草莓抗坏血酸代谢相关酶基因apx和dhar的克隆、序列分析及其表达模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗坏血酸(AsA)即维生素C,是一种普遍存在于植物组织的高丰度小分子抗氧化物质,它在清除自由基、调控细胞生长和分裂以及抵抗逆境等方面起着非常重要的作用,也是人类维持健康所必需的一种微量营养元素。因此,AsA的含量已成为衡量农产品品质的重要指标,受到人们的广泛关注。分离、克隆与AsA积累和代谢有关的基因,探讨这些基因在植物体内的功能及其表达模式,对进一步认识AsA在植物体内的积累代谢机制,提高植物体内AsA含量以及增强植物抵抗环境胁迫等方面具有重要意义。
     本试验以维生素C含量丰富的草莓栽培品种‘丰香’(Fragaria×ananassa cv. Toyonaka)为材料,分离、克隆了AsA代谢途径中两个关键酶基因Faapx-c和Fadhar,并利用生物信息学手段对这两个基因及其编码的蛋白质进行了结构分析和功能预测,同时分析了这两个基因在草莓不同组织及其果实不同发育阶段的表达模式。主要得到了以下研究结果:
     1.通过对GenBank上已登录的几种植物apx和dhar同源基因进行比较,分别在其保守区设计一对引物,扩增得到了草莓‘丰香’apx和dhar基因的中间片段。在此基础上,通过RACE技术扩增得到了包括3’端全长的apx基因序列,命名为Faapx-c;该序列长1034 bp,包含一个长753 bp的完整ORF,编码1个由250个氨基酸残基组成的蛋白质,预测分子量为27.359 kDa,等电点为5.92;3’端非编码区长248 bp,含有加尾信号aaataa和长28bp的poly(A)尾巴。通过SON-PCR技术,从草莓‘丰香’中分离了dhar基因编码区全长DNA序列,命名为Fadhar;该序列长1374 bp,包含一个长887 bp的完整ORF,编码区被3个内含子阻断,该编码区编码1个由190个氨基酸残基组成的蛋白质,预测分子量为20.987 kDa,等电点为6.24。
     2.对草莓Faapx-c和Fadhar基因与其它植物apx和dhar基因进行同源比较分析表明,草莓Faapx-c和Fadhar基因序列与其它植物apx和dhar基因的同源性较高,核苷酸序列同源性分别达到65%和62%以上,氨基酸序列同源性达到79%和57%以上,都是比较保守的基因。
     3.采用Bioedit软件分析了草莓Faapx-c和Fadhar基因全CDS序列的碱基组成,结果表明:Faapx-c基因碱基A、C、G、T的数目分别是171、200、201、181,四种碱基分别占总数的22.71%、26.56%、26.69%和24.04%,A+T的含量(46.75%)低于G+C含量(53.25%);Fadhar基因碱基A、C、G、T的数目分别是144、125、147、157,四种碱基分别占总数的25.13%、21.82%、25.65%和27.40%,A+T的含量(52.53%)高于G+C含量(47.47%)。草莓Faapx-c和Fadhar基因CDS编码区密码子使用偏爱性分析表明,两个基因都偏向使用以T结尾的密码子。Faapx-c基因含有5个大肠杆菌稀有密码子,而且它们是分散的;而Fadhar基因只含有1个大肠杆菌稀有密码子。
     4.采用Bioedit软件及ExPASy在线蛋白质分析软件的ProtParam工具分析了FaAPX-c和FaDHAR蛋白的理化性质,表明FaAPX-c和FaDHAR都是亲水性强、结构稳定的蛋白质。应用ANTHERWIN5.0软件和PredictionProtein服务器预测了FaAPX-c和FaDHAR蛋白的二级结构,结果表明FaAPX-c和FaDHAR蛋白二级结构都是主要以a-螺旋和无规则卷曲两种形式出现。采用EsyPred3D和CPH models-3.0分别构建了FaAPX-c和FaDHAR蛋白的三维结构模型。由ESyPred3D构建的FaAPX-c肽链三维模型中只有12个α-螺旋;而由CPH models-3.0构建的FaAPX-c肽链三维模型中有12个α-螺旋和2个β-折叠。FaDHAR肽链用ESyPred3D构建的三维模型由7个α-螺旋、2个β-折叠和1个转角组成;而用CPH models-3.0构建的三维模型由8个α-螺旋、3个β-折叠和1个转角组成。采用Swiss-Pdb Viewer对FaAPX-C和FaDHAR蛋白的两种模建结果进行了检测,计算得出了它们对应的Ramachandran图,结果表明所得到的三维结构模型都是可靠的。
     5.采用网络服务器对FaAPX-C和FaDHAR蛋白的功能进行了预测,结果表明,FaAPX-c属于植物过氧化物酶家族,它的氨基酸序列中存在两段保守的多肽序列,即过氧化物酶活性位点序列(APlmLRLaWHSA)和过氧化物酶近端血红素配体序列(DIVALSGGHTL); FaDHAR属于谷胱甘肽-S-转移酶家族,其氨基酸序列中也存在两段潜在谷胱甘肽S-转移酶的特征序列。FaAPX-c和FaDHAR蛋白都没有信号肽,都不属于分泌性蛋白,也不存在卷曲螺旋结构,而且都没有跨膜结构,都不是跨膜蛋白,没有N-糖基化位点,但都存在多个潜在的O-糖基化位点和磷酸化位点。对apx和dhar基因的电子表达谱分析表明,apx和dhar基因在所能检索到的植物不同部位都能够表达,说明它们在植物生长发育中具有重要功能。
     6. Faapx-c和Fadhar基因的表达模式分析表明,这两个基因在草莓‘丰香’不同组织部位都能够表达,在果实中表达量最大。Faapx-c基因在草莓‘丰香’果实不同发育阶段的表达基本是从小绿期开始呈阶梯式的增大,可能与果实生长发育相关;Fadhar基因在草莓‘丰香’果实整个发育过程中高度表达,该基因的表达可能调控着草莓果实内AsA的积累水平。
Ascorbic acid or vitamin C, is a small molecule antioxidant with high abundance in plant tissue. It plays an important role in scavenging free radicals, regulating of cell growth and division, and resistance to environmental stress. In addition, it is also a necessary micronutrient for maintain healthy of human. AsA content has become an important indicator to measure the quality of agricultural products, and thus be payed close attention. Isolation, cloning genes which be involved in AsA accumulation and metabolism, and analyzing the functions and expression patterns of these genes, have a great significance for further understanding of AsA accumulation and metabolism in plants, increasing AsA content and enhancing plant stress resistance.
     In this study, two key enzymes genes Faapx-c and Fadhar, which involved in AsA metabolic pathway were cloned from Fragaria×ananassa cv. Toyonaka rich in vitamin C. And the structures and functions of them were predicted by means of bioinformatics. At the same time, the expression patterns of the two genes be analyzed in different tissues and different developmental stages of fruit in strawberry. The following findings were obtained:
     1. The primers were respectively designed by comparing homologous genes from GenBank, and the conserved regions of apx and dhar were obtained from Fragaria×ananassa cv. Toyonaka. On this basis, Faapx-c gene sequence including the full of 3' end was obtained by RACE, named Faapx-c. The sequence was 1034 bp in length, containing a ORF of 753 bp, which encodes a polypeptide of 250 amino acid residues a molecular mass of 27.359kDa and a pI of 5.92. The non-coding region of 3'end was 248 bp, containing the potential polyadenylation signal aaataa and poly (A) of 28bp. A full length of open reading frame of dhar gene was isolated by SON-PCR, named Fadhar. The sequence was 1374 bp in length interrupted with three introns, including a full ORF of 887 bp, which encoding a deduced protein of 190 amino acids with a molecular weight of 20.987 kDa and a pI of 6.24.
     2. Homology analysis of Faapx-c and Fadhar genes showed that they shared high homology with other plants.The nucleotide sequence homology were respectively over 65% and 62%, and amino acid sequence homology were respectively over 79% and 57%. This suggested they are all conservative genes.
     3. The base compositions of Faapx-c and Fadhar CDS were analyzed by Bioedit. The results showed that the numbers and percents of A, C, G, T in Faapx-c are 171 (22.71%),200(26.56%),201(26.69%) and 181(24.04%), respectively. The content of A +T is (46.75%) lower than G+C(53.25%); The numbers and percents of A, C, G, T in Fadhar are 144(25.13%),125(21.82%),147(25.65%),157(27.40%), respectively. The content of A+T is (52.53%) higher than G+C(47.47%). The analysis of codon preferences of Faapx-c and Fadhar CDS showed that they all preferred to use of T ending codons. Faapx-c contains five E. coli rare codon, and they are scattered in the suquences; and Fadhar contains only one E. coli rare codon.
     4. The analysis of physicochemical properties of FaAPX-c and FaDHAR indicated that they were all acidic, hydrophilic and structural stable protein by Bioedit and ProtParam tools in ExPASy. Secondary structures analysis showed that FaAPX-c and FaDHAR contained mainly a-helix and random coil predicted by ANTHERWIN5.0 and PredictionProtein.3D structures of FaAPX-c and FaDHAR were predicted using the ESyPred3D and CPH models-3.0. FaAPX-c only contains 12α-helices predicted by ESyPred3D, but it contains 12α-helices and twoβ-sheets predicted by CPH models-3.0. FaDHAR contains sevenα-helix, twoβ-sheet and one turn predicted by ESyPred3D, but it contains eightα-helix, threeβ-sheet and one turn predicted by CPH models-3.0.3D structures of FaAPX-C and FaDHAR were reliable by analysis of corresponding Ramachandran blots using Swiss-Pdb Viewer.
     5. Function prediction was carried out in net server. The results showed that FaAPX-C was a member of plant peroxidase superfamily, containing peroxidases active site signature (APlmLRLaWHSA) and peroxidases proximal heme-ligand signature (DIVALSGGHTL). And FaDHAR was a member of GST-S-family superfamily, containing two soluble glutathione S-transferase terminal domain. FaAPX-c and FaDHAR had no signal peptides, coils, transmenbrane domains, thus they were not secreted proteins or transmembrane proteins. In addition, they had no N-glycosylation sites, but with some O-glycosylation sites and phosphorylation sites. Electronic expression profiles revealed that apx and dhar expressed in different tissues of plants, which suggested that they played an important function in plant development.
     6. The expression profile analysis showed that Faapx-c and Fadhar can be expressed in different tissues of Fragaria×ananassa cv. Toyonaka, especially in fruits. Faapx-c may be associated with fruit growth and development, because the amounts of expression were increased gradually from small green; Fadhar is highly expressed during fruit development, which regulates the level of AsA accumulation in strawberry fruits.
引文
[1]Agius F, Gonzalez-Lamothe R, Caballero J L, et al. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase[J]. Nat Biotechnol,2003,21: 177-181.
    [2]Anfinen C B. Principles that govern the folding of protein chains[J]. Science,1973:181-223.
    [3]Antal Z, Rascle C, Fvre M, Bruel C. Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from expressed sequence tags[J]. Curr Genet,2004, 46:240-246.
    [4]Arrigoni O, Calabrese G, Degara L, et al. Correlation between changes in cell ascorbate and growth of Lupinus albus seedlings[J]. J. Plant Physlol.,1997,150:302-308.
    [5]Asada K. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants[J]. Physiol Plant,1992,85:235-241.
    [6]Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50: 601-639.
    [7]Blom N, Gammeltoft S, Brunak S. Sequence-and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol,1999,294(5):1351-1362.
    [8]British Standards Institution. Gold Potassium Cyanide for electroplating[S]. BS5658:1979.
    [9]Chen Z, Gallie D R. Dehydroascorbate Reductase Affects Leaf Growth,Development, and Function[J]. Plant Physiology,2006,142:775-787.
    [10]Chen Z, Gallie D R. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater Protection against ozone than increasing avoidance[J]. Plant Physiology,2005,138: 1673-1689.
    [11]Chen Z, Gallie D R, The ascorbic acid redox state controls guard cell signaling and stomatal movement[J]. Plant Cell,2004,16:1143-1162.
    [12]Chen Z, Young T E, Ling J, et al. Increase vitamin C content of plant through enhanced ascorbate recycling [J]. Proc Natl Acad Sci USA,2003,100(6):3525-3530.
    [13]Conklin P L. Recent advance in the role and biosynthesis of ascorbic acid in plants[J]. Plant Cell Environ,2001,24:383-394.
    [14]Conklin P L, Norris S R, Wheeler G L, et al. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis[J]. Proc Natl Acad Sci.,1999,96:4198-4203.
    [15]Conklin P L, Pallanca J E, Last R L, et al. L-Ascorbic acid metabolism in the ascorbate. Deficient Arabidopsis mutant vtc1[J]. Plant Physiol,1997,115:1277-1285.
    [16]Conklin P L, Williams E H, Last R L. Environmental stress sensitivity of an Ascorbic acid-deficient Arabidopsis mutant[J]. Proceedings of the National Academy of Sciences,1996, 93:9970-9974.
    [17]Crick F H C. The packing of a-helices:simple coiled-coils[J].Acta Crystallogr,1953,6: 689-698.
    [18]Davey M W, Gilot C, Persiau G et al. Ascorbate biosynthesis in Arabidopsis cell suspension culture[J].Plant Physiol,1999,121:535-543.
    [19]Davey MW, Van Montagu M, Inze D, et al. Plant L-ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing[J]. Journal of the Science of Food and Agriculture,2000,80:825-860.
    [20]De Cabo R C, GonzaAlez-Reyes J A, Cordoba F, et al. Rooting hastened in onions by ascorbate and ascorbate free radical[J]. Plant Growth Regul,1996,15:53-56.
    [21]Eskling M,Arvidsson P O, Akerlund H E.The xanthophylls cycle, its regulation and components[J]. Physiol Plant,1997,100:806-816.
    [22]Fmhnmn MA, Dush MK, Martin GR. Rapid production of full length cDNAs from rare transcripts:Amplification using a single gene-specific oligonucleotide primer[J]. Proc. Natl. Acad. Sci.,1988,85(23):8998-9002.
    [23]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbate acid metabolism[J]. Planta,1976,133:21-25.
    [24]Foyer C H, Lelandais M, Edwards E A, et al. The role of ascorbate in plants, interactions with photosynthesis, and regulattory significance[J]. In:PELL EJ, STEFFEN KL, eds. Active Oxygen, Oxidative Stress and Plant Metabolism, American Society of Plant Physiologists, USA, 1991:131-144.
    [25]Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants[J]. Physiologia Plantarum,1994,92:696-717.
    [26]Foyer C H, Mullineaux P M. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues[J]. FEBS,1998,425:528-529.
    [27]Fromont-Racine M, Bertrand E, Pictet R, et al. A highly sensitive methof for mapping the 5' termini of mRNAs. Nucleic Acids Res.,1993,21:1683-1684.
    [28]Gamier J, Osguthorpe D J, Robson B. Analysis of the accuracy and implications of simple methods for prediction the secondary structure of globular proteins[J]. Mol Biol,1978,120: 97-120.
    [29]Grollman A P, Lehniger A L. Enzymic synthesis of ascorbic acid indifferent animal system[J]. Arch Biochem Biophys,1957,69:458-467.
    [30]Gatzek S, Wheeler GL, Smirnoff N. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis[J]. Plant J.,2002,30:541-533.
    [31]Gillham D J, Dodge A D. Chloroplast superoxide and hydrogen peroxide scavenging systems from pea leaves:seasinal variations[J]. Plant Sci.,1987,50:105-109
    [32]Head KA. Ascorbic acid in the prevention and treatment of cancer[J]. A Item Med Rev,1998, 3(3):174-186.
    [33]Hernandez J A, Cano J, Portillo B, et al. Antioxidant enzymes as biochemical markers for sharka resistance in apricot[J]. Biologia Plantarum,2006,50(3):400-404.
    [34]Horling F, Lamkemeyer P, Konig J, et al. Divergent light-, ascorbate-and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis thaliana [J]. Plant Physiol,2003,131:317-325.
    [35]Hossain MA, Asada K. Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme[J]. Plant and Cell Physiology,1984,25(1):85-92.
    [36]Innocenti A M, Bitonti M B, Arrigoni O, et al. The size of the quiescent center in roots of Allium cepa L. growth with ascorbic acid[J]. New Phytol,1990,114:507-509.
    [37]Isherwood F A, Chen Y T, Mapson L W. Synthesis of L-ascorbic acid in plants and animals [J]. Biochem J.,1954,56:1-21.
    [38]Jain A K, Nessler C L. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants[J]. Molecular Breed,2000,6:73-78.
    [39]Jin Y H, Tao D L, Hao Z Q, et al. Environmental stresses and redox status of ascorbate[J]. Acta Botanica Sinica,2003,45(7):795-801.
    [40]Karpinski S, Escobar C, Karpinski B, et al. Photosynthetic electron transport regulates the expression of cytosolic ascobate peroxidase genes in Aarbidposis during excess light stress[J]. Plant Cell,1997,9:627-640
    [41]Kato N, Esaka M. Expression of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that os wild-type protoplasts[J].Planta,2000,210:1018-1022.
    [42]Kawakami S, Matsumoto Y, Matsunaga A, et al. Molecular cloning of ascorbate peroxidase in potato tubers and its response during storage at low temperature[J]. Plant Science,2002,163: 829-836.
    [43]Kim I J, Chung W I. Molecular characterization of a cytosolic ascorbate peroxidase in strawberry fruit[J]. Plant Science,1998,133:69-77.
    [44]Kobata A. Structures and functions of the sugar chains of glycoproteins[J]. Eur J Biochem, 1992,209:483-501.
    [45]Kubo A, Tanaka K, Kondo N. Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide[J]. Plant Mol. Biol.,1995,29:479-489.
    [46]Kwon S Y, Ahn Y O, Lee H S. Biochemical Characterization of Transgenic Tobacco Plants Expressing a Human Dehydroascorbate Reductase Gene[J]. Journal of Biochemistry and Molecular Biology,2001,34(4):316-321.
    [47]Lin V I. Algorithm for prediction of α-helical and β-structural regions in Globular proteins[J]. Mol Biol,1974,88:873-894.
    [48]Loewus F A. Tracer studies on ascorbic acid formation in plants[J]. Phytochemistry,1993,2: 109-128.
    [49]Loewus F A. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi[J]. Phytochemistry,1999,52:193-210.
    [50]Loewus M W, Bedgar D L, Saito K et al. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach lea[J]. Plant Physiol.1990,94:1492-1495.
    [51]Loewus F A, Loewus M W. Biosynthesis and metabolism of L-ascorbic acid in plants[J]. Crit Rev Plant Sci.,1987,5:101-119.
    [52]Lorence A, Chevone BI, Mendes P, et al. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis[J]. Plant Physiol.,2004,134:1200-1205.
    [53]Mapson L W, Isherwood F A. Biological synthesis of ascorbic acid:the conversion of erivatives of D-galacturonic acid into L-ascorbic acid by plant extracts[J]. Biochem,1956,4:151-157.
    [54]Marchler BA, Anderson JB, Cherukuri PF et al. CDD:a conserve domain database for protein classification[J]. Nucleic Acids Res,2005,33:192-196.
    [55]Mathews M C, Summers C B, Felton G W. Ascorbate Peroxidase:a novel antioxidant enzyme in insects[J]. Archive of Insect Biochemistry and Physiology,1997,34:57-68.
    [56]Mehlhorn H, Cottam D A, Lucas P W, et al. Induction of ascorbate peroxidase and glutathione reductase activities by interactions of mixtures of air pollutants[J]. Free Radic. Res. Commun, 1987,3:193-197.
    [57]Mittler R, Zilinskas B A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J]. Plant J.,1994,5:397-405.
    [58]Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary product monodehydroascorbate radical in thylakoids[J]. Plant Cell Physiol,1992,33:541-553.
    [59]Miyake C, Cao W H, Asada K. Purification and molecular properties of the thylako id-bound ascorbate peroxidsae in spinachchloroplasts[J]. Plant and Cell Physiology,1993,34:881-889.
    [60]Morell S, Follmann H, Tullio M D, et al. Dehydroascorbate and dehydroascorbate reductase are phantom indicators of oxidative stress in plants[J]. FEBS Letters,1997,414:567-570.
    [61]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol,1981,22:867-880.
    [62]Nishikimi M, Fukuyama R, Minoshima S, et al. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-y-lactone oxidase.the enzyme for L-ascorbic acid biosynthesis missing in man[J]. Journal of Biological Chenistry,1994,269:13685-13688.
    [63]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1998,49:249-279.
    [64]Oba K, Fukui M, Imai Y, et al. L-Galactono-g-lactone dehydrogenase:partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue[J]. Plant Cell Physiol,1994,35:473-478.
    [65]Oba K, Ishikawa S, Nishikawa M, et al. Purification and properties of L-galactono-1,4-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots [J]. J Biochem,1995,117:120-124.
    [66]Ovar B L, Ellis B E. Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased sus susceptibility to ozone injury[J]. The Plant Journal, 1997,11(6):1297-1305.
    [67]Pallanca J E, Smirnoff N. Ascorbic acid metabolism in pea seedlings A comparison of D-glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors[J]. Plant Physiol,1999,120:453-461.
    [68]Pastori GM, Kiddle G, Antoniw J, et al. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone [J]. Plant Cell,2003, 15:939-951.
    [69]Potter G, Horemans N, Caubergs R J, et al. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension[J]. Plant Physiol,2000,124:17-20.
    [70]Puntarulo S, Sanchez RA, Boveris A. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination[J]. Plant Physiol.,1998,86:626-630.
    [71]Radzio J A, Lorence A, Chevone B I, et al. L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants[J]. Plant Mol Biol.,2003,53:837-844.
    [72]Rodriguez AA., Grunberg KA, Taleisnik EL. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension[J]. Plant Physiol.,2002,129:1627-1632.
    [73]Sambrook J E, Fritsch F and Maniatis T Z. Molecular cloning:a laboratory manual. The second edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York:1989,45.
    [74]Sanchez-Fern Andez R, Flicker M, Corben L B, et al. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control[J]. Proc. Natl. Acad. Sci,1997,94:2745-2750.
    [75]Schantz M.L., H. Schreiber, P. Guillemaut and R. Schantz,1995. Changes in ascorbate peroxidase actixities during fruit ripening in Capsicum annuum. FEBS Letters,358:149-152.
    [76]Schopfer P, Liszkay A, Bechtold M, et al. Evidence that hydroxyl radicals medizte auxin-induced extension growth[J]. Planta,2002,214:821-828.
    [77]Scotto-Lavino E, Du G V, Frohman M A.3'end cDNA amplification using classic RACE[J]. 2006, Nature Protocols,1(6):2742-2745.
    [78]Scotto-Lavino E, Du G V, Frohman, M A.5'end cDNA amplification using classic RACE[J]. Nature Protocols,2006,1(6):2555-2562.
    [79]Shiegeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes[J]. J Experiment Botany,2002,372:1305-1319.
    [80]Smirnoff N. Ascorbate biosynthesis and function in photoprotection[J]. Phil. Trans. R SOC Lond Ser B Biol Sci,2000,355:1455-1464.
    [81]Smirnoff N. The function and metabolism of ascorbic acid in plants[J]. Ann. Bot.,1996,78: 661-669.
    [82]Smirnoff N, Conklin P L, Loewus F A. Biosynthesis of ascorbic acid in plants:a renaissance [J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:437-467.
    [83]Smitha AG, Crofta M T, Moulina M, et al. Plants need their vitamins too[J]. Curr. Opin. Plant Biol.2007,10:266-275.
    [84]Tabata K, Oba K, Suzuki K, et al. Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase[J]. Plant,2001,27:139-148.
    [85]Tarantino D.Vannini C,Bracale M,et al.Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances Paraquat-induced photooxidative stress and Nitric Oxide-induced cell death[J]. Planta,2005,221(6):757-765.
    [86]Urano J, Nakagawa T, Maki Y, et al. Molecular cloning and characterization of a rice dehydroascorbate reductase[J]. FEBS,2000,466:107-111.
    [87]Ushimarua T, Nakagawaa T, Fujiokaa Y, et al. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress[J]. Journal of Plant Physiology, 2006,163:1179-1184.
    [88]Valpuesta V, Botella MA. Biosynthesis of L-ascorbic acid in plants:new pathways for an old antioxidant [J]. Trends Plant Science,2004,9:573-577.
    [89]Veljovic-Jovanovic S D, Pignocchi C, NoctonG, et al. Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system[J]. Plant Physiol,2001,127:426-435.
    [90]Wang W, Vinocur B, Altman A. Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta,2003,218:1-14.
    [91]Weaver R F. Molecular Biology[M].北京:科学出版社,2000,8.
    [92]Wheeler G L, Jones M A, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants[J]. Nature,1998,393:365-369.
    [93]Wise R R. Chilling-enhanced photo oxidation:The production, action and study of reactive oxygen species during chilling in the light[J]. Photosynthesis Research,1995,45:79-97.
    [94]Wolucka BA, Van Montagu M. GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants [J]. J. Biol. Chem., 2003,278:47483-47490.
    [95]Yabuta Y, Motoki T, Yoshimura K, et al. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress[J]. Plant J.,2002,32: 915-925.
    [96]Yamaguchi M, Joslyn M A. Purification and properties of dehydroascorbic acid reductase of peas (Pisum sativum) [J]. Arch Biochem Biophys,1952,38:451-465.
    [97]Yamaguchi K, Mori H, Nishimura MA. Novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin[J]. Plant Cell Physiol,1995,36: 1157-1162.
    [98]Yan J, Wang J, Tissue D, et al. Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpression an Arabidopsis ascorbate peroxidase gene[J]. Crop Sci,2003,43:1477-1483.
    [99]Ye X, Al-Babili S, Kloti A, et al. Engineenng the Provitamin A (β-carotene) biosynthetic pathway into(carotenoid-free) rice endosperm.[J]. Science,2000,287:303-305.
    [100]Yoshimura K, Yabuta Y, Ishikawa T, et al. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses[J]. Plant Physiology,2000,123(1):223-234.
    [101]安华明,陈力耕,樊卫国,等.高等植物中维生素C的功能、合成及代谢研究进展[J].植物学通讯,2004,21(5):608-617.
    [102]陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能[J].西北植物学报,2004,24(2):329-336.
    [103]邓洪渊,王闵霞,孙雪文,等.一种改进的SON-PCR基因扩增方法[J].应用与环境生物学报,2006,12(6):857-860.
    [104]刁雪涛,张小芳,宋洁,等.生物信息学研究进展[J].安徽农学通报,2008,14(22):160- 162.
    [105]董汉松.植物诱导抗病性原理和研究[M].北京:科学出版社,1995:160-170.
    [106]侯艳霞,汤浩茹,董晓莉,等.鼠尾草属植物基因组DNA提取及RAPD反应条件优化[J].中国农学通报,2008,24(3):72-77.
    [107]胡健,方慧生,陈凯先.蛋白质结构比较模建的研究进展[J].药物生物技术,2009,16(4):380-384.
    [108]姜卓俊.丰香草莓的品种特性及丰产栽培[J].落叶果树,2000,3:37-38.
    [109]黎观红,瞿明仁,晏向华,等.Vc的营养和应用研究进展[J].粮食与饲料工业,2001,4:31-33.
    [110]李惠华,赖钟雄.植物抗坏血酸过氧化物酶研究进展(综述)[J].亚热带植物科学,2006,35(2):66-69.
    [111]李坤,韩道杰,许贞杭,等.不同蔬菜产品器官抗坏血酸含量与其相关酶活性的关系[J].西北农业学报,2008,17(5):257-262.
    [112]李晓晓,李蕊,李雅轩,等.大豆脱氢抗坏血酸还原酶基因的电子克隆及进化分析[J].大豆科学,2007,26(1):45-50.
    [113]刘汉梅,何瑞,赵耀,等.玉米密码子用法分析[J].核农学报,2008,22(2):141-147.
    [114]刘庆坡,冯英,董辉.20个物种同义密码子偏性的比较分析[J].西北农林科技大学学报(自然科学版),2004,32(7):67-71.
    [115]刘毅,翟旭光,吴芳,等.SON-PCR扩增抗禾谷孢囊线虫基因LRR区及序列[J].分析农业生物技术学报,2006,14(4):565-568.
    [116]刘永立,胡海涛,兰大伟.维生素C的生物合成及其基因调控研究进展[J].果树学报,2006,23(3):431-436.
    [117]罗娅.低温胁迫与锻炼对草莓生理特性的影响和草莓几丁质酶基因的克隆:[博士论文]雅安:四川农业大学,2007,25-44.
    [118]马玉华,马锋旺,马小卫,等.干旱胁迫对苹果叶片抗坏血酸含量及其代谢相关酶活性的影响[J].西北农林科技大学学报(自然科学版),2008,36(3):150-154,160.
    [119]牛歆雨,雷玉山,梁东,等.猕猴桃果实L2半乳糖内酯脱氢酶和脱氢抗坏血酸还原酶cDNA片段的克隆与序列分析[J].西北农林科技大学学报(自然科学版),2007,35(12):57-62.
    [120]钱燕春,冯德云.维生素C防治肿瘤作用的研究进展[J].右江医学,2008,36(6):741-743.
    [121]秦爱国,于贤昌.马铃薯抗坏血酸含量及其代谢相关酶活性关系的研究[J].园艺学报, 2009,36(9):1370-1374.
    [122]邱建丁,荣联清,梁汝萍,等.基于疏水性小波分析的膜蛋白结构预测[J].分析测试学报,2004,23(6):1-4.
    [123]唐克轩,开国银,张磊,等.RACE的研究及其在植物基因克隆上的应用[J].复旦学报,2002,41(6):704-709.
    [124]王庆斌,王方正,薛庆中,等.APX基因转化水稻及其功能的研究[J].中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编,2003,318.
    [125]王少丽,盛承发,乔传令.cDNA末端快速扩增技术及其应用[J].遗传,2004,26(3):419-423.
    [126]王艳颖,姜国斌,胡文忠,等.高效液相色谱法测定草莓中维生素C含量[J].大连大学学报,2006,(2):21-23.
    [127]王云.草莓维生素C女王[J].健康,2007,(06):27.
    [128]魏征宇,王苏燕,叶寅,等.质粒DNA的酚—氯仿一步抽提法[J].微生物学通报,1993,20(6):375-376.
    [129]肖燕,杨足君,李光蓉,等.用SON-PCR快速获得长鞭红景天CHS基因全长及其序列分析[J].植物生理学通讯,2008,44(1):15-19.
    [130]徐建华,朱家勇.生物信息学在蛋白质结构与功能预测中的应用[J].医学分子生物学杂志,2005,2(3):227-232.
    [131]张阳德.生物信息学[M].北京:科学出版社,2004:349.
    [132]张燕子.苹果脱氢抗坏血酸还原酶基因cDNA全长克隆及其植物表达载体构建:[博士论文].杨凌:西北农林科技大学,2006,36-40.
    [133]张雨良,张智俊,杨峰山,等.新疆盐生植物车前PmNHX1基因的克隆及生物信息学分析[J].中国生物工程杂志,2009,29(1):27-33.
    [134]赵耀,刘汉梅,顾勇,等.玉米waxy基因密码子偏好性分析[J].玉米科学,2008,16(2):16-21.
    [135]邹礼平.番茄抗坏血酸生物合成与代谢途径中相关酶基因的克隆与调控:[博士论文].武汉:华中农业大学,2005,59-103.
    [136]邹礼平.辣椒单脱氢抗坏血酸还原酶基因的克隆与序列分析[J].孝感学院学报,2005,25(3):12-16.
    [137]周莎莎.基因克隆与表达研究进展[J].现代农业科技,2008,22:280-284.