胞的长度,但CIHH组细胞缩短的长度明显小于相应non-CIHH组的细胞。Oua可取消CIHH的作用。
     2模拟缺血20分钟再灌30分钟可明显降低细胞的收缩幅度、细胞的最大收缩速率及最大舒张速率,但CIHH组细胞收缩的幅度、细胞的最大收缩速率及最大舒张速率恢复明显优于相应对照组。Oua可取消CIHH对细胞的收缩幅度,细胞的最大收缩速率的作用。
     3与相应non-CIHH组相比,CIHH处理21,28,42天明显增加心肌细胞钠钾泵电流。
     4 non-CIHH组△Ip-[Oua]关系曲线,从10-10到10-3 mol/LOua所对应的△Ip分别是0.088±0.03、0.150±0.03、0.060±0.01、-0.145±0.02、-0.391±0.06、-0.670±0.02、-0.98±0.01和-1.000±0.00。采用双亚基三位点结合模型可进行最优拟合,其解离常数(kd)包括高亲和力兴奋性位点Kd值(K+2)、高亲和力抑制性位点Kd值(K-2)和低亲和力抑制性位点Kd值(K1),分别为8.5 x 10-11M、5.2 x 10-8M和1.1 x 10-5M,高、低两种亲和力泵所占比例分别为f2 = 0.31和f1 = 0.68. CIHH组△Ip-[Oua]关系曲线,从10-10到10-3 mol/LOua所对应的△Ip分别是0.069±0.02、-0.036±0.03、-0.181±0.02、-0.202±0.05、-0.459±0.03、-0.770±0.02、-0.978±0.01和-1.000±0.00。采用双亚基三位点结合模型可进行最优拟合,其解离常数K+2、K-2和K1分别为2.4 x 10-10M、4.2 x 10-8M和2.8 x 10-6M, f2 = 0.20和f1 = 0.80。说明经CIHH处理后钠钾泵低亲和力泵即α1亚基的相对比例增加。
     5 CIHH处理28天使心肌细胞钠钾泵电流明显增强,当给予H2O2 (1mM)灌流5分钟时钠钾泵电流在non-CIHH组与CIHH组均明显降低。但CIHH组钠钾泵电流仍明显高于相应non-CIHH组(P<0.01)。
     6 0.1mM H2O2在non-CIHH组可明显抑制钠钾泵电流,而对CIHH组与CAT组钠钾泵电流无明显影响。1mM H2O2对各组钠钾泵电流均有明显抑制,但CIHH组及CAT组钠钾泵电流仍明显高于相应non-CIHH组(P<0.01)。1mM H2O2对各组的钠钾泵电流抑制基本已达到最大。但CIHH的最大抑制率明显低于non-CIHH组,CAT组的最大抑制率与non-CIHH组相比无明显差别。即CAT使H2O2与钠钾泵电流关系曲线平行右移,CIHH使H2O2与钠钾泵电流关系曲线右移,说明经CIHH处理后钠钾泵本身对H2O2的敏感性发生变化。
     小结:钠钾泵在CIHH心肌保护中发挥了重要作用。
     结论
     1 CIHH可明显改善豚鼠心肌缺血/再灌注损伤
     2 CIHH通过上调抗氧化酶的含量及活性而提高机体的抗氧化能力,这可能是其改善心肌缺血/再灌注损伤的机制之一。
     3 CIHH可增强钠钾泵电流及降低钠钾泵对氧化应激的敏感性,钠钾泵在CIHH的心肌保护作用中发挥重要作用。
Intermittent hypoxia, or periodic exposure to hypoxia interrupted by return to normoxia or less hypoxic conditions, is encountered more frequently in life than sustained hypoxia. Many studies showed that chronic intermittent hypobaric hypoxia (CIHH) adaptation had the cardioprotective effects similar to those observed in ischemic preconditioning (IPC). However, the cardioprotective effect of CIHH lasts longer than that of IPC and it is easy to manipulate the CIHH model, thus it has significance in the study of CIHH. A number of studies have attempted to define the mechanisms of this phenomenon and several potential factors have been proposed to be involved in the protective mechanism afforded by CIHH, however, the precise mechanisms underlying the cardioprotective effects of CIHH are far from clear. It is well known that oxidative stress and oxygen-derived free radicals (mainly ROS) contribute to I/R injury. There are different reports on the role of antioxidation in cardioprotection of CIHH. Whether antioxidation contributed to the cardioprotection of CIHH and the detail mechanism of antioxidation in CIHH need further study.
     Na+,K+-ATPase (sodium pump) is a heterodimer protein composed ofα- andβ-subunits that plays a key role in regulating membrane potential and cation transport in the myocardium. When myocardial ischemia, Ca2+ and Na+ influx into myocardium, and Ca2+ overload is regarded as a crucial factor in the development of ischemic myocardial damage. Na+,K+-ATPase facilitates transportation of Na+ from the intracellular space. The decrease in the intracellular Na+ concentration enhances removal of Ca+ from the intracellular space by facilitating Na+/Ca2+ exchange mechanism. Some researches demonstrated that ischemia and I/R injury can depress the activity of the cardiac Na+,K+-ATPase. Therefore, prevention of Ca2+ overload by CIHH may involve changes in Na+,K+-ATPase activity. Whether CIHH treatment can affect cardiac Na+,K+-ATPase have not been studied. Some reports demonstrated that ROS and Na+,K+-ATPase have a crosstalk relationship. ROS can inhibit Na+,K+-ATPase activity. As oxidative stress has been shown to occur during development of I/R injury, it is likely that the depression of Na+,K+-ATPase activity in I/R hearts may be due to oxidative stress. The aim of the study is to investigate whether CIHH has a protective effect on guinea pig heart, and to explore the underlying mechanism. Our study consists of three parts: (1) Protective effect of CIHH against ischemia/reperfusion injury inguinea pig heart. (2) The role of antioxidant enzymes in the cardioprotection of CIHH. (3) The role of the sodium pump in the cardioprotection of CIHH.
     Part 1 Protective effect of CIHH against ischemia/reperfusion injury in guinea pig heart
     Objective: The aim of this study was to investigate the effect of CIHH on myocardial ischemia/reperfusion injury in guinea pig
     Methods: Adult male guinea pigs (n=132) were divided randomly into six groups: non-CIHH 14 days group (non-CIHH14), non-CIHH 28 days group (non-CIHH28), non-CIHH 42 days group (non-CIHH42), CIHH 14 days group (CIHH14), CIHH 28 days group (CIHH28), and CIHH 42 days group (CIHH42). In CIHH groups, guinea pigs were exposed to CIHH mimicking 5000m high altitude (PB=404 mmHg, PO2=84 mmHg) in a hypobaric chamber lasting 6 hrs/day for 14 days, 28 days and 42 days respectively. The animals in non-CIHH groups were kept in the same environment as the CIHH guinea pigs except for hypoxic exposure. Langendorff-perfused isolated guinea pig hearts were used to measure variables of left ventricular function during baseline perfusion, ischemia, and reperfusion period. The parameters of cardiac function including left ventricular developing pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal differentials of LVDP (±LVdp/dtmax) and coronary flow (CF) were measured. Myocardium was stained by TTC to measure infarct size. Results:
     1 The body weight of guinea pigs in CIHH group had no significant change compared with non-CIHH animals. No differences in the ratio of heart weight to body weight, ratio of right ventricular weight to left ventricular plus inter-ventricular septum weight, ratio of right ventricular weight to body weight were observed between CIHH and non-CIHH groups.
     2 The basic CF in CIHH28 and CIHH42 guinea pigs was significant higher than that in corresponding non-CIHH guinea pigs, while other parameters of cardiac function didn’t change. During the whole period of reperfusion, the recoveries of LVDP, LVEDP,±dp/dtmax, and CF in guinea pigs after 28 and 42 d of CIHH exposure were much better than those in the corresponding non-CIHH guinea pigs.
     3 The myocardial infarct size induced by ischemia and reperfusion was markedly reduced in CIHH28 and CIHH42 groups compared with those in corresponding non-CIHH guinea pigs
     Conclusion: The results suggest that CIHH has a protective effect against ischemia/reperfusion injury on guinea pig heart.
     Part 2 The role of antioxidant enzymes in the cardioprotection of CIHH
     Objective: The aim of the present study was to evaluate: whether antioxidation was involved in the cardiacprotection afforded by CIHH.
     Methods: Adult male guinea pigs were exposed to CIHH mimicking 5000m high altitude (PB=404 mmHg, PO2=84 mmHg) in a hypobaric chamber lasting 6 hrs/day for 28 days. Langendorff-perfused isolated guinea pig hearts were used to measure variables of left ventricular function during baseline perfusion, ischemia, and reperfusion period. The activities and protein expressions of antioxidant enzymes in left ventricle were evaluated using biochemical methods and Western blotting, respectively. Intracellular reactive oxygen species (ROS) were assessed using ROS- sensitive fluorescence.
     Results:
     1 There was no significant difference in MDA contents between non-CIHH and CIHH group before ischemia/reperfusion. After reperfusion, MDA content increased significantly in both non-CIHH and CIHH hearts (p < 0.01), whereas MDA content in CIHH hearts was still lower than that in non-CIHH hearts (p < 0.01).
     2 The baseline activities of total SOD, SOD-2, and CAT in CIHH hearts were higher than those in non-CIHH hearts (p < 0.01), but SOD-1 and GPX activity did not significantly change. After reperfusion, SOD-2 and CAT activities decreased in both non-CIHH and CIHH hearts (p < 0.01), whereas the activities of SOD-2 and CAT in CIHH hearts were still higher than those in non-CIHH hearts (p < 0.01).
     3 Western blot analysis demonstrated that the baseline expressions of SOD-2 and CAT protein in CIHH hearts were higher than those in non-CIHH hearts; however, the expression of SOD-1 protein did not change. The protein expressions of SOD-2 and CAT were not significantly changed after reperfusion in both non-CIHH and CIHH hearts, whereas the expressions of SOD-2 and CAT in CIHH hearts were still higher than those in non-CIHH hearts (p < 0.01).
     4 Treatment with CAT inhibitor ATZ (1.0 g/kg) completely eliminated the protective effect of CIHH on cardiac function (p < 0.01), whereas it had no effect on non-CIHH hearts during reperfusion. A similar improvement in these cardiac function parameters was also observed in hearts treated with the antioxidant mixture containing SOD + CAT.
     5 Cardiac contractile dysfunction and oxidative stress induced by exogenous hydrogen peroxide (H2O2) were attenuated by CIHH and CAT. Conclusion: These data suggest that CIHH can protect heart against I/R injury through upregulation of antioxidant enzymes in guinea pig.
     Part 3 The role of sodium pump in the cardioprotection of CIHH
     Objective: whether Na+,K+-ATPase was involved the cardiacprotection afforded by CIHH.
     Methods: Adult male guinea pigs were exposed to CIHH mimicking 5000m high altitude (PB=404 mmHg, PO2=84 mmHg) in a hypobaric chamber lasting 6 hrs/day for 14, 21, 28, and 42days. The left ventricular myocytes were enzymatically isolated. The sodium pump current was recorded using whole cell patch clamp technique. The cell length and contraction were assessed by a video-based, motion-edge detection system.
     Results:
     1 After 20 min of ischemia followed by 30 min of reperfusion, cell length shortened in each group. CIHH significantly improved the recovery of cell length compared to that of non-CIHH myocytes (96.3±0.9% vs. non-CIHH 86.8±2.9%, P < 0.01). While Oua administered at 5 min before the ischemia completely abolished this beneficial effect in CIHH myocytes.
     2 Ischemia–reperfusion injury resulted in a marked decrease in the amplitude of contraction in each group. CIHH adaptation improved the recovery of contraction amplitude. When CIHH myocytes were treated with Oua at 5 min before the ischemia, all the beneficial effects were completely eliminated.
     3 The sodium pump currents in CIHH21, CIHH28, and CIHH42 guinea pigs were significant higher than those in corresponding non-CIHH guinea pigs.
     4 In the△Ip-[Oua] relation curve of non-CIHH, the△Ip values produced by each concentration of Oua from 10-10 to 10-3 mol/L were 0.088±0.03, 0.150±0.03, 0.060±0.01, -0.145±0.02, -0.391±0.06, -0.670±0.02, -0.98±0.01, and -1.000±0.00, respectively. K+2, K-2 and K1 were 8.5 x 10-11M, 5.2 x 10-8M, and 1.1 x 10-5M, repectively. f2 = 0.31, f1 = 0.68. In the△Ip-[Oua] relation curve of CIHH (Fig.5F), the△Ip values produced by each concentration of Oua from 10-10 to 10-3 mol/L were 0.069±0.02, -0.036±0.03, -0.181±0.02, -0.202±0.05, -0.459±0.03, -0.770±0.02, -0.978±0.01, and -1.000±0.00, respectively. K+2 , K-2 and K1 were 2.4 x 10-10M, 4.2 x 10-8M, 2.8 x 10-6M, f2 = 0.20, f1 = 0.80.
     5 Ip in cardiac myocytes after 28 CIHH was much higher than that in the corresponding non-CIHH (p < 0.01). After H2O2 (1mM) perfusion for 5 min, Ip decreased significantly in both non-CIHH and CIHH myocytes (p < 0.01 or p < 0.05), whereas the Ip in CIHH myocytes were still higher than those in non-CIHH myocytes (p < 0.01).
     6 0.1mM H2O2 can inhibit Ip significantly in non-CIHH myocytes, but have no significantly effect on Ip in CIHH and CAT myocytes. 1mM H2O2 can inhibit Ip significantly in all myocytes, whereas the Ip in CIHH or CAT myocytes were still higher than those in non-CIHH myocytes. 10mM H2O2 can maximally inhibit Ip in all myocytes, whereas the Ip in CIHH myocytes was still higher than those in non-CIHH. CAT make the curve of concentration-dependence of H2O2 -induced inhibition of Ip move to the right parallelly. CIHH make the curve of concentration-dependence of H2O2 -induced inhibition of Ip move to the right, whereas maximal inhibition induced by H2O2 was smaller than those in non-CIHH or CAT myocytes.
     Conclusion: Sodium pump may play an important role in the cardioprotection of CIHH against I/R injury in guinea pig.
     SUMMARY
     1 CIHH has a protective effect against ischemia/reperfusion injury on guinea pig heart.
     2 CIHH upregulates the activity and protein expressions of antioxidant enzymes leading to an increase in antioxidant capacity, which may play an important role in the cardiac protection of CIHH against I/R injury in guinea pig.
     3 CIHH increase the sodium pump current and resistance to oxidative stress in cardiac myocytes. Sodium pump was involved in the cardiacprotection afforded by CIHH and may be an intermedium in the anti-oxidative cardiac protection mechanism of CIHH.
引文
1 Zhuang J, Zhou ZN. Protective effects of intermittent hypoxic adaptation on myocardium and its mechanism. Biol Signals Recept, 1999, 8: 316~322
    2 Zhang Y, Yang HT, Zhou ZN. Cardioprotection of intermittent hypoxia. Acta Physiol Sin, 2007, 59: 601~613
    3 Zhang Y, Zhong N, Zhou ZN. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle. Life Sci, 2000, 67: 2465~2471
    4 Zhang Y, Zhong N, Zhu HF, et al. Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium. Sheng Li Xue Bao, 2000, 52: 89~92
    5 Zong P, Setty S, Sun W et al. Intermittent hypoxic training protects canine myocardium from infarction. Exp Biol Med (Maywood), 2004, 229: 806~812
    6 Turek Z, Ringnalda BE, Moran O, et al. Oxygen transport in guinea pigs native to high altitude. Pflugers Arch, 1980, 384: 109~115
    7 Rivera CM, Lebn VF, Huicho L, et al. Ventilatory response to severe acute hypoxia in guinea pigs and rats with low hemoglobin-oxygen affinity induced by phytic acid. Comp Biochem Physiol, 1995, 112: 41l~416
    8 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74(5): 1124~1136
    9 Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res, 2004, 94: 7~16
    10 Yuan F, Guo Z, Xu Y, et al. Comparison of the effects of chronic intermittent hypobaric hypoxia and continuous hypobaric hypoxia on hemodynamics in rats. Acta Physiologica Sinica, 2008, 60 (6): 687~694
    11 Ostadal B, Kolar F. Cardiac adaptation to chronic high-altitude hypoxia: Beneficial and adverse effects. Respir Physiol Neurobiol, 2007, 158 (2-3):224~236
    12 Serebrovskaya TV. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood), 2008, 233 (6): 627~650
    13 Beidleman BA, Muza SR, Fulco CS, et al. Seven intermittent exposures to altitude improve exercise performance at 4300 m. Med Sci Sports Exerc, 2008, 40(1): 141~148
    1 Zhuang J, Zhou ZN. Protective effects of intermittent hypoxic adaptation on myocardium and its mechanism. Biol Signals Recept, 1999, 8: 316~322
    2 Zhang Y, Yang HT, Zhou ZN. Cardioprotection of intermittent hypoxia. Acta Physiol Sin, 2007, 59: 601~613
    3 Zhang Y, Zhong N, Zhou ZN. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle. Life Sci, 2000, 67: 2465~2471
    4 Zhang Y, Zhong N, Zhu HF, et al. Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium. Acta Physiol Sin, 2000; 52: 89~92
    5 Zong P, Setty S, Sun W, et al. Intermittent hypoxic training protects canine myocardium from infarction. Exp Biol Med (Maywood), 2004, 229: 806~812
    6 Zhong N, Zhang Y, Fang QZ, et al. Intermittent hypoxia exposure-induced heat-shock protein 70 expression increases resistance of rat heart to ischemic injury. Acta Pharmacol Sin, 2000, 21: 467~472
    7 Zhong N, Zhang Y, Zhu HF, et al. Myocardial capillary angiogenesis and coronary flow in ischemia tolerance rat by adaptation to intermittent high altitude hypoxia. Acta Pharmacol Sin, 2002, 23: 305~310
    8 Ding HL, Zhu HF, Dong JW, et al. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci, 2004, 75: 2587~2603
    9 Zhu HF, Dong JW, Zhu WZ, et al. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci, 2003, 73: 1275~1287
    10 Bansal P, Gupta SK, Ojha SK, et al. .Cardioprotective effect of lycopene in the experimental model of myocardial ischemia-reperfusion injury. Mol Cell Biochem, 2006, 289: 1~9
    11 Makazan Z, Saini H K, Dhalla NS. Role of oxidative stress in alterationsof mitochondrial function in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol, 2007, 292: H1986~1994
    12 Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol, 1998, 275: C1~24
    13 Eigel BN, Gursahani H, Hadley RW. ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol, 2004, 286: H955~63
    14 Yun YS, Lee YN. Production of superoxide dismutase by Deinococcus radiophilus. J Biochem Mol Biol, 2003, 36: 282~287
    15 Chen CF, Tsai SY, Ma MC, et al. Hypoxic preconditioning enhances renal superoxide dismutase levels in rats. J Physiol, 2003, 552: 561~569
    16 Kim CH, Hong C, Chun YS, et al. Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Eur J Physiol, 2001, 442: 519~525
    17 Zhu WZ, Dong JW, Ding HL, et al. Postnatal development in intermittent hypoxia enhances resistance to myocardial ischemia/reperfusion in male rats. Eur J Appl Physiol, 2004, 91: 716~722
    18 Nakanishi K, Tajima F, Nakamura A, et al. Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol, 1995, 489: 869~876
    19 Kolar F, Jezkova J, Balkova P, et al. Role of oxidative stress in PKC- upregulation and cardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol, 2007, 292: H224~230
    20 Su SW, Wang YL, Li JX, et al. Relationship between cardiotonic effects and inhibition on cardiac sarcolemmal Na+,K+-ATPase of strophanthidin at low concentrations. Acta Pharmacol Sin, 2003, 24: 1103~1107
    21 Kirshenbaum LA, Singal PK. Increase in endogenous antioxidant enzymes protects hearts against reperfusion injury. Am J Physiol, 1993, 265: H484~493
    22 Maczewski M, Duda M, Pawlak W, et al. Endothelial protection from reperfusion injury by ischemic preconditioning and diazoxide involves aSOD-like anti O2- mechanism. J Physiol Pharmacol, 2004, 55: 537~550
    23 Zang Q, Maass DL, White J, et al. Cardiac mitochondrial damage and loss of ROS defense afterburn injury: the beneficial effects of antioxidant therapy. J Appl Physiol, 2007, 102: 103~112
    24 Wang Y, Gao J, Mathias RT, et al. alpha-Adrenergic effects on Na+-K+ pump current in guinea-pig ventricular myocytes. J Physiol, 1998, 509: 117~128
    25 Jun J, Savransky S, Nanayakkara A, et al. Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol, 2008, 295: R1274~281
    26 Bychkov R, Pieper K, Ried C, et al. Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. Circulation, 1999, 99: 1719~1725
    27 Nie H, Xiong LZ, Lao N, et al. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cerebr Blood F Met, 2006, 26: 666~674
    28 Sekili S, McCay PB, Li XY, et al. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial "stunning" in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res, 1993, 73: 705~723
    29 Woo YJ, Zhang JC, Vijayasarathy C, et al. Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation, 1998, 98: II255~260
    30 Ostadal P, Elmoselhi AB, Zdobnicka I, et al. Role of oxidative stress in ischemia-reperfusion-induced changes in Na+,K+-ATPase isoform expression in rat heart. Antioxid Redox Sign, 2004, 6: 914~923
    31 Marklund SL, Westman NG, Lundgren E, et al. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res, 1982, 42:1955~1961
    32 Hoshida S, Yamashita N, Otsu K, et al. The importance of manganese superoxide dismutase in delayed preconditioning: involvement of reactive oxygen species and cytokines. Cardiovasc Res, 2002, 55: 495~505
    33 Park AM, Suzuki YJ. Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol, 2007, 102: 1806~1814
    34 Kaplan P, Matejovicova M, Herijgers P, et al. Lack of the effect of superoxide dismutase and catalase on Na+,K+-ATPase activity in stunned rabbit hearts. Physiol Res, 2008, 57: S61~66
    35 Jones SP, Hoffmeyer MR, Sharp BR, et al. Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol, 2003, 284: H277~282
    36 Storz G, Tartaglia LA. OxyR: a regulator of antioxidant genes. J Nutr, 1992, 122: 627~630
    37 Storz G, Tartaglia LA, Ames BN. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science, 1990, 248: 189~194
    38 Budas GR, Churchill EN, Rosen DM. Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia-reperfusion injury. Pharmacological Research, 2007, 55: 523~536
    39 Sukmawan R, Yada T, Toyota E, et al. Edaravone preserves coronary microvascular endothelial function after ischemia/reperfusion on the beating canine heart in vivo. J Pharmacol Sci, 2007, 104: 341~348
    40 Auyeung Y, Sievers RE, Weng D, et al. Catalase inhibition with 3-amino-1,2,4-triazole does not abolish infarct size reduction in heat-shocked rats. Circulation, 1995, 92: 3318~3322
    1 Nayler WG, Fassold E, Yepez C. Pharmacological protection of mitochondrial function in hypoxic heart muscle: effect of verapamil, propranolol, and methylprednisolone. Cardiovasc Res, 1978, 12: 152~161
    2 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74: 1124~1136
    3 Guyton RA, Gott JP, Brown WM, et al. Cold and warm myocardial protection techniques. Adv Card Surg, 1996, 7: 1–29
    4 Meerson FZ, Malyshev IY, Zamotrinsky AV. Differences in adaptive stabilization of structures in response to stress and hypoxia relate with the accumulation of hsp70 isoforms. Mol Cell Biochem, 1992, 111: 87~95
    5 Ding HL, Zhu HF, Dong JW, et al. Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci, 2004, 75: 2587~2603
    6 Neckar J, Szarszoi O, Koten L, et al. Effects of mitochondrial KATP modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res, 2002, 55: 567~575
    7 Xie Y, Zhu Y, Zhu WZ, et al. Role of dual-site phospholamban phosphorylation in intermittent hypoxiainduced cardioprotection against ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol, 2005, 288: H2594~H2602
    8 Zhang Y, Zhong N, Zhou ZN. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle. Life Sci, 2000, 67: 2465~2471
    9 Zhu HF, Dong JW, Zhu WZ, et al. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci, 2003, 73: 1275~1287
    10 Sweadner KJ. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta, 1989, 988: 185~220
    11 Zahler R, Brines M, Kashgarian M, et al. The cardiac conduction system in the rat expresses theα1 andα3 isoforms of the Na+,K+-ATPase. Proc Natl Acad Sci USA, 1992,89: 99~103
    12 Gao J, Mathias RT, Cohen IS, et al. Two functionally distinct Na/K pumps in cardiac ventricular myocytes. J Gen Physiol, 1995, 106: 995~1030
    13 Gao J, Wymore RT, Wang Y, et al. Isoform-specific regulation of the sodium pump byα- andβ-adrenergic agonists in guinea pig ventricular ventricle. J. Physiol, 1999, 516: 377~383
    14 Huang W, Lai CC, Wang Y, et al. Altered expressions of cardiac Na/K-ATPase isoforms in copper deficient rats. Cardiovasc Res, 1995, 29: 563~568
    15 Xie Z, JackHays M, Wang Y, et al. Different oxidant sensitivities of the alpha 1 and alpha 2 isoforms of Na+/K(+)-ATPase expressed in baculovirus-infected insect cells. Biochem Biophys Res Commun, 1995, 207: 155~159
    16 Huang WH, Wang Y, Askari A, et al. Different sensitivities of the Na+/K(+)-ATPase isoforms to oxidants. Biochim Biophys Acta, 1994, 1190: 108~114
    17 Peter O, ADEL B, ELMOSELHI Y, et al. Role of Oxidative Stress in ischemia-reperfusion-induced changes in Na+,K+-ATPase isoform expression in rat heart. Antioxid Redox Sign,2004, 6914~6923
    18 Elmoselhi AB, Lukas A, Ostadal P, et al. Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am J Physiol Heart Circ Physiol, 2003, 285: 1055~1063
    19 Toshihiro Y, Naoto A, Kentaro D, et al. Enhancement of Na+,K+-ATPase and Ca2+-ATPase activities in multi-cycle ischemic preconditioning in rabbit hearts. Eur J Car Surg, 2004, 981~987
    20 Zhu HF, Dong JW, Zhu WZ, et al. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury.Life Sci, 2003, 73: 1275~1287
    21 Xie Y, Zhu WZ, Zhu Y, et al. Intermittent high altitude hypoxia protectsthe heart against lethal Ca2+ overload injury. Life Sci, 2004, 76, 559~572
    22 Howard G, Brain R, Susan G, et al. Downregulation in muscle Na1-K1- ATPase following a 21-day expedition to 6,194 m. J Appl Physiol, 2000, 88: 634~640
    23 Kaplan P, Matejovicova M, Herijgers P, Flameng WEffect of free radical scavengers on myocardial function and Na+, K+-ATPase activity in stunned rabbit myocardium. Scand Cardiovasc J. 2005 Sep;39(4):213-9.
    24 Rohn TT, Hinds TR, Vincenzi FF. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1- pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. Biochem Pharmacol, 1996, 51: 471~476
    25 Jun J, Savransky S, Nanayakkara A, et al. Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol, 2008, 295: R1274~1281
    26 Wang Y, Gao J, Mathias RT, et al. alpha-Adrenergic effects on Na+-K+ pump current in guinea-pig ventricular myocytes. J Physiol, 1998, 509: 117~128
    27 Zhang Z, Guo HC, Zhang LN, et al. Isoform-specific regulation of the Na+-K+ pump by adenosine in guinea pig ventricular myocytes. Acta Pharmacologica Sinica, 2009, 30: 404~412
    28 Kockskamper J, Erlenkamp S, Glitsch HG. Activation of the cAMP-protein kinase A pathway facilitates Na+ translocation by the Na+-K+ pump in guinea-pig ventricular myocytes. J Physiol, 2000, 523: 561~574
    29 Dezhi T, Dmitrievac RI, Peter A, et al. Protein kinase M zeta regulation of Na/K ATPase: A persistent neuroprotective mechanism of ischemic preconditioning in hippocampal slice cultures. Brain Res, 2008, 1213: 127 ~139
    1 Pike MM, Kitakaze M, Marban E. 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol, 1990, 259: H1767~H1773
    2 Murphy E, Perlman M, London RE, et al. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res, 1991, 68: 1250~1258
    3 Butwell NB, Ramasamy R, Lazar I, et al. Effect of lidocaine on contracture, intracellular sodium, and pH in ischemic rat hearts. Am J Physiol, 1993, 264: H1884~H1889
    4 Donoso P, Mill JG, Oneill SC, et al. Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes. J Physiol, 1992, 448: 493~509
    5 Haigney MC, Lakatta EG, Stern MD, et al. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation, 1994, 90: 391~399
    6 Despa S, Islam MA, Weber CR, et al. Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation, 2002, 105: 2543~2548.
    7 Pieske B, Houser SR. [Na+]i handling in the failing human heart. Cardiovasc Res, 2003, 57: 874~886
    8 Pogwizd SM, Sipido KR, Verdonck F, et al. Intracellular Na in animalmodels of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res, 2003, 57: 887~ 896
    9 Yoon T, Lee K. Isoform-specific interaction of the cytoplasmic domains of Na,K-ATPase. Mol Cells, 1998, 8(5): 606~613
    10 Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol, 1998, 275(5 Pt2): F633~650
    11 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta, 1957, 23(2): 394~401
    12 Glitsch HG. Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiol Rev, 2001, 81: 1791~1826
    13 Vassilev PM, Scheuer T, Catterall WA. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science, 1998, 508: 647~657
    14 Fozzard HA, Sodium channel. In Fozzard HA etal(eds): The heart and cardiovascular System. 2nd edtion. New York: Raven Press, 1992, 1091~1119
    15 Blaustein MP, Lederer WJ . Sodium-calcium exchange: its physiological implications. Physiol Rev, 1999, 79: 763~854
    16 Iwamoto T. Forefront of Na +- Ca2 + exchanger studies: molecular pharmacology of Na +- Ca2 + exchange inhibitors. J Pharmacol Sci, 2004, 96: 27~32
    17 Hobai IA, Rourke B. The potential of Na +- Ca2 + exchange blockers in the treatment of cardiac disease. Expert Opin Investig Drugs, 2004, 13: 653~ 644
    18 Hannes R, Henderson SA, Han TY, et al. Cardiac excitation-contraction coupling in the absence of Na +- Ca2 + exchange. Cell Calcium, 2003, 34: 19~26
    19 Weisser TJ, Piacentino VD, Gaughan JP, et al. Calcium entry via Na +- Ca2 + exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. Cardiovasc Res, 2003, 57: 974~ 985
    20 Bianch L, Pouyssegur J. Molecular structure and regulation of vertebrateNa+/H+ exchangers. J Exp Biol, 1994, 196: 337~345
    21 Sardet C, Franchi A , Pouyssegur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+H+ antiporter. Cell, 1989, 56: 271~ 280
    22 Sardet C, Counillon L, Franchi A et al. Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science, 1990, 247: 723~726
    23 Wakabayashi S, Fafournoux P, Pouyssegur J. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls "H(+)-sensing. Proc Natl Acad Sci USA , 1992, 89: 2424~2428
    24 Counillon L, Franchi A, Pouyssegur J. A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc Natl Acad Sci USA, 1993, 90: 4508~ 4512
    25 Wakabayashi S, Bertrand B, ShigekawaM. Growth factor activation and "H(+)-sensing" of the Na+/H+ exchanger isoform 1 (NHE1). Evidence for an additional mechanism not requiring direct phosphorylation. J Biol Chem, 1994, 269: 5583~ 5588
    26 Boron WF, Boulpaep EL. Intracellular pH regulation in the renal proximal tubule of the salamander. J Gen Physiol, 1983, 8: 53~94
    27 Lagadic GD, Buckler KJ, Vaughan RD. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea pig ventricular myocyte. J Physiol, 1992, 458: 361~384
    28 Camilion HM, Perez NG, Cingolani HE. An electrogeni sodium-bicarbonate cotransport in the regulation of myocardia intracellular pH. J Mol Cell Cardiol, 1995, 27: 231~242
    29 Aiello EA, Vilaetroff MG, Mattiazzi AR, et al. Evidence for an electrogenic Na-HCO symport in rat cardiac myocytes. J Physiol, 1998, 512:137~148
    30 Pushkin A, Abuladze N, et al. Cloning, tissue distribution, genomic organization, and characterization of NBC3, a new member of the sodiumbicarbonate J Biol Chem, 1999, 274:16569~16575
    31 Boron WF. Sodium-coupled bicarbonate transporters. J Pancreas, 2001, 2: 176~181.
    32 Leem CH, Lagadic-Gossmann D, Vaughan-Jones RD. Characterization of intracellular pH regulation in the guinea-pig ventricular myocytes. J Physiol, 1999, 509: 487~496
    33 Geck P, Pietrzyk C, Burckhardt BC, et al. Electrically silent cotransport on Na1, K1and Cl2 in Ehrlich cells. Circ Res, 2002, 90: 182~189
    34 Frelin C, Chassande O, Lazdunski M. Biochemical characterization of the Na/K/Cl co-transport in chick cardiac cells. Biochem Biophys Res Commun, 1986, 134: 326~331.
    35 Rasgado FH, Gonzalez SH. Plasmalemmal transport of magnesium in excitable cells. Front Biosci, 2000, 5: D866~D879
    36 Anderson SE, Dickinson CZ, Liu H, et al. Effects of Na-K-2Cl cotransport inhibition on myocardial Na and Ca during ischemia and reperfusion. Am J Physiol, 1996, 270: C608~C618
    37 Hilgemann DW, Yaradanakul A, Wang Y, et al. Molecular control of cardiac sodium homeostasis in health and disease. J Cardiovasc Electrophysiol, 2006, 17(suppl 1): S47~S56
    38 Zhou L, Burnett AL, Huang PL, et al. Lack of nitric oxide synthase depresses ion transporting enzyme function in cardiac muscle. Biochem Biophys Res Commun, 2002, 294: 1030~1035
    39 Fuller W, Parmar V, Eaton P, et al. Cardiac ischemia causes inhibition of the Na/K ATPase by a labile cytosolic compound whose production is linked to oxidant stress. Cardiovasc Res, 2003, 57: 1044~1051
    40 Fuller W, Eaton P, Bell JR, et al. Ischemia-induced phosphorylation of phospholemman directly activates rat cardiac Na/K-ATPase. FASEB J, 2004, 18: 197~199
    41 Imahashi K, London RE, Steenbergen C, et al. Male/female differences in intracellular Na+ regulation during ischemia/reperfusion in Mouse heart. J Mol Cell Cardiol, 2004, 37: 747~753
    42 Vanmous JG, Schreur JH, Ruigrok TJ, et al. Both Na+-K+ ATPase and Na+-H+ exchanger are immediately active upon post-ischemic reperfusion in isolated rat hearts. J Mol Cell Cardiol, 1998, 30: 337~348
    43 Williams IA, Xiao XH, Ju YK, et al. The rise of [Na+]i during ischemia and reperfusion in the rat heart underlying mechanisms. Pflugers Arch, 2007, 454: 903~912
    44 Pike MM, Luo CS, Clark MD, et al. NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na+-H+ exchange. Am J Physiol, 1993, 265: H2017~H2026
    45 Imahashi K, Pott C, Goldhaber JI, et al. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ Res, 2005, 97: 916~921
    46 Noble D. Simulation of Na/Ca exchange activity during ischemia. Ann N Y Acad Sci, 2002, 976: 431~437
    47 Hobai IA, Oourke B. The potential of Na+/Ca2+ exchange blockers in the treatment of cardiac disease. Expert Opin Investig Drugs, 2004; 13: 653~664
    48 Lee C, Hryshko LV. SEA0400: a novel sodium-calcium exchange inhibitor with cardioprotective properties. Cardiovasc Drug Rev, 2004, 22: 334~347
    49 Amran MS, Homma N, Hashimoto K. Pharmacology of KB-R7943: a Na+-Ca2+ exchange inhibitor. Cardiovasc Drug Rev, 2003, 21: 255~276
    50 Sipido KR, Varro A, Eisner D. Sodium calcium exchange as a target for antiarrhythmic therapy. Handb Exp Pharmacol, 2006, 171: 159~199
    51 Reuter H, Henderson SA, Han T, et al. Knockout mice for pharmacological screening: testing the specificity of Na+-Ca2+ exchange inhibitors. Circ Res, 2002, 91: 90 ~92
    52 Noble D, Blaustein MP. Directionality in drug action on sodium-calcium exchange. Ann N Y Acad Sci, 2007, 1099: 540 ~543
    53 Murphy E, Allen DG. Why did the NHE inhibitor clinical trials fail? J Mol Cell Cardiol. 2009, 46: 137 ~141
    54 Murphy E, Cross H, Steenbergen C. Sodium regulation during ischemia versus reperfusion and its role in injury. Circ Res, 1999, 84: 1469~1470
    55 Choy IO, Schepkin VD, Budinger TF, et al. Effects of specific sodium/hydrogen exchange inhibitor during cardioplegic arrest. Ann Thorac Surg, 1997, 64: 94 ~99
    56 Allen DG, Xiao XH. Role of the cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc Res, 2003, 57: 934 ~941
    57 Hove M, Emous JG, Echteld CJ. Na+ overload during ischemia and reperfusion in rat hearts: comparison of the Na+/H+ exchange blockers EIPA, cariporide and eniporide. Mol Cell Biochem, 2003, 250: 47~54
    58 Wang Y, Meyer JW, Ashraf M, et al. Mice with a null mutation in the NHE1 Na+-H+ exchanger are resistant to cardiac ischemia reperfusion injury. Circ Res, 2003, 93: 776 ~782
    59 Gabel SA, Cross HR, London RE, et al. Decreased intracellular pH is not due to increased H+ extrusion in preconditioned rat hearts. Am J Physiol, 1997, 273: H2257~H2262
    60 Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol, 1985, 17: 1029 ~1042
    61 Karmazyn M. Amiloride enhances postischemic ventricular recovery: possible role of Na+-H+exchange. Am J Physiol, 1988, 255: H608~H615
    62 Klein HH, Pich S, Bohle RM, et al. Na+/H+ exchange inhibitor cariporide attenuates cell injury predominantly during ischemia and not at onset of reperfusion in porcine hearts with low residual blood flow. Circulation, 2000, 102: 1977~1982
    63 Theroux P, Chaitman BR, Danchin N,et al. Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation, 2000, 102: 3032~3038
    64 Bolli R, Becker L, Gross G, et al. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res, 2004, 95:125~134
    65 Boyce SW, Bartels C, Bolli R, et al. Impact of sodiumhydrogen exchange inhibition by cariporide on death or myocardial infarction in high-risk CABG surgery patients: results of the CABG surgery cohort of the GUARDIAN study. J Thorac Cardiovasc Surg, 2003, 126: 420~427
    66 Engelhardt S, Hein L, Keller U, et al. Inhibition of Na+-H+ exchange prevents hypertrophy, fibrosis, and heart failure inβ1-adrenergic receptor transgenic mice. Circ Res, 2002, 90: 814~819
    67 Hasenfuss G, Maier LS. Mechanism of action of the new anti-ischemia drug ranolazine. Clin Res Cardiol, 2008, 97: 222~226
    68 Scirica BM, Morrow DA, Hod H, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation, 2007, 116: 1647~1652
    69 Eckhardt LL, Teelin TC, January CT. Is ranolazine an antiarrhythmic drug? Am J Physiol, 2008, 294: H1989~H1991
    70 Wang P, Fraser H, Lloyd SG, et al. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. J Pharmacol Exp Ther, 2007, 321: 213~220
    71 John SA, Kondo R, Wang SY, et al. Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem, 1999, 274: 236~240
    72 Retamal MA, Schalper KA, Shoji KF, et al. Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion. J Membr Biol, 2007, 218: 49~63
    73 Retamal MA, Cortes CJ, Reuss L, et al. S-nitrosylation and permeationthrough connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A, 2006, 103: 4475~ 4480