几种酸性土壤活性锰变化特征及在油菜上的反映
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以湖北省3种酸性土壤为研究对象,以灰潮土为对照,通过盆栽试验、土壤室内培养实验研究了土壤活性锰的动态变化特征及其与油菜生物反应;并采用液流动力学方法研究了几种有机化合物对土壤锰的吸附与溶出特征。所得的主要研究结果如下:
     1.在盆栽条件下,土壤酸化后pH下降,Eh上升,土壤易还原性锰转化为交换性锰和碳酸钙结合态锰,且交换性锰的增加明显滞后于碳酸钙结合态锰。由土壤Eh和pH、Mn~(2+)回归模拟分析,在酸化处理中,MnO_2/Mn~(2+)电对是棕红壤锰化合物变化的主要途径,MnOOH/MnO电对是黄棕壤锰变化的可能机制。
     2.土壤室内培养实验中,淹水状态土壤pe+pH下降较水饱和状态更为明显,土壤易还原性锰和交换性锰呈互相消长趋势。棕红壤和黄棕壤易还原性锰含量高,土壤交换性锰增加速率大于易还原性锰含量较低的灰潮土,花岗岩发育的红壤易还原性锰最低,其交换性锰增加得最慢,这说明土壤Mn~(2+)的增加与易还原性锰含量有关。抛物线扩散方程能较好地反映土壤锰的转化过程,即土壤锰的转化速率可能受扩散控制。
     3.土壤对外源锰的吸附与土壤pH有关,石灰性土壤具有更强的吸附固定锰的能力。不同类型土壤锰吸附动力学以权函数方程拟合度较好。有机化合物中,柠檬酸溶出土壤锰的能力明显大于葡萄糖。在外源锰与有机化合物共存的条件下,二者产生竞争机制,即吸附与络合,哪种反应占优势,取决于土壤易还原性锰含量,棕红壤和黄棕壤主要表现为有机化合物与土壤锰的络合反应。
     4.油菜锰毒害后叶片失绿黄化,叶缘卷曲皱缩,老叶上出现褐色斑点,初花期油菜开花延迟,花少,分枝较多,油菜生育期延长,经济产量下降。油菜体内吸收的锰以及Mn/Fe比与土壤交换性锰呈正相关。土壤酸化后,土壤Fe、Mn、Cu、Zn有效性增加;施用CaCO_3后,降低了油菜对Mn、Mg等元素的吸收。初花期,棕红壤与黄棕壤强酸化处理与施用CaCO_3处理,油菜对Mn、Ca和Mg的吸收都存在显著性差异,锰在油菜体内分布不均匀,为:叶>花>茎。
The dynamic change characteristics of active manganese and the biological response of oilseed rape were studied through pot experiment and indoor incubation experiment with three acid soils under the contrast of calcareous alluvial soil in Hubei province. Meanwhile, the effect of several organic compounds to adsorption-desorption characteristics of manganese in soils was also studied by flow displacement method. Through the experiments, the main results were obtained as follows:
    1. In pot experiment the soil pH decreased while the Eh increased; the ERO-Mn converted to CARB-Mn; the increase of EXC-Mn was clearly hysteretic to CARB-Mn after soil acidification. Through regression analysis among soil Eh, pH and Mn2+, electrical pairs MnO2/Mn2+ was the main mode to describe the dynamic changes of Mn oxides to Mn2+ in the brown-red soil while electrical pairs MnOOH/MnO was the probable mechanism in the yellow-brown soil.
    2. In the incubation experiment, the soil pe + pH decreased more clearly in the flooded condition than that in the water saturation, and the EXC-Mn and ERO-Mn changed in the reverse direction. The EXC-Mn increased in this order: brown-red soil, yellow-brown soil > calcareous alluvial soil > red soil originated from granite, with the increase of soil ERO-Mn content, which indicated that the increase of soil EXC-Mn was closely related with the soil ERO-Mn concentration. Parabolic diffusion equation could better reflect the transformation process of soil Mn, This suggests that diffusion processes control the rate of Mn transformations.
    3. The adsorption of added Mn by soil was related to soil pH, so calcareous alluvial soil had better fit in presenting the capacity of Mn adsorption-fixation. Power function equation could better describe the adsorption dynamics of soil Mn in different soil types. Among the organic compounds, citric acid had a better capacity in dissolving soil Mn. On the basis of added Mn and organic compound coexistence, there existed two competitive mechanisms, adsorption and complex reaction, which reaction preponderated depended on the ERO-Mn content. In brown-red soil and yellow-brown soil, the complex reaction was the dominant process.
    4. The oilseed rape leaves turned yellow and curved from the edge; foxiness
    
    
    emerged in old leaves and the florescence was delayed with less flower, more twig, growth period prolonged and seed yield decreased. The Mn concentration and Mn/Fe ratio in the rape plant had a positive correlation with the soil EXC-Mn. The soil available Fe, Mn, Cu and Zn increased after acidification treatment. During the flowering stage, the Mn uptake had a significant effect on the uptake of Ca and Mg between the treatment of strong acidification and calcium carbonate application in brown-red and yellow-brown soil, and Mn in the plant distributed unevenly in this order: leave>flower>stem.
引文
1 [美]Sparks,D.L.主编,蔚庆丰,张一平等译.土壤物理化学.陕西:天则出版社,1990
    2 Marschner H.著.曹一平,陆景陵等译.高等植物矿质营养.北京:北京农业大学出版社,1990
    3 Shuman,L.M.有机质对土壤各组分中Mn、Cu、Fe、Zn分配的影响.土壤学进展.1991,19(5):39~42
    4 奥贝尔H.,M澳塔著.土壤中的微量元素.北京:科学出版社,1982
    5 白庆中,宋燕光等.有机物对重金属在粘土中吸附行为的影响.环境科学.2000,21(5):64~68
    6 成瑞喜,吴峰,朱端卫等.碳酸钙对酸性土壤有效铁锰及作物生长的影响.土壤—植物营养研究文集.1999,170~174
    7 耿明建,朱端卫,胡时友等.土壤锰毒及其缓解对油菜生长和生理特性的影响.华中农业大学学报,增刊.1999,28:220~224
    8 何振立,周启星,谢正苗等编.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社,1998
    9 胡思农等.温江地区小麦锰肥试验研究.土壤.1981,3:100~103
    10 蒋廷惠,胡霭堂,秦怀英.土壤锌,铜,铁,锰形态区分方法的选择.环境科学学报.1990,10(3):280~286
    11 蒋廷惠.江苏主要土壤中Fe、Mn、Cu、Zn的分组研究.南京农业大学硕士论文,1984
    12 黎晓峰,顾明华,陆申年等.铅对水稻锰毒拮抗效应对稻体营养的影响初探.广西农业大学学报.1996,15(4):305~308
    13 刘武定著.植物微量元素营养与微肥施用.北京:中国农业出版社,1995
    14 刘学军,吕世华,张福锁等.土壤中锰的化学行为及其生物有效性.土壤农化通报.1997,12(3):41~47
    15 刘学军等.不同水分状况对水稻吸锰及土壤有效锰的影响.迈向21世纪的土壤与植物营养科学.北京:中国农业出版社.1997.403~405
    16 刘兆辉.我国酸性硫酸盐土壤中铁锰形态转化及迁移.土壤学报。1994,31(4):376~383
    
    
    17 刘铮,唐丽华,朱其清等.我国主要土壤中微量元素的含量与分布初步总结.土壤学报.1978,15(2):138~150
    18 刘铮,朱其清,韩玉勤等.土壤中的锰与锰肥的应用.中国科学院微量元素学术交流会汇刊.北京:科学出版社,1980
    19 刘铮.土壤与植物中锰的研究进展.土壤学进展.1991,19(6):1~10,22
    20 刘铮等著.微量元素的农业化学.北京:农业出版社,1991
    21 刘志光.土壤中的铁、锰氧化物的有机还原和溶解.土壤通报.1991,22(3):119~121
    22 陆萍,张福锁.1995.缺磷或缺铁引起白羽扇豆锰中毒的机理.植物生理学报.21(3):289~294
    23 邵孝侯,邢光熹,侯文华.连续提取法区分土壤重金属形态的研究及其应用.土壤学进展.1994,22(3):40~46
    24 童依平,李继云.北京地区石灰性土壤对锰的吸附.环境科学进展.1996,4(5):74~80
    25 王晓蓉,J.戴维·史密斯.提取剂pH对沉积物释放金属的影响.环境化学.1989,8(3):1~9
    26 蔚庆丰.粘土和土壤中的反应动力学.土壤通报.1992,23(2):92~96
    27 徐仁扣,刘志光.甲醛肟比色法测定土壤中Mn~(2+)时对干扰的消除.土壤,1992,24(6):321~323
    28 亚历山大M.著.土壤微生物学导论.北京:科学出版社,1983
    29 杨景辉编.土壤污染与防治.北京:科学出版社,1995
    30 杨永清.1982.用硼电极测定土壤中全硼.土壤通报.4:42~43
    31 于天仁,陈志诚编.土壤中发生的化学过程.北京:科学出版社,1990
    32 于天仁,季国亮等著,可变电荷土壤的电化学.北京:科学出版社,1996
    33 袁可能.植物营养元素的土壤化学.北京:科学出版社,1983
    34 张西科,张福锁等.植物锰中毒研究进展.土壤学进展.1994,22:13~21
    35 中国科学院南京土壤研究所.土壤理化分析.上海科技出版社.
    36 朱端卫,程东升等.碳酸钙和硼对棕红壤油菜锰毒缓解作用.土壤与环境.1999,8(1):36~39
    37 Allen, E. R., Hossner, L. R. Ming, D. W., and Henninger, D. L. Release rates of phosphorus, ammonium, and potassium in Clinoptilolite-Phosphate rock systems. Soil Sci.
    
    Soc. Am. J. 1996, 60: 1467~1472
    38 Allen, E.R., D.W. Ming. L.R. Hossner, and D.L. Hcnninger. Modeling transport kinetics in clinoptilolitc-phosphate rock systems. Soil Sci. Soc. Am. J. 1995, 59:248~255
    39 Bachman, G.R. and W. B. Miller. Iron chelate inducible iron/manganese toxicity in zonal geranium. Journal of Plant Nutrition. 1995, 18(9): 1917~1929
    40 Bandyopadhyay, B.K., and A.K. Bandyopadhyay. Transformation of iron and manganese on coastal saline soil.J. Indian Soc. Soil Sci. 1984, 32:51~62.
    41 Banin, A., Z.Gerstl, P. Fine, Z. Metzger, and D. New. rzella. Minimizing soil contamination through control of sludge transformations in soils. Joint German-Israel Research Project Rep. wt 8678/458. Hebrew Univ., Rehovot, Israel 1990
    42 Bar-Ness and Cheng. Manure and peat based iron-Organo complexes I. Chara-cterization and enrichment. Plant and Soil. 1991,130:35~43
    43 Bartlett, R. J. and James, B. R. Redox chemistry of soils. Adv. Agron. 1993,50:152~208
    44 Bartlett, R. J. Soil redox behavior, In D.L. Sparks (ed) Soil-physical chemistry. CRC Press. Boca Raton, FL. 1986, 179~207
    45 Bekker, A. W. N. V. Hue, L. G. G. Yapa, and R. G. Chase. Peanut growth as affected by liming, Ca-Mn interaction, and Cu plus Zn applications to oxidic Samoan soils. Plant Soil. 1994,164:203~211
    46 Bohn, H.L. Comparison of measured and theoretical Mn2+ concentration in soil suspensions. Soil Sci. Soc. Am. Proc. 1970, 34:195~197
    47 Bromfield, S. M., Reduction of ferric compounds by soil barcteria. J. Gen. Microbiol. 1954, 11:1~6
    48 Christensen et al. The status of soil manganese as influenced by misture, organic matter and pH. Soil Sci Soc Am Proc. 1950, 15:279~282
    49 Dang, Y. P., R.C. DanaL D.G. Edwards, and K.G. Tiller. Kinetics of zinc desorption from Vertisoils. Soil Sci. Soc. Am. J. 1994, 58:1392-1399
    50 Davis, J. G. Soil pH and magnesium effects on manganese toxicity in peanuts. Plant Nutri. J. 1996,19(3&4):535~550
    51 Derek, R. and Lovley. Microbial reduction or iron, manganese and other metals. Advances in Agronomy. 1995,54:175~231
    
    
    52 Fageria, N.K. and F.J.P. zimmermann. Lime and phosphorus interactions on growth and nutrient uptake by upland rice, wheat, common bean, and corn in an oxisol. Journal of Plant Nutrition.1995, 18(11): 2519~2532
    53 Foy, C. D., H. W. Webb, and J. E. Jones. Adaptation of cotton genotypes to an acid manganese toxic soil. Agron. J. 1981,73:107~111
    54 Foy, C. D., R. L. Chaney, and M. C. White. The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 1978,29:511~567
    55 Galvez, L., R. B. Clark, L. M. Gourly and J. W. Maranville. Effect of silicon on mineral composition of sorghum growth with excess manganese. J. Plant Nutr. 1989,12:547~561
    56 Glinski, J. et al. Changes of redox and pH conditions in a flooded soil amended with glucose and manganese oxide or iron oxide under labortory conditions. Z.pflanzenernaehr.Bodenkd. 1996, 159(3):297~304
    57 Glinski, J. et al. Changes of redox and pH conditions in a flooded soil amended with glucose and manganese oxide or iron oxide under laboratory conditions. Z. Pflanzenernaehr Bodenkd. 1996,159(3):297~304
    58 Goh, K. M. and R. J. Haynes. The growth of Tagetes erecta, Petunia hybrida nana compacta and Mysotis in a range of peat-based container media. Commu. Soil Sci. Plant Anal. 1978, 9:373~375
    59 Gotch, S., and W. H. Patrick, Transformation of manganese in a water-logged soil as affected by redox potential and pH. PSSSA, 1972, 36:738~746
    60 Han, F. X. and A. Banin. Solid-phase manganese fractionation changes in saturated arid-zone soils: pathways and kinetics. Soil Sci. Soc. Am J, 1996,60:1072~1080
    61 Han, F. X. Selective sequential dissolution techniques for trace metals in arid-zone soils:The carbonate dissolution step. Plant Anal. 1984, 35:421~429
    62 Han, F. X., and A. Banin. Selective sequential dissolution techniques for trace metals in aridzone soils: The carbonate dissolution step. Commun. Soil Sci. Plant Anal. 1995, 26:553-576.
    63 Horiguchi, T. Mechanism of manganese toxicity and tolerance of plants. Ⅱ. Deposition of oxidized manganese in plant tissues. Soil Sci. Plant Nutr. 1987, 33:595~606
    64 Horst, W. J. and H. Marschner. Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil. 1978,50:187~303
    
    
    65 Hossner, L. R. and G. E. Richards. The effect of phosphorus sources on the movement and uptake of band applied manganese. Soil Sci. Soc. Am. Proc. 1968,32:83~85
    66 Jarvis, S.C. The forms of occurrence of manganese in some acidic soils. J. Soil Sci. 1984, 35:421~429
    67 Jauregui, M. A. and H. M. Reisenauer. Dissolution of oxides of manganese and iron by root exudate components. Soil Sci. Am. J. 1983, 46:314~317
    68 Khan, F.E. and T.E. Fenton. Secondary iron and manganese distributions and aquic conditions in a millisol catena of central lowa. Soil Sci. Soc. Am. J. 1996,60:546~551
    69 Labanauskas, C. K. Manganese. In: H. D. Chapman (ed.), Diagnostic Criteria for Plants and Soils. University of California Division of Agricultural Science, Riverside, CA. 1966, 264~285
    70 Larson, S. The effect of phosphate application on Mn content of plants growin on neutral and alkaline soils. Plant Soil. 1964, 21:37~42
    71 Lebot, J., M. J. Goss, M. J. G. P. R. Carvalho, M. L. Van Beusichem and E. A. Kirkby. The significance of the magnesium to manganese ratio in plant tissues for growth and alleviation of manganese toxicity in tomato (lycopersion esculentum) and wheat (Triticum aestivum) plants. Plant and Soil. 1990,124:205~210
    72 Lewin, J. and B. E. F. Reimann. Silicon and plant growth. Annu. Rev. Plant Physiol. 1969, 20:289~304
    73 Lindsay, W. L. Chemical equilibria in soils. John Wiley & Sons, New York. 1979
    74 Lovley, D. R. Microbiol reduction of iron, manganese, and other metals. Adv Agron, 1995,54:175~231
    75 Mahan, K.I.T.A. Foderaro. T. L. Garza. R. M. Martinez, G. A. Maroney. M.R. Trivisonne and E. M. Winging. Microwave digestion techniques in the sequential extraction cadmium, iron, chromium, manganese, lead and zinc in sediments. Anal. Chem. 1987, 59:935~945
    76 Mario, A. Jauregui and H. M. Reisenauer. Dissolution of oxides of manganese and iron by root excudate components. Soil Sci. Soc. Am. J. 1982, 46:314~318
    77 McBride, M. B. Chemisorption and precipitation of Mn~(2+) at CaCO_3 surfaces. Soil Sci. Soc. Am. J. 1979,43:693~698
    78 McBride, M. B. Electron spin resonance investigation of Mn~(2+) complexation in natural and
    
    synthetic organics. Soil Sci. Soc. Am. J. 1982, 46:1137~1143
    79 McCool, M. M. Effect of light intensity on the manganese content of plants. Boyce Thompson Inst. Contrib. 1935, 7:427~437
    80 Meek, Mackenzie and Grass. Effects of organic matter, flooding time and temperature on dissolution of iron and manganese in soil. Soil Sci Soc. Am Proc. 1968, 32:634~638
    81 Moraghan, J. T. Manganese nutrition of flax as affected by Fe EDDHA and soil air drying. Soil Sci. Soc. Am. J. 1985a, 49:668~671
    82 Morgan, P. W., D. M. Taylor, and H. E. Joham. Manipulations of IAA-oxidase activity and auxin deficiency symptoms in intact cotton plants with manganese nutrition. Physiol. Plant. 1976,37:149~156
    83 Morgan, P. W., H. E. Joham, and J. Amin. Effect of manganese toxicity on the Indoleacetic acid oxidase system of cotton. Plant Physiol. 1966,41:718~724
    84 Morris, H. D. and W. H. Pieer. Minimum concentrations of manganese necessary for injury to various legumes in culture solutions. Agron. J. 1949,41:107~112
    85 Morris, H. D. and W. H. Pieer. The effect of calcium, phosphorus, and iron on the tolerance of lespediza to manganese toxicity in culture solutions. Proc. Soil Sci. Soc. Am. 1947, 12: 382~386
    86 Nayyar, Sadana and Takkar. Methods and rates of application of Mn and its criti-cal levels for wheat following rice on coarse textured soils. Fert. Res. 1985, 8:173~178
    87 Ohki, K. Manganese critical levels for soybean growth and physiological processes. J. Plant Nutr. 1981,3:271~284
    88 Ohki, K. Mn and B effects on micronutrients and P in cotton. Agron. J. 1975,67:204~207
    89 Oyanagui, Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 1984, 142:290~296
    90 Parrick and Tunner. Effect of redox potential on manganese transformation in waterlogged soil. Nature. 1968, 220:476~478
    91 Patrick and Henderson. Reduction and reoxidtion cycles of manganese and iron in flooded soil and in water solution. Soil Sci. Soc. Am. Proc. 1981, 45:855-859
    92 Roomizadeh, S. and N. Karimian. Manganese-Iron relationship in soybean grown in Calcareous soils. Journal of Plant Nutrition. 1996, 19(2):397~406
    
    
    93 Sajwan, K. S. and W. L. Lindsay. Effect of redox zinc fertilization and incubation time on DTPA-extractable zinc, iron and manganese. Commun. Soil Sci. Plant Anal.1988, 19:1-11.
    94 Schwab, A. P. and W. L. lindsay.1983. The effect of redox on the solubility and availability of manganese in a caleareous soil. Soil Sci. Soc. Am. J. 47:217~220
    95 Sharma, H. C., N. S. Pasricha and M. S. Bajwa. Comparision of mathematical models to describe boron desorption from salt-affected soils. Soil Sci. 1989, 147 (2): 79~84
    96 Shuman, L. M. Fractionation method for soil microelement. Soil Sci. 1985, 140: 11~22
    97 Shuman, L. M. Separating soil iron and manganese-oxide frations for microelement analysis. Soil Sci. Soc. Am J. 1982, 46: 1099~1102
    98 Shuman, L. M. Zinc, manganese in soil fractoins. Soil Sci. 1979, 127: 10~17
    99 Shuman, L. M. Effects of tillage on the distribution of manganese, copper, iron and zinc in soil fractions. Soil Sci. Soc. Am. J. 1985a, 49: 1117~1122
    100 Shuman, W. and J. J. Morgan. Aquatic chemistry. Witey Interscience. New York. 1970
    101 Sims, J. and Thomas. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Sci. Soc. Am J. 1986,50(2):367~373
    102 Takkar. Effect of organic matter on soil iron and manganese. Soil Sci. 1969,108:108~112
    103 Terry, N., P. S. Evans, and D. E. Thomas. Manganese toxicity effects on leaf cell multiplication and expansion and on dry matter yield of sugar beets. Crop Sci. 1975, 15:205~208
    104 Tessier, A., P. G. C. Campell, and M. Bisson. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51: 844~851
    105 Warden, B. T. and H. M. Reisenauer. Fractionation of soil manganese forms important to plant availability. Soil Soc. Sci. Soc. Am. J. 1991, 55:345~349.
    106 Welch, R. M, W. H. Allaway, W A House, et al. Geographic distribution of problem areas. Soil Sci. Soc. Am., 1991,96~99