促红细胞生成素对人单核细胞铁调蛋白hepcidin和前炎症因子的影响及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     目前认为,慢性病贫血(ACD)的发病机制是由原发病启动的免疫反应所介导:异常升高的炎性细胞因子主要是IL-6通过上调肝脏hepcidin,导致铁利用障碍,引发贫血;此外,可直接抑制红系前体细胞增殖分化,缩短红细胞寿命,钝化对EPO的反应,干扰铁代谢相关蛋白的转录等导致慢性病贫血。单核细胞是慢性病贫血中产生炎性细胞因子的主要来源,同时是铁储存细胞,接受hepcidin的调控,在ACD的发病中发挥关键作用,近年来研究显示,单核细胞与肝脏相似,受到炎症刺激后hepcidin mRNA表达明显增加。单核细胞的hepcidin也对铁代谢有调节作用,同时在ACD患者中表达升高,与贫血和升高的IL-6明显相关,显示其可能在患者体内参与ACD的发病。促红细胞生成素(EPO)是目前治疗ACD的主要手段,通过与EPO受体结合刺激造血、抑制肝脏hepcidin以及降低炎症因子等发挥治疗作用。但是EPO降低hepcidin的具体机制尚不清楚,其降低肝脏hepcidin可能与下调C/EBPa,抑制STAT3的磷酸化有关;但是否存在其他的信号途径、对单核细胞hepcidin是否也有类似的降低作用和分子机制并不清楚,此外,EPO降低前炎症因子的机制也并不清楚。多发性骨髓瘤和非霍奇金淋巴瘤是肿瘤相关ACD的代表性疾病,骨髓瘤患者血清和尿hepcidin水平升高,非霍奇金淋巴瘤则缺乏相关研究。对于这两种疾病,单核细胞hepcidin是否升高,是否在ACD中发挥作用,尚不清楚。
     [研究目的]
     1观察EPO是否能降低单核细胞hepcidin并探讨其分子学机制。
     2探讨EPO降低IL-6的分子机制。
     3探讨单核细胞hepcidin在MM和NHL患者相关ACD中可能发挥的作用。
     [研究方法]
     1 IL-6诱导THP-1单核细胞,Real time PCR法检测hepcidin;加入EPO,观察其对hepcidin的影响。Western blot免疫印迹法检测hepcidin蛋白及信号分子:C/EBPa、Smadl/5/8、P-Smad1/5/8及P-STAT3,加入EPOR抗体,观察对EPO的拮抗作用。
     2 LPS诱导THP-1单核细胞和人原代单核细胞,Real time PCR法检测IL-6及TNF-a表达。Western blot法检测信号分子PARP-1,加入EPOR抗体或PARP-1抑制剂3AB,观察对EPO的拮抗作用及信号蛋白的影响。
     3收集多发性骨髓瘤、非霍奇金淋巴瘤患者的临床资料及血清,ELISA法检测患者血清IL-6及TNF-a的浓度。
     4磁珠分选法分离外周血CD14+单核细胞,Real time PCR实时定量法检测单核细胞hepcidin、IL-6、TNF-a及C/EBPa的表达。
     [结果]
     1 EPO可降低IL-6诱导的THP-1单核细胞hepcidin mRNA表达及蛋白量:同时降低C/EBPa、P-Smad1/58、P-STAT3, EPOR抗体可拮抗EPO对hepcidin及信号蛋白的影响。
     2 EPO可降低LPS诱导的THP-1细胞和人原代单核细胞IL-6和TNF-a的表达,同时降低PARP-1的蛋白量,EPOR抗体及3AB均对可拮抗EPO对IL-6及PARP-1的下降作用。
     3 MM患者单核细胞hepcidin的表达高于正常,初治者与Hb、TSAT%负相关,与SF、体内IL-6水平、CRP及β2微球蛋白正相关,与体内TNF-a水平、LDH无关联。单核细胞CEBPa表达与hepcidin水平正相关。
     4 NHL患者单核细胞hepcidin表达高于正常,初治组与Hb负相关,与体内IL-6水平、CRP、LDH正相关,与TSAT%、SF及体内TNF-a水平无关联。单核细胞CEBPa表达与hepcidin水平无关。
     [结论]
     1 EPO可从基因水平和蛋白水平明显降低IL-6诱导的单核细胞hepcidin;其可能的分子机制:通过与EPOR结合,降低信号分子C/EBPa,减少Smad1/5/8及STAT3磷酸化。
     2 EPO可明显降低LPS诱导的单核细胞IL-6和TNF-a mRNA的表达,EPO可能是通过与EPOR结合,抑制信号分子PARP-1,实现对IL-6的下调作用。
     3多发性骨髓瘤和非霍奇金淋巴瘤患者单核细胞hepcidin mRNA表达升高,在初治患者中与血红蛋白存在关联,可能是导致其ACD的原因之一;单核细胞hepcidin mRNA表达升高可能是由患者体内升高的IL-6所诱导。CRP或LDH可能反应初治患者体内hepcidin的水平。
[BACKGROUND]
     The current view is that the pathogenesis of anemia of chronic disease (ACD) is mediated by the immune response initiated by primary disease. Abnormal elevated inflammatory cytokines, mostly IL-6, lead to the iron metabolism disorder and anemia through elevating hepcidin level in liver, and directly inhibit the proliferation and differentiation of erythroid precursor cells, shorten life span of red blood cell, blunt response to EPO, interfere with iron metabolism related proteins in transcription. Monocytes are major source of inflammatory cytokines generated in chronic anemia; they are also iron storage cells, regulated by hepcidin, which play a key role in the pathogenesis of ACD. Recent studies have shown that monocyte is similar to liver in increasing the expression of hepcidin significantly by inflammation stimulation. Hepcidin from monocyte also regulate iron metabolism. The monocyte hepcidin is increased in patients with ACD and related significantly with anemia and elevated IL-6, indicated that it may play a role in the pathogenesis of ACD. Erythropoietin (EPO) is the primary means of treating ACD through combining with the receptors and stimulating hematopoiesis, inhibiting hepatic hepcidin and decreasing inflammatory factors. EPO can reduce hepcidin expression but the specific mechanism is unclear now. It may be associated with decreased C/EBPa, and depressed phosphorylation of STAT3; but whether there are other signaling pathways, whether there is similar role on monocyte is not clear, in addition, the mechanism of EPO decreasing inflammatory cytokines is not clear, either. Multiple myeloma and non-Hodgkin's lymphoma can lead to tumor-associated ACD. Patients of multiple myeloma have elevated levels of serum and urinary hepcidin, but there is not such research on patients of non-Hodgkin's lymphoma. In both diseases, whether monocyte hepcidin is increased, and whether it plays a role in ACD is not clear.
     [OBJECTIVE]
     1 The effect of EPO on monocytes hepcidin and its molecular mechanism.
     2 The molecular mechanism of IL-6 reduced by EPO.
     3 The role of monocytes hepcidin in MM and NHL patients.
     [METHODS]
     1 THP-1 monocytes are stimulated by IL-6, hepcidin is detected by Real time PCR.Observing the impact of EPO on monocytes hepcidin.Hepcidin and signaling molecule including C/EBPa, Smadl/5/8, P-Smadl/5/8 and P-STAT3 are detected by Western blot. To observe the antagonistic effect on EPO by adding EPOR antibody.
     2 THP-1 monocytes and primary human monocytes stimulated by LPS, the expression of IL-6 and TNF-a mRNA detected by Real time PCR. PARP-1 detected by Western blot. Adding EPOR antibody and/or PARP-1 inhibitor to observe the antagonistic effect on EPO and the impact on the signaling proteins.
     3 Collecting the clinical information and serum of multiple myeloma and non-Hodgkin's lymphoma.Serum concentration of IL-6 and TNF-a is detected by ELISA.
     4 Peripheral blood monocytes is isolated by Magnetic beads.Hepcidin, IL-6, TNF-a and C/EBPa mRNA of monocytes is detected by Real time PCR quantitative assay.
     [RESULTS]
     1 EPO can suppress the monocyte hepcidin mRNA expression and protein induced by IL-6 in THP-1 cells. C/EBPa, P-Smadl/5/8 and P-STAT3 reduced at the same time. EPOR antibody can antagonize the effect of EPO on hepcidin and signaling proteins.
     2 EPO can decrease the levels of IL-6 and TNF-a stimulated by LPS both in THP-1 cells and in primary human monocytes. PARP-1 protein is decreased at the same time. The decline of IL-6 by EPO can be antagonized by both EPOR antibody and 3AB.
     3 In MM patients, the expression of monocyte hepcidin mRNA is higher than normal and negatively correlated with Hb,positively correlated with SF, IL-6 levels, CRP and 132 microglobulin in newly diagnosed patients,but unrelated with LDH and the TNF-a levels. C/EBPa expression in monocytes is positively correlated with monocyte hepcidin and IL-6 levels,but unrelated with the TNF-a levels.
     4 In NHL patients, the expression of monocyte hepcidin mRNA is higher than normal.Monocyte hepcidin in patients with newly diagnosed negatively correlated with Hb, IL-6 levels, CRP and LDH, but not associated with TSAT%, SF and TNF-a levels. C/EBPa expression in monocyte is unrelated with monocyte hepcidin levels.
     [CONCLUSIONS]
     1 Monocyte hepcidin mRNA and protein levels can be reduced by EPO when stimulated by IL-6 in monoytes. EPO inhibits the monocyte hepcidin, at least in part,via combination with EPOR and suppression of C/EBPa, P-Smadl/5/8 and P-STAT3 signaling in vitrol.
     2 EPO can block the expression of IL-6 and TNF-a in monocytes stimulated by LPS, EPO may inhibit IL-6 expression via combination of EPOR and suppression of PARP-1.
     3 The expression of monocyte hepcidin is increased in patients of multiple myeloma and non-Hodgkin's lymphoma, and has an association with ACD, the increased hepcidin levels play an etiologic role in ACD.CRP or LDH may be able to monitor the level of hepcidin.
引文
1. Lichtman MA, Beutler E, Seligsohn U, Kaushansky K, Kipps TO. Williams Hematology 7th edtion New York:McGraw-Hills 2005;
    2. Adamson JW. The Anemia of Inflammation/Malignancy:Mechanisms and Management Hematology 2008:159-65.
    3. Weiss G, Goodnough LT. Anemia of Chronic Disease. N Engl J Med 2005;352:1011-23.
    4. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090-3.
    5. Domenico ID, Ward DM, Langelier C, Vaughn MB, Nemeth E. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 2007;18:2569-78.
    6. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. The Journal of biological chemistry 2001;276:7806-10.
    7. Kulaksiz H, Theilig F, Bachmann S, et al. The iron-regulatory peptide hormone hepcidin: expression and cellular localization in the mammalian kidney. J Endocrinol 2005;184:361-70.
    8. Gnana-Prakasam JP, Martin PM, Mysona BA, Roon P, Smith SB, Ganapathy V. Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/Toll-like receptor-4 pathway independent of Hfe. Biochem J 2008;411:79-88.
    9. Liu XB, Nguyen NB, Marquess KD, Yang F, Haile DJ. Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol Dis 2005;35:47-56.
    10. Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 2006;107:3727-32.
    11. Nguyen NB, Callaghan KD, Ghio AJ, Haile DJ, Yang F. Hepcidin expression and iron transport in alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2006;291:L417-25.
    12. Theurl I, Theurl M, Seifert M, et al. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood 2008; 111:2392-9.
    13. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med 2005;352:1011-23.
    14.孙雪峰,周道斌,赵永强.EPO对铁调节蛋白hepcidin表达影响的研究.中国实验血液学杂志2006;14:5.
    15.孟婵,周道斌,赵永强.重组人EPO对IL-6诱导人原代肝细胞和HepG2细胞hepcidin mRNA表达的抑制作用.中国实验血液学杂志2008;16:1413-7.
    16.王凤丹,周道斌,沈悌,武永吉.多发性骨髓瘤、非霍奇金淋巴瘤及Castleman病例hepcidin mRNA的表达.2009.
    17.冯俊,周道斌,赵永强等.促红细胞生成素对多发性骨髓瘤小鼠铁调蛋白hepcidin和肿瘤增殖的影响及机理.2009.
    18. Pinto JP, Ribeiro S, Pontes H, Thowfeequ S, Tosh D. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha. Blood 2008 Jun 15;111(12):5727-33 2008;111:5727-33.
    19. Huang H, Constante M, Layoun A, Santos MM, MM. Contribution of STAT3 and SMAD4 pathways to the regulation of hepcidin by opposing stimuli. Blood 2009;113:3593-9.
    20. Ludwig H, Fritz E, Kotzmann H, Hocker P, Gisslinger H, Barnas U. Erythropoietin treatment of anemia associated with multiple myeloma. N Engl J Med 1990;322:1693-9.
    21. Kaltwasser JP, Kessler U, Gottschalk R, Stucki G, Moller B. Effect of recombinant human erythropoietin and intravenous iron on anemia and disease activity in rheumatoid arthritis. J Rheumatol 2001;28:2430-6.
    22. Goldman L, Ausiello D, eds. Cecil.23 ed:Saunders; 2007.
    23. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, Apr 2000; 95: 2630-2636 2000;95:2630-6.
    24. Frassanito MA, Cusmai A, Iodice G,1,2. Autocrine interleukin-6 production and highly malignant multiple myeloma:relation with resistance to drug-induced apoptosis. Blood, Jan 2001; 97: 483-489 2001;97:483-9.
    25. Sharma S, Nemeth E, Chen YH, et al. Involvement of hepcidin in the anemia of multiple myeloma. Clin Cancer Res 2008;14:3262-7.
    26. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood 2008;112:4292-7.
    27. Katodritou E, Ganz T, Terpos E, Verrou E, Olbina G, Gastari V. Sequential evaluation of serum hepcidin in anemic myeloma patients:Study of correlations with myeloma treatment, disease variables, and anemia response. Am J Hematol 2009;Epub ahead of print.
    28. Steurer M, Wagner H, Gastl G. Prevalence and management of anaemia in haematologic cancer patients receiving cyclic nonplatinum chemotherapy:results of a prospective national chart survey. Wien Klin Wochenschr 2004;116:367-72.
    29. Voorzanger N, Touitou R, Garcia E, et al. Interleukin (IL)-10 and IL-6 are produced in vivo by non-Hodgkin's lymphoma cells and act as cooperative growth factors. Cancer Res 1996;56:5499-505.
    30. Kato H, Kinoshita T, Suzuki S, et al. Production and effects of interleukin-6 and other cytokines in patients with non-Hodgkin's lymphoma. Leuk Lymphoma 1998;29:71-9.
    31. Warzocha K, Salles G, Bienvenu J, et al. Prognostic significance of TNF alpha and its p55 soluble receptor in malignant lymphomas. Leukemia 1997; 11 Suppl 3:441-3.
    32. Liu X, Xie W, Liu P, et al. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia-reperfusion. Life Sci 2006;78:2255-64.
    33. Pinto JP, Ribeiro S, Pontes H, et al. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha. Blood 2008;111:5727-33.
    34. Feng Q. Beyond erythropoiesis:The anti-inflammatory effects of erythropoietin. Cardiovascular Research 200671(4):615-617 2006;71:615-7.
    35. Lauta VM. A review of the cytokine network in multiple myeloma:diagnostic, prognostic, and therapeutic implications. Cancer 2003;97:2440-52.
    36. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004;113:1271-6.
    37. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003;101:2461-3.
    38. Yeh KY, Yeh M, Glass J. Hepcidin regulation of ferroportin 1 expression in the liver and intestine of the rat. Am J Physiol Gastrointest Liver Physiol 2004;286:G385-94.
    39. Fleming MD. The regulation of hepcidin and its effects on systemic and cellular iron metabolism. Hematology Am Soc Hematol Educ Program 2008;2008:151-8.
    40. Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007;117:1933-9.
    41. Wang RH, Li C, Xu X, et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2005;2:399-409.
    42. Truksa J, Peng H, Lee P, Beutler E, E.2006;103:10289-10293. Bone morphogenetic proteins 2,4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A 2006; 103.
    43. Babitt JL, Huang FW, Wrighting DM, DM,2006;38:531-539 ea. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression.. Nat Genet 2006;38:531-9.
    44. Ramji DP, Foka P. CCAAT/enhancer-binding proteins:structure, function and regulation. Biochem J 2002;365:561-75.
    45. Courselaud B, Pigeon C, Inoue Y, et al. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. The Journal of biological chemistry 2002;277:41163-70.
    46. Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem Biophys Res Commun 2007;356:312-7.
    47. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood 2008;112:4292-7.
    48. Pinto JP, Ribeiro S, Pontes H, al e. Erythropoietin medidates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPa. Blood 2008;111:5727-33.
    49. Huang H, Constante M, Layoun A, Santos MM. Contribution of STAT3 and SMAD4 pathways to the regulation of hepcidin by opposing stimuli. Blood 2009;113:3593-9.
    50. Akimoto T, Kusano E, Inaba T, et al. Erythropoietin regulates vascular smooth muscle cell apoptosis by a phosphatidylinositol 3 kinase-dependent pathway. Kidney Int 2000;58:269-82.
    51. Kirkeby A, van Beek J, Nielsen J, Leist M, Helboe L. Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. J Neurosci Methods 2007;164:50-8.
    52. Keswani SC, Buldanlioglu U, Fischer A, et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol 2004;56:815-26.
    53. Farrell F, Lee A. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist 2004;9 Suppl 5:18-30.
    54. Frederic Feger AD, Catherine Lacout, et al. Ectopic expression of the erythropoietin receptor in a murine interleukin-6-dependent plasmocytoma cell line (TEPC-2027) confers proliferative responsiveness to erythropoietin. Blood 1997;89:435-45.
    55. Feger F, Dubart A, Lacout C, et al. Ectopic expression of the erythropoietin receptor in a murine interleukin-6-dependent plasmacytoma cell line (TEPC-2027) confers proliferative responsiveness to erythropoietin. Blood 1997;89:435-45.
    56. Agarwal N, Prchal JT. Anemia of chronic disease (anemia of inflammation). Acta Haematol 2009;122:103-8.
    57. Nemeth E, Ganz T. The role of hepcidin in iron metabolism. Acta Haematol 2009;122:78-86.
    58. Schultz C, Zimmer J, Hartel C, Rupp J, Temming P, Strunk T. Attenuation of monocyte proinflammatory cytokine responses to Neisseria meningitidis in children by erythropoietin. Clin Exp Immunol 2008; 154:187-91.
    59. Cuzzocrea S, Mazzon E, di Paola R, et al. Erythropoietin reduces the degree of arthritis caused by type Ⅱ collagen in the mouse. Arthritis Rheum 2005;52:940-50.
    60. Qin C, Xiao YB, Zhong QJ, Chen L, Wang XF. Anti-inflammatory effect of erythropoietin pretreatment on cardiomyocytes with hypoxia/reoxygenation injury and the possible mechanism. Chin J Traumatol 2008;11:352-8.
    61. Woodhouse BC, Dianov GL. Poly ADP-ribose polymerase-1:an international molecule of mystery. DNA Repair (Amst) 2008;7:1077-86.
    62. Hauschildt S, Scheipers P, Bessler W, et al. Role of ADP-ribosylation in activated monocytes/macrophages. Adv Exp Med Biol 1997;419:249-52.
    63. Yao L, Huang K, Huang D, Wang J, Guo H, Liao Y. Acute myocardial infarction induced increases in plasma tumor necrosis factor-alpha and interleukin-10 are associated with the activation of poly(ADP-ribose) polymerase of circulating mononuclear cell. Int J Cardiol 2008;123:366-8.
    64. Neta R, Sayers TJ, Oppenheim JJ. Relationship of TNF to interleukins. Immunol Ser 1992;56:499-566.
    65. Dentener MA, Bazil V, Von Asmuth EJ, Ceska M, Buurman WA. Involvement of CD 14 in lipopolysaccharide-induced tumor necrosis factor-alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol 1993;150:2885-91.
    66. Ghezzi MC, Raponi G, Filadoro F, Mancini C. The release of TNF-alpha and IL-6 from human monocytes stimulated by filtrates of Candida albicans after treatment with amphotericin B. J Antimicrob Chemother 1994;33:1039-43.
    67. Li Y, Takemura G, Okada H, et al. Reduction of inflammatory cytokine expression and oxidative damage by erythropoietin in chronic heart failure. Cardiovasc Res 2006;71:684-94.
    68. Huang D, Yang CZ, Yao L, Wang Y, Liao YH, Huang K. Activation and overexpression of PARP-1 in circulating mononuclear cells promote TNF-alpha and IL-6 expression in patients with unstable angina. Arch Med Res 2008;39:775-84.
    69. Kraus WL, Lis JT. PARP goes transcription. Cell 2003;113:677-83.
    70. Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 2007;25:235-60.
    71. Pieper AA, Brat DJ, Krug DK, et al. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proceedings of the National Academy of Sciences of the United States of America 1999;96:3059-64.
    72. Oliver FJ, Menissier-de Murcia J, Nacci C, et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 1999;18:4446-54.
    73. Pajonk F, Weil A, Sommer A, Suwinski R, Henke M. The erythropoietin-receptor pathway modulates survival of cancer cells. Oncogene 2004;23:8987-91.
    74. Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB:current knowledge, new insights, and future perspectives. Cell Res 2010;20:24-33.
    75. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Selective modulation of the erythropoietic and tissue-protective effects of erythropoietin:time to reach the full therapeutic potential of erythropoietin. Biochim Biophys Acta 2007;1776:1-9.
    76. Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005;6:484-94.
    77. Agnello D, Bigini P, Villa P, et al. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 2002;952:128-34.
    78. Li W, Maeda Y, Yuan RR, Elkabes S, Cook S, Dowling P. Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 2004;56:767-77.
    79. Cuzzocrea S, Mazzon E, Di Paola R, et al. Erythropoietin reduces the development of experimental inflammatory bowel disease. J Pharmacol Exp Ther 2004;311:1272-80.
    80. Kyle RA. Multiple myeloma:review of 869 cases. Mayo Clin Proc 1975;50:29-40.
    81. Musto P, Falcone A, D'Arena G, et al. Clinical results of recombinant erythropoietin in transfusion-dependent patients with refractory multiple myeloma:role of cytokines and monitoring of erythropoiesis. Eur J Haematol 1997;58:314-9.
    82. Birgegard G, Gascon P, Ludwig H. Evaluation of anaemia in patients with multiple myeloma and lymphoma:findings of the European CANCER ANAEMIA SURVEY. Eur J Haematol 2006;77:378-86.
    83. Mittelman M. The implications of anemia in multiple myeloma. Clin Lymphoma 2003;4 Suppl 1:S23-9.
    84. Silvestris F, Tucci M, Quatraro C, Dammacco F. Recent advances in understanding the pathogenesis of anemia in multiple myeloma. Int J Hematol 2003;78:121-5.
    85. Chauhan D, Uchiyama H, Akbarali Y,1,2. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996;87:1104 ■12.
    86. Ganz T. Molecular pathogenesis of anemia of chronic disease. Pediatr Blood Cancer 2006;46:554-7.
    87. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090-3.
    88. Sharma S, Nemeth E, Chen YH, Goodnough J, Huston A. Involvement of hepcidin in the anemia of multiple myeloma. Clin Cancer Res 2008;14:3262-7.
    89. Krause A, Neitz S, Magert HJ,1,2,3. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 2000;480:147-50.
    90. Park CH, Valore EV, Waring AJ, Ganz T, CH P. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001;276:7806-10.
    91. McKie AT, Marciani P, Rolfs A, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000;5:299-309.
    92. Donovan A, Brownlie A, Zhou Y, et al. Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature 2000;403:776-81.
    93. Motley ST, Morrow BJ, Liu X, et al. Simultaneous analysis of host and pathogen interactions during an in vivo infection reveals local induction of host acute phase response proteins, a novel bacterial stress response, and evidence of a host-imposed metal ion limited environment. Cell Microbiol 2004;6:849-65.
    94. Volpe DA, Warren MK. Myeloid clonogenic assays for comparison of the in vitro toxicity of alkylating agents. Toxicol In Vitro 2003; 17:271-7.
    95. Zuckerman KS. Hematopoietic Abnormalities in Patients With Cancer. Cancer Control 1998;5:6-11.
    96. Jourdan M, Tarte K, Legouffe E, Brochier J, Rossi JF, Klein B. Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. Eur Cytokine Netw 1999;10:65-70.
    97. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma:therapeutic applications. Oncogene 2001;20:4519-27.
    98. Fleming MD. The regulation of hepcidin and its effects on systemic and cellular iron metabolism. Hematology Am Soc Hematol Educ Program 2008:151-8.
    99. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113:1271-6.
    100. Mahmoud FA, Rivera NI. The role of C-reactive protein as a prognostic indicator in advanced cancer. Curr Oncol Rep 2002;4:250-5.
    101. Pelliniemi TT, Irjala K, Mattila K, et al. Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Finnish Leukemia Group. Blood 1995;85:765-71.
    102. Greipp PR, Lust JA, O'Fallon WM, Katzmann JA, Witzig TE, Kyle RA. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 1993;81:3382-7.
    103. Eisenstaedt R, Penninx BW, Woodman RC. Anemia in the elderly:current understanding and emerging concepts. Blood Rev 2006;20:213-26.
    104. Garcia Zueco JC, Delgado MP, Giraldo MP, et al. [Non-Hodgkin's lymphomas. I. Clinico-biological features of 307 cases]. Sangre (Barc) 1992;37:331-6.
    105. Garcia Zueco JC, Delgado MP, Giraldo MP, et al. Non-Hodgkin's lymphomas. I. Clinico-biological features of 307 cases. Sangre (Barc) 1992;37:331-6.
    106. Moullet I, Salles G, Ketterer N, et al. Frequency and significance of anemia in non-Hodgkin's lymphoma patients. Ann Oncol 1998;9:1109-15.
    107. Ludwig H, Rai K, Blade J, et al. Management of disease-related anemia in patients with multiple myeloma or chronic lymphocytic leukemia:epoetin treatment recommendations. Hematol J 2002;3:121-30.
    108. Goodnough LT. Erythropoietin and iron-restricted erythropoiesis. Exp Hematol 2007;35:167-72.
    109. Cucuianu A, Patiu M, Rusu A. Hepcidin and multiple myeloma related anemia. Med Hypotheses 2006;66:352-4.
    110. Katodritou E, Ganz T, Terpos E, et al. Sequential evaluation of serum hepcidin in anemic myeloma patients:study of correlations with myeloma treatment, disease variables, and anemia response. Am J Hematol 2009;84:524-6.
    111. Hohaus S, Massini G, Giachelia M, et al. Anemia in Hodgkin's lymphoma:the role of interleukin-6 and hepcidin. J Clin Oncol 2010;28:2538-43.
    112. Coiffier B, Guastalla JP, Pujade-Lauraine E, Bastit P. Predicting cancer-associated anaemia in patients receiving non-platinum chemotherapy:results of a retrospective survey. Eur J Cancer 2001;37:1617-23.
    113. Kemna EH, Tjalsma H, Willems HL, Swinkels DW. Hepcidin:from discovery to differential diagnosis. Haematologica 2008;93:90-7.
    114. Bost KL, Bieligk SC, Jaffe BM. Lymphokine mRNA expression by transplantable murine B lymphocytic malignancies. Tumor-derived IL-10 as a possible mechanism for modulating the anti-tumor response. J Immunol 1995;154:718-29.
    115. Kisseleva E, Becker M, Lemm M, Fichtner I. Involvement of macrophages and cytokines into rejection mechanism of the drug-resistant and immunogenic murine lymphoma P388/adria. Anticancer Res 1996;16:1971-8.
    116. Lech-Maranda E, Bienvenu J, Broussais-Guillaumot F, et al. Plasma TNF-alpha and IL-10 level-based prognostic model predicts outcome of patients with diffuse large B-Cell lymphoma in different risk groups defined by the International Prognostic Index. Arch Immunol Ther Exp (Warsz) 2010;58:131-41.
    117. Gu Y, Shore RE, Arslan AA, et al. Circulating cytokines and risk of B-cell non-Hodgkin lymphoma:a prospective study. Cancer Causes Control 2010.
    118. Salles G, Bienvenu J, Bastion Y, et al. Elevated circulating levels of TNFalpha and its p55 soluble receptor are associated with an adverse prognosis in lymphoma patients. Br J Haematol 1996;93:352-9.
    119. Nacinovic-Duletic A, Stifter S, Dvornik S, Skunca Z, Jonjic N. Correlation of serum IL-6, IL-8 and IL-10 levels with clinicopathological features and prognosis in patients with diffuse large B-cell lymphoma. Int J Lab Hematol 2008;30:230-9.
    120. Joske D. Cytokines in lymphoma. Leuk Lymphoma 2006;47:570-2. 121. Knowles DM. Biology of non-Hodgkin's lymphoma. Cancer Treat Res 2001;104:149-200.
    122. Takeshita M, Sumiyoshi Y, Masuda Y, et al. Cytokine (interleukin-1 alpha, interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6)-possessing cells in lymph nodes of malignant lymphoma. Pathol Res Pract 1993;189:18-25.
    123. Foss HD, Anagnostopoulos I, Herbst H, et al. Patterns of cytokine gene expression in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood 1995;85:2862-9.
    124. Kubonishi I, Bandobashi K, Murata N, et al. High serum levels of CA125 and interleukin-6 in a patient with Ki-1 lymphoma. Br J Haematol 1997;98:450-2.
    125. Bennett CL, Silver SM, Djulbegovic B, et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA 2008;299:914-24.
    126. Leyland-Jones B, Semiglazov V, Pawlicki M, al t,2. Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy:A survival study. J Clin Oncol 2005;23:5960-72.
    127. Sasu BJ, Cooke KS, Arvedson TL, et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood 2010;115:3616-24.
    1. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med 2005;352:1011-23.
    2. Agarwal N, Prchal JT. Anemia of chronic disease (anemia of inflammation). Acta Haematol 2009;122:103-8.
    3. Nemeth E, Ganz T. The role of hepcidin in iron metabolism. Acta Haematol 2009; 122:78-86.
    4. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090-3.
    5. Domenico ID, Ward DM, Langelier C, Vaughn MB, Nemeth E. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 2007; 18:2569-78.
    6. De Domenico I, Nemeth E, Nelson JM, et al. The hepcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab 2008;8:146-56.
    7. De Domenico I, Lo E, Ward DM, Kaplan J. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proceedings of the National Academy of Sciences of the United States of America 2009; 106:3800-5.
    8. Fernandes A, Preza GC, Phung Y, et al. The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood 2009;114:437-43.
    9. Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002;110:1037-44.
    10. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113:1271-6.
    11. Pietrangelo A, Dierssen U, Valli L, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology 2007;132:294-300.
    12. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006;108:3204-9.
    13. Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 2007; 109:353-8.
    14. Truksa J, Peng H, Lee P, Beutler E. Different regulatory elements are required for response of hepcidin to interleukin-6 and bone morphogenetic proteins 4 and 9. Br J Haematol 2007;139:138-47.
    15. Peyssonnaux C, Zinkernagel AS, Datta V, Lauth X, Johnson RS, Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 2006; 107:3727-32.
    16. Nguyen NB, Callaghan KD, Ghio AJ, Haile DJ, Yang F. Hepcidin expression and iron transport in alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2006;291:L417-25.
    17. Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages:a role in host defense against tuberculosis. J Leukoc Biol 2007;82:934-45.
    18. Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007;117:1933-9.
    19. Wang RH, Li C, Xu X, et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2005;2:399-409.
    20. Papanikolaou G, Samuels ME, Ludwig EH, et al. Mutations in HFE2 cause iron overload in chromosome 1 q-linked juvenile hemochromatosis. Nat Genet 2004;36:77-82.
    21. Huang FW, Pinkus JL, Pinkus GS, Fleming MD, Andrews NC. A mouse model of juvenile hemochromatosis. J Clin Invest 2005;115:2187-91.
    22. Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 2005;115:2180-6.
    23. Babitt JL, Huang FW, Wrighting DM, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 2006;38:531-9.
    24. Zhang AS, West AP, Jr., Wyman AE, Bjorkman PJ, Enns CA. Interaction of hemojuvelin with neogenin results in iron accumulation in human embryonic kidney 293 cells. The Journal of biological chemistry 2005;280:33885-94.
    25. Zhang AS, Yang F, Meyer K, et al. Neogenin-mediated hemojuvelin shedding occurs after hemojuvelin traffics to the plasma membrane. The Journal of biological chemistry 2008;283:17494-502.
    26. Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab 2008;8:502-11.
    27. Truksa J, Lee P, Beutler E. Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness. Blood 2009;113:688-95.
    28. Kautz L, Meynard D, Monnier A, et al. Iron regulates phosphorylation of Smadl/5/8 and gene expression of Bmp6, Smad7, Idl, and Atoh8 in the mouse liver. Blood 2008;112:1503-9.
    29. Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet 2009;41:478-81.
    30. Andriopoulos B, Jr., Corradini E, Xia Y, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 2009;41:482-7.
    31. Ramji DP, Foka P. CCAAT/enhancer-binding proteins:structure, function and regulation. Biochem J 2002;365:561-75.
    32. Courselaud B, Pigeon C, Inoue Y, et al. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. The Journal of biological chemistry 2002;277:41163-70.
    33. Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem Biophys Res Commun 2007;356:312-7.
    34. Pinto JP, Ribeiro S, Pontes H, et al. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha. Blood 2008;111:5727-33.
    35. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090-3.
    36. De Domenico I, Ward DM, Langelier C, et al. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 2007;18:2569-78.
    37. De Domenico I, Ward DM, Musci G, Kaplan J. Evidence for the multimeric structure of ferroportin. Blood 2007;109:2205-9.
    38. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proceedings of the National Academy of Sciences of the United States of America 2005;102:1324-8.
    39. Liu XB, Nguyen NB, Marquess KD, Yang F, Haile DJ. Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol Dis 2005;35:47-56.
    40. Theurl I, Theurl M, Seifert M, et al. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood 2008; 111:2392-9.
    41. Tilg H, Ulmer H, Kaser A, Weiss G. Role of IL-10 for induction of anemia during inflammation. J Immunol 2002; 169:2204-9.
    42. Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood 2003;101:4148-54.
    43. Moldawer LL, Marano MA, Wei H, et al. Cachectin/tumor necrosis factor-alpha alters red blood cell kinetics and induces anemia in vivo. FASEB J 1989;3:1637-43.
    44. Maciejewski JP, Selleri C, Sato T, et al. Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J Clin Invest 1995;96:1085-92.
    45. Wang CQ, Udupa KB, Lipschitz DA. Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development. J Cell Physiol 1995;162:134-8.
    46. Taniguchi S, Dai CH, Price JO, Krantz SB. Interferon gamma downregulates stem cell factor and erythropoietin receptors but not insulin-like growth factor-I receptors in human erythroid colony-forming cells. Blood 1997;90:2244-52.
    47. Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res 1998;18:555-9.
    48. Minoo P, Zadeh MM, Rottapel R, Lebrun JJ, Ali S. A novel SHP-1/Grb2-dependent mechanism of negative regulation of cytokine-receptor signaling:contribution of SHP-1 C-terminal tyrosines in cytokine signaling. Blood 2004;103:1398-407.
    49. Henke M, Laszig R, Rube C, et, al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy:Randomised, double-blind, placebo-controlled trial.. Lancet 2003;2003:9392.
    50. Leyland-Jones B, Semiglazov V, Pawlicki M, al t,2. Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy:A survival study. J Clin Oncol 2005;23:5960-72.
    51. Kokhaei P, Abdalla AO, Hansson L, et al. Expression of erythropoietin receptor and in vitro functional effects of epoetins in B-cell malignancies. Clin Cancer Res 2007; 13:3536-44.
    52. Adamson JW. The anemia of inflammation/malignancy:mechanisms and management. Hematology Am Soc Hematol Educ Program 2008:159-65.
    53. Sasu BJ, Cooke KS, Arvedson TL, et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood 2010;115:3616-24.
    54. Yu PB, Hong CC, Sachidanandan C, et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 2008;4:33-41.
    55.冯俊,周道斌,赵永强等.促红细胞生成素对多发性骨髓瘤小鼠铁调蛋白hepcidin和肿瘤增殖的影响及机理.2009.
    56.王凤丹,周道斌,沈悌,武永吉.多发性骨髓瘤、非霍奇金淋巴瘤及Castleman病例hepcidin mRNA的表达.2009.
    57. Hohaus S, Massini G, Giachelia M, et al. Anemia in Hodgkin's lymphoma:the role of interleukin-6 and hepcidin. J Clin Oncol 2010;28:2538-43.
    58. Sharma S, Nemeth E, Chen YH, et al. Involvement of hepcidin in the anemia of multiple myeloma. Clin Cancer Res 2008; 14:3262-7.