TGF-β1和核心蛋白多糖对Tenon囊成纤维细胞增殖和热休克蛋白47基因表达影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     青光眼是一种严重致盲性眼病,降低眼内压是青光眼治疗的一个主要措施,滤过性手术具有较好的降压效果,目前被认为是控制眼压最有效的方法,然而由于创伤修复愈合,滤过口部位成纤维细胞增殖和胶原形成,可导致滤过通道闭合,严重影响青光眼滤过性手术的成功率。针对青光眼手术后瘢痕的形成,目前主要的对抗手段是术中术后采用抗瘢痕药物,临床上应用较广泛的是丝裂霉素C(MMC)和5-氟尿嘧啶(5-FU),这两种抗代谢药物的应用显著地提高了青光眼滤过性手术的成功率,但是也不可避免损伤邻近眼部组织,对结膜、角膜、巩膜、睫状体、小梁网等组织都有一定的毒副作用。寻找一种疗效高、特异性强、毒副作用小的抗瘢痕药物已成为近年来青光眼研究的热点。
     热休克蛋白47(HSP47)是一种分子量为47KD的蛋白,在内质网中能与多种类型胶原和前胶原特异性结合,HSP47作为胶原合成有关的“分子伴侣”,参与前胶原在内质网中的折叠、装配、修饰和转运等过程,对胶原分子合成质量控制起重要的作用,能够防止错误构型的前胶原分泌出内质网。HSP47在创伤修复过程中表达增强,且在全身部分纤维化
Backgrouds: Glaucoma is a severe blind leading disease .Reducing the intraocular pressure (IOP) is the main therapeutic measure . Glaucoma filtration surgery (GFS)is the most popular strategy applied to reduce the IOP. However, Fibroproliferating and collagen formation resulted from the fibroblasts lead to the obstruction of the created fistula and subconjunctival filtration area. Antifibrotic therapy is the main means to prevent scarring .Antifibrotics, such as 5-fluorouracil and mitomycin C, are widespread clinically applied to increase the success of surgery.Despite the positive effect on the success rate, diffusion into adjacent ocular tissues may result in impairment of other than the targeted cells and in complications of conjunctiva, cornea, sclera, ciliary body and trabecular meshwork. New strategies are being developed, to find a more effective and less complication way to suppress the wound-healing process.
    Heat shock protein47(HSP47) is a 47-kDa stress protein that is a collagen-specific molecular chaperone residing in the endoplasmic reticulum (ER). HSP47 is closely involved in the folding, assembly, modification and transport of procollagen. HSP47 might be involved in a quanlity control
引文
1. 1 Migdal C, Gregory W, Hitchings RA. .Long-term functionaloutcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology, 1994,101:1951-1656.
    
    2. The AGIS Investigators. The advanced glaucoma intervention study(AGIS):7.The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol, 2000,130:490-491.
    
    3. Addicks EM, Quigley A, Green WR, et al. Histological characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol, 1983, 101: 795-798.
    
    4. Hitchings RA, Grierson I. Clinicopathological correlation in eyes with failed fistulizing surgery. Trans Ophthalmol Soc, 1983, 103: 84-88.
    
    5. Mehta K, McQueen T, Tucker S. Inhibition by all-traps-retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages. J Leukoc Biol,1994,55: 336-342.
    
    6. Choia WH, Jia KA, Jeona SB, et al. Anti-inflammatory roles of retinoic acid in rat brain astrocytes: Suppression of interferon - γ -induced JAK/STAT phosphorylation. Biochem Biophys Res Comrnun, 2005, 329:125-131.
    
    7. Blumenkranz MS, Claflin A, Hajek AS, et al. Selection of therapeutic agents for intraocular proliferative diseases. Arch Ophthalmol, 1984: 102:598.
    
    8. Roberts AB, Sporn MB. Differential expression of the TGF-beta isoforms in embryogenesis suggests specific roles in developing and adult tissues. Mol Reprod Dev, 1992,32: 91-98.
    
    9. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-betal and TGF-beta2 or exogenous addition of TGF-beta3 to cutaneous rat wounds reduces scarring. J Cell Sci, 1995,108: 985-1002.
    
    10. Nguyen NX, Kuchle M, Martus P, et al. Quantification of blood-aqueous barrier breakdown after trabeculectomy: pseudoexfoliation versus primary open-angle glaucoma. J Glaucoma, 1999, 8: 18-23.
    
    11. O'Kane S, Ferguson MWJ. Transforming growth factor β s and wounding healing, Int J Biochem Cell Biol, 1997,29:63-78.
    
    12. Corderio MF. Beyond mitomycin: TGF-β and wound healing. Prog Reyin Eye Res, 2002,21: 75-89.
    
    13. Werner S, Grose R, Regulation of wound healing by growth factors and cytokines. Physiol Rev, 2003,83:835-870.
    
    14. Kay EP, Lee HK, Park KS, et al. Indirect mitogenic effect of transforming growth factor- β on cell proliferation of subconjunctival fibroblasts. Invest Ophthalmol Vis Sci, 1998,39:481-486.
    
    15. Hocking A, Shinomura T, McQuillan D: Leucine rich repeat glycoproteins of the extracellular matrix. Matrix Biol, 1998, 17:1-19.
    
    16. Krusius T, Ruoslathi E: Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc Natl Acad Sci USA ,1986, 83: 7683-7687.
    
    17. Thieszen S, Rosenquist T: Expression of collagens and decorin during aortic arch artery development: implications for matrix pattern formation. Matrix Biol 1995, 14:573-582.
    
    18. Merle B, Malaval L, Lawler J, Delmas P, Clezardin P: Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1. J Cell Biochem 1997, 67:75-83.
    
    19. Merle B, Durussel L, Delmas PD, Clezardin P: Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain. J Cell Biochem 1999, 75:538-546.
    
    20. Yamaguchi Y, Ruoslahti E: Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation. Nature 1988, 336:244-246.
    
    21. Nash MA, Loercher AE, Freedman RS: In vitro growth inhibition of ovarian cancer cells by decorin: synergism of action between decorin and carboplatin. Cancer Res 1999, 59:6192-6196.
    
    22. Kresse H, Schonherr E . Proteoglycans of the exracellular matrix and growth control. J Cell Physiol, 2001,189: 266-274.
    
    23. Zhang XF, Guo SZ, Lu KH, et al. Different roles of PKC and PKA in effect of interferon-gamma on proliferation and collagen synthesis of fibroblasts . Acta Pharmacol Sin, 2004,25:1320-1326.
    
    24. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-betal and TGF-beta2 or exogenous addition of TGF-beta3 to cutaneous rat wounds reduces scarring. J Cell Sci, 1995,108:985-1002.
    
    25. Chen C, Michelini-Norris B, Stevens S, et al. Measurement of mRNAs for TGFss and extracellular matric proteins in corneas of rats after PRK. Ivest Ophthalmol Vis Sci. 2000, 41:4108-4116.
    
    26. Tripathi RC, Li J, Chalam KV, et al. Expression of growth factor mRNAs by human Tenon's capsule fibroblasts. Exp Eye Res, 1996,63:339-346.
    27.章静波.组织和细胞培养技术[M].北京:人民卫生出版社,2002:111—112,147—148.
    28. Denk PO, Knorr M. Serum-free cultivation of human Tenon's capsule fibroblasts. Curr Eye Res, 1999, 18: 130-134.
    29. Kay EP, Lee HK, Park KS, et al. Indirect mitogenic effect of transforming growth factor-β on cell proliferation subconjunctival fibroblasts. Invest Ophthalmol Vis Sci, 1998, 39: 481-486.
    30. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta singal transduction. J Cell Sci. 2001; 114(Pt24): 4359-4369.
    31. Blobe GG, Liu X, Fang SJ, et al. A novel mechanism for regulating transforming growth factor beta(TGF-beta) signaling. Functional modulation of type Ⅲ TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC. J Biol Chem. 2001; 276(43): 39608-39617.
    32.许川山,余茜.转化生长因子β/Smads信号途径在增生性瘢痕发生、发展中的作用.中国临床康复.2004,8(2):332-333.
    33. Abdel-Wahab N, Wicks SJ, Mason RM, et al. Decorin suppresses transforming growth factor-beta-induced expression of plasminogen activator inhibitor-1 in human mesangial cells through a mechanism that involves Ca~(2+)-dependent phosphorylation of Smad2 at serine-240. Biochem J. 2002; 362(Pt3): 643-649.
    34. De Luca A, Santra M, Baldi A, Giordano A, Iozzo RV: Decorin-induced growth suppression is associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases. J Biol Chem 1996, 271: 18961-18965.
    35. Fischer J, Kinsella M, Levkau B, Clowes A, Wight T: Retroviral overexpression of decorin differentially affects the response of arterial smooth muscle cells to growth factors. Arterioscle Thromb Vasc Biol 2001,21:777-784.
    
    36. Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature, 1992, 360:361-364.
    
    37. Kolb M, Margetts PJ, Sime PJ, et al. Proteoglycans decorin and biglycan differentially modulate TGF- β -mediated fibrotic responses in the lung. Am J Physiol Lung Cell Mol Physiol. 2001; 280: L1327-1334.
    
    38. Sayani K, Dodd CM, Nedelec B, et al. Delayed appearance of decorin in healing burn scars. Histopathology, 2000,36:262-267.
    1. Brown JC, Timpl R. The collagen superfamily. Int Arch Allergy Immunol, 1995, 107:484-490.
    
    2. Nagata K.HSP47: a collagen-specific molecular chaperone. Trends Biochem Sci ,1996, 21:22-26.
    
    3. Yamaguchi K, Barbe MF, Brown IR, et al. Induction of stress (heat shock) protein 70 and its mRNA in rat corneal epithelium by hyperthermia. Curr Eye Res, 1990,9:913-918.
    
    4. Bende T, Seiler T, Wollensak J. Side effects in excimer corneal surgery. Corneal thermal gradients. Graefes Arch Clin Exp Ophthalmol, 1988, 226:277-280.
    
    5. Marshall J, Trokel SL, Rothery S, et al. Long-term healing of the central cornea after photorefractive keratectomy using an excimer laser. Ophthalmology, 1988,95:1411-1421.
    
    6. Garrison BJ, Srinivasan R. Microscopic model for the ablative photodecomposition polymers by far-ultraviolet radiation(193 nm). Appl Phys Lett, 1985,44:849-851.
    
    7. Marshall J, Trokel S, Rothery S, et al. An ultrastructural study of corneal incisions induced by an excimer laser at 193 nm. Ophthalmology, 1985, 92:749-758.
    
    8. Zabel R, Troft S, Marshall J. Excimer laser photorefractive keratectomy: Endothelial morphology following area ablation of the cornea. Invest Ophthalmol Vis Sci,1988, 29(Suppl):390.
    
    9. Krueger RR, Krasinski JS, Radzewicz C, et al. Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity. Cornea 1993,12: 330-334.
    
    10. Bor Z, Racz BHB, Szabo G,et al. Plume emission, shock wave and surface formation during excimer laser ablation of the cornea. Refract Corneal Surg, 1993,9(Suppl):111-115.
    
    11. Moriyama T, Kawada N, Ando A, et al. Up-regulation of HSP47 in the mouse kidneys with unilateral ureteral obstruction. Kendney Int, 1998,54:110-119.
    
    12. Burke J, Foster S, Herschler J. Aqueous humor as a modulator of growth in fibroblast cultures. Curr Eye Res, 1982,2:825-841.
    
    13. Grainger DJ, Wakefield L, Bethell HW, et al. Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med, 1995;l:932-937.
    
    14. Hirata H, Yamamura I,Yasuda K, et al. Separate cis-acting DNA elements control cell type-and tissue-specific expression of collagen binding molecular chaperone HSP47.J Biol Chem, 1999, 274: 35703-35710.
    
    15. Sasaki, H, Sato, T, Yamauchi, N, et al .Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J Immunol,2002,168:5178-5183.
    
    16. Takechi H, Hirayoshi K, Nakai A, et al. Molecular cloning of a mouse 47-kDa heat-shock protein(HSP47), a collagen-binding stress protein and its expression during the differentiation of F9 teratocarcinoma cells. Eur J Biochem, 1992,206:323-329.
    17. Perisic O, Xiao H, Lis J.T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell, 1989,59:797-806.
    
    18. Nagai N, Hosokawa M, Itohara S, et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol,2000,150:1499-1506.
    
    19. Jain N, Brickenden A, Ball EH, et al. Inhibition of procollagen I degradation by colligin: a collagen-binding serpin. Arch Biochem Biophys, 1994,314:23-30.
    
    20. Davids JW, El-Thaher, TSH, Nakai A, et al. Modeling the three-dimensional structure of serpin/molecular chaperone HSP47. Bioorganic Chem, 1995, 23: 427-438.
    
    21. Tasab M, Batten MR, Bulleid NJ. HSP47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO J, 2000,19:2204-2211.
    
    22. Nakai A, Satoh M, Hirayoshi K, et al. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol,1992,117:903-914.
    1. Migdal C, Gregory W. Hitchings R.A. Long-term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology, 1994, 101: 1651-1656.
    2. Skuta GL, Parrish RK. Wound healing in glaucoma filtering surgery. Surv Ophthalmol, 1987, 32: 149-170.
    3. Holund B, Clemmensen I, Junker P, et al. Fibronectin in experimental granulation tissue. Acta Pathol Mi-crobiol Immunol Scand, 1982, 90: 159-165.
    
    4. Viljanto J, Penttinen R, Raekallio J. Fibronectin in early phases of wound healing in children . Acta Chir Scand, 1981,147: 7-13.
    
    5. Clore JN, Cohen IK, Diegelmartn RE Quantitation of collagen types I and III during wound healing in rat skin. Proc Soc Exp Biol Med ,1979, 161:37-340.
    
    6. Kurkinen M, Vaheri A, Roberts PJ, et al. Sequential appearance of fibronectin and collagen in experimental granulation tissue. Lab Invest, 1980,43:47-51.
    
    7. Addicks EM, Quigley A, Green WR, et al. Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol, 1983, 101: 795-798.
    
    8. Hitchings RA, Grierson I. Clinicopathological correlation in eyes with failed fistulizing surgery. Traps Ophthalmol Soc, 1983,103: 84-88.
    
    9. Bindlish R, Condon GP, Schlosser JD, et al. Efficacy and safety of mitomycin-C in primary trabeculectomy: five-year follow-up. Ophthalmology, 2002, 109: 1336-1341.
    
    10. Jampel HD, Pasquale LR, Dibernardo C. Hypotony maculopathy following trabeculectomy with mitomycin C. Arch Ophthalmol, 1992, 110: 1049-1050.
    
    11. Crowston JG, Akbar AN, Constable PH, et al. Antimetabolites-induced apoptosis in Tenon's capsule fibroblasts. Invest Ophtbalmol Vis Sci,1998, 39:449-454.
    
    12. 12 Khaw PT, Doyle JW, Sherwood MB, et al. Prolonged localized tissue effects from 5-minute exposures to fluorouracil and mitomycin C. ArchOphthalmol, 1993, 111: 263-267.
    13.李桥,卞春及.兔眼小梁切除术后应用5-Fu抑制瘢痕增生的对比实验研究.临床眼科杂志,2000;8:140-144
    14. Reichel MB, Cordeiro MF, Alexander RA, et al. New model of conjunctival scarring in the mouse eye. Br J Ophthalmol, 1998, 82: 1072-1077.
    15. Doyle JW, Sherwood MB, Khaw PT, et al. Intraoperative 5-fluorouracil for filtration surgery in the rabbit. Invest Ophthalmol Vis Sci. 1993, 98: 503.
    16. Seetner A, Morin JD. Healing of trabeculectomies in rabbits. Can J Ophthalmol, 1979, 14: 121-125.
    17. Miller MH, Joseph NH, Ennis KW, et al. An animal model of filtration surgery. Trans Ophthalmol Soc UK, 1985; 104: 893-897.
    18. Miller MH, Grierson I, Unger WI, et al. Wound healing in an animal model of glaucoma fistulizing sugery in the rabbits. Ophthalmic Surg, 1989, 20: 350-357.
    19. Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003, 48: 314-346.
    20. Nguyen NX, Kuchle M, Martus P, et al. Quantification of blood-aqueous barrier breakdown after trabeculectomy: pseudoexfoliation versus primary open-angle glaucoma. J Glaucoma, 1999, 8: 18-23.
    21. O'Kane S, Ferguson MWJ. Transforming growth factor β s and wounding healing. Int J Biochem Cell Biol, 1997, 29: 63-78.
    22. Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol, 1999,179:325-335.
    
    23. Tripathi RC, Li J, Chalam KV, et al. Expression of growth factor mRNAs by human Tenon's capsule fibroblasts. Exp Eye Res, 1996, 63:339-346.
    
    24. Douglas W, Esson, Arvind Neelakantan, et al. Expression of connective tissue growth factor after glaucoma filtration surgery in a rabbit model. Investigative Ophthalmology and Visual Science. 2004, 45: 485-491.
    
    25. Linares HA. Measurement of collagen-proteoglycan interaction hypertrophic scars. Plastic and Reconstructive Surgery, 1983, 71: 818-823.
    
    26. Siriwardena D, Khaw PT, King AJ, et al. Human anti-transforming growth factor-beta2 monoclonal antibody-a new modulator of wounding healing in trabeculectomy. Ophthalmology, 2002,109:427-430.
    
    27. Kay EP, Lee HK, Park KS, et al. Indirect mitogenic effect of transforming growth factor- β on cell proliferation of subconjunctival fibroblast. Invest Ophthalmol Vis Sci, 1998, 39:481-486.
    1. 1 Nagata K.HSP47: a collagen-specific molecular chaperone. Trends Biochem Sci ,1996, 21:22-26.
    
    2. 2 Nagata K, Saga S, Yamada K.M. A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. Cell Biol, 1986, 103:223-229.
    
    3. 3 Nagata K. Expression and function of heat shock protein47: a collagen specific molecular chaperone in the endoplasmic reticulum. Matrix Biol, 1998,169: 379-386.
    
    4. 4 Satoh M, Hirayoshi K, Yokota S, et al. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol, 1996,133:469-483.
    
    5. Nagai N, Hosokawa M, Itohara S, et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol, 2000,150:1499-1506.
    
    6. Jain N, Brickenden A, Ball EH, et al. Inhibition of procollagen I degradation by colligin: a collagen-binding serpin. Arch Biochem Biophys, 1994,314:23-30.
    
    7. Hirayoshi K, Kudo H, Takechi H, et al. HSP47: a tissue-specific transformation-sensitive collagen-binding heat shock protein of chicken embryo fibroblasts. Mol Cell Biol, 1991,11:4036-4044.
    
    8. Davids JW, El-Thaher, TSH, Nakai A, et al. Modeling the three-dimensional structure of serpin/molecular chaperone HSP47. Bioorganic Chem, 1995, 23: 427-438.
    9. Tasab M, Batten MR, Bulleid NJ. HSP47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO J, 2000,19:2204-2211
    
    10. Thomson CA, Ananthanarayanan VS. Structure-function studies on hsp47:pH-dependent inhibition of collagen fibril formation in vitro. Biochem J, 2000,349(Pt 3):877-883.
    
    11. Macdonald JR, Bachinger HP. HSP47 binds cooperatively to triple helical type I collagen but has little effect on the thermal stability or rate of refolding . J Biol Chem, 2001, 276:25399-25403.
    
    12. Nakai A, Satoh M, Hirayoshi K, et al. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol,1992,117:903-914.
    
    13. Prockop DJ, Kivirikko KI. Collagens: molecular biology diseases and potentials for therapy. Annu Rev Biochem, 1995,64:403-434.
    
    14. Lamande SR, Bateman JF. Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol, 1999,10:455-464.
    
    15. Koide T, Asada S, Nagata K. Substrate recognition of collagen-specific molecular chaperone HSP47. Structural requirements and binding regulation. J Biol Chem, 1999,274:34523-34526.
    
    16. Koide T, Aso A, Yorihuzi T, et al. Conformational requirements of collagenous peptides for recognition by the chaperone protein HSP47. J Biol Chem 2000,275:27957-27963.
    
    17. Shah NK, Ramshaw JA, Kirkpatrick A, et al. A host-gust set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Biochemistry, 1996, 35:10262-10268.
    
    18. Shah NK, Sharma M, Kirkpatrick A, et al. Gly-Gly-containing triplets of low stability adjacent to a type III collagen epitope. Biochemistry, 1997, 36: 5878-5883.
    
    19. Nagata K, Yamada KM. Phosphorylation and transformation sensitivity of a major collagen-binding protein of fibroblasts. J Biol Chem, 1986,261:7531-7536.
    
    20. Nakai A, Hirayoshi K, Nagata K. Transformation of BALB/3T3 cells by simian virus 40 causes a decreased synthesis of a collagen-binding heat-shock protein(hsp47). J Biol Chem, 1990,265:992-999.
    
    21. Takechi H, Hirayoshi K, Nakai A, et al. Molecular cloning of a mouse 47-kDa heat-shock protein(HSP47), a collagen-binding stress protein and its expression during the differentiation of F9 teratocarcinoma cells. Eur J Biochem, 1992,206:323-329.
    
    22. Natsume T, Koide T, Yokota S, et al. Interactions between collagen-binding stress protein HSP47 and collagen. Analysis of kinetic parameters by surface plasmon resonance biosensor. J Biol Chem, 1994, 269: 31224-31228.
    
    23. Sauk JJ, Smith T, Norris K, et al. Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(1) chains of type I procollagen. J Biol Chem, 1994,269: 3941-3946.
    
    24. Hirata H, Yamamura I, Yasuda K, et al. Separate cis-acting DNA elements control cell type- and tissue-specific expression of collagen binding molecular chaperone HSP47. J Biol Chem, 1999, 274: 35703-35710.
    25. Yasuda K, Hirayoshi K, Hirata H, et al. The Kruppel-like factor Zf9 and protein in the Spl family regulate the expression of HSP47, a collagen- specific molecular chaperone. J Biol Chem, 2002, 277: 44613-44622.
    
    26. Wilson R, Lees JF, Bulleid NJ. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem, 1998, 273: 9637-9643.
    
    27. Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol,2003,22:15-24.
    
    28. Hendershot LM, Bulleid NJ. Protein-specific chaperones: the role of hsp47 begins to gel. Curr Biol, 2000,10:R912-915.
    
    29. Kiode T, Takahara Y, Asada S, et al. Xaa-Arg-Gly triplets in the collagen triple helix are dominant binding sites for the molecular chaperone HSP47. J Biol Chem, 2002,277:6178-6182.
    
    30. Saga S, Nagata K, Chen WT, et al. pH-Dependent function, purification, and intracellular location of a major collagen-binding glycoprotein. J Cell Biol,1987,105:517-527.
    
    31. Leikina E, Mertts MV, Kuznetsova N,et al. Type I collagen is thermally unstable at body temperatrue. Proc Natl Acad Sci USA, 2002, 99:1314-1318.
    
    32. Perisic O, Xiao H, Lis J.T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell, 1989,59:797-806.
    
    33. Nakai A, Morimoto R. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol,1993,13: 1983-1997.
    34. Nakai A, Tanabe M, Kawazoe Y et al. HSP47: a new member of the human heat shock factor gene family which lacks properties of a transcriptional activator. Mol Cell Biol, 1997, 17: 469-481.
    35. Takechi H, Hosokawa N, Hirayoshi K, et al. Alternative 5'splice site selection induced by heat shock. Mol Cell Biol, 1994, 14: 567-575.
    36.朱勇飞,朱江波,周宏远等.热休克蛋白47和热休克蛋白60在小鼠胚胎器官形成过程中的表达.解剖学杂子,2005,28:425-427
    37. Tuft SJ, Gartry DS, Rawe IM, et al. Photorefractive keratectomy: implications of corneal wound healing. Br J Ophthalmol, 1993, 77: 243-247.
    38. Lohmann CP, Patmore A, O'Brart, et al. Regression and wound healing after excimer laser PRK: a histopathological study on human corneas. Eur J Ophthalmol, 1997, 7: 130-138.
    39. Beuerman RW, McDonald MB, Shofner RS, et al. Quantitative histological studies of primate corneas after excimer laser photorefractive keratectomy. Arch Ophthalmol, 1994, 112: 1103-1110.
    40. Fantes FE, Hanna KD, Waring GO 3rdn, et al. Wound healing after eximer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol, 1990, 108: 665-675.
    41. Del Pero RA, Gigstad JE, Robert AD, et al. A refractive and histopathologic study of excimer laser keratectomy in primates. Am J Ophthalmol, 1990, 109: 419-429.
    42. Moller-Pedersen T, Li HF, Petroll WM, et al. Confocal microscopic characterization of wound repair after photorefractive keratectomy. Invest Ophthalmol Vis Sci, 1998, 39: 487-501.
    43. Kato K, Nakayasu K, Ikegami K, et al. Analysis of glucosaminoglycans in rabbit cornea after excimer laser keratectomy. Br J Ophthalmol, 1999,83:609-612.
    
    44. Nakayasu K, Goto T, Ishikawa T, et al. Glucosaminoglycans in subepithelial opacity after excimer laser keratectomy. Nippon Ganka Gakki Zassi (J Jpn Ophthalmol Soc)1996,100:350-357.
    
    45. Kasagi Y, Yamashita H. HSP47 expression in cornea after excimer laser photoablation. Jpn J Ophthalmol, 2002,46:123-129.
    
    46. Yamaguchi K, Barbe MF, Brown IR, et al. Induction of stress (heat shock) protein 70 and its mRNA in rat corneal epithelium by hyperthermia. Curr Eye Res, 1990,9:913-918.
    
    47. Bende T, Seiler T, Wollensak J. Side effects in excimer corneal surgery. Corneal thermal gradients. Graefes Arch Clin Exp Ophthalmol, 1988, 226: 277-280.
    
    48. Marshall J, Trokel SL, Rothery S, et al. Long-term healing of the central cornea after photorefractive keratectomy using an excimer laser. Ophthalmology, 1988,95:1411-1421.
    
    49. Garrison BJ, Srinivasan R. Microscopic model for the ablative photodecomposition polymers by far-ultraviolet radiation(193 nm). Appl Phys Lett, 1985,44: 849-851.
    
    50. Marshall J, Trokel S, Rothery S, et al. An ultrastructural study of corneal incisions induced by an excimer laser at 193 nm. Ophthalmology, 1985,92:749-758.
    
    51. Zabel R, Troft S, Marshall J. Excimer laser photorefractive keratectomy: Endothelial morphology following area ablation of the cornea. Invest Ophthalmol Vis Sci,1988, 29(Suppl):390.
    
    52. Krueger RR, Krasinski JS, Radzewicz C, et al. Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity. Cornea 1993,12: 330-334.
    
    53. Bor Z, Racz BHB, Szabo G,et al. Plume emission, shock wave and surface formation during excimer laser ablation of the cornea. Refract Corneal Surg, 1993,9(Suppl):111-115.
    
    54. Razzaque MS, Foster CS, Ahmed AR, Role of collagen-binding heat shock protein 47 and transforming growth factor- β 1 in conjunctival scarring in ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci, 2003,44:1616-1621.
    
    55. Moriyama T, Kawada N, Ando A, et al. Up-regulation of HSP47 in the mouse kidneys with unilateral ureteral obstruction. Kendney Int, 1998,54:110-119.
    
    56. Razzaque MS, Kumatori A, Harada T, et al. Coexpression of collagens and collagen-binding heat shock protein 47 in human diabetic nephropathy and IgA nephropathy. Nephron, 1998,80:434-443.
    
    57. Sunamoto M, Kuze K, Iehara N, et al. Expression of heat shock protein 47 is increased in remnant kidney and correlates with disease progression. Int J Exp Path, 1998,79:133-140.
    
    58. Razzaque MS, Taguchi T. Role of glomerular epithelial cell-derived heat shock protein 47 in experimental lipid nephropathy. Kidney Int, 1999, 56(suppl 71): S256-259.
    
    59. Sunamoto M, Kuze K, Tsuji H, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress accumulation in experimental glomerlonephritis. Lab Invest, 1998; 78: 967-972.
    60. Masuda H, Fukumoto M, Hirayoshi K, et al. coexpression of the collagen-binding stress protein HSP47 gene and the α 1(Ⅰ) and α 3(Ⅲ) collagen genes in carbon tetrachloride-induced rat liver fibrosis. J Clin Invest, 1994, 94: 2481-2488.
    61. Razzaque MS, Hossain MA, Kohno A, et al. Blcomycin-induced pulmonary fibrosis in rat is associated with increased expression of collagen-binding heat shock protein(HSP47). Virchows Arch, 1998, 432: 455-460.
    62.郭津生,王吉耀,纪元等.热休克蛋白47在人肝癌癌周组织和大鼠胃溃疡组织中的表达和意义.胃肠病学和肝病学杂子.2000,9:255-258
    63. Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003, 48: 314-346.
    1.杨力,郭树忠.成纤维细胞与创伤修复的生物学过程.中国临床康复,2002,6:470-471.
    2. Barnard JA, Lyons RM, Moses HL. The cell biology of transforming growth factor beta. Biochim Biophys Acta, 1990, 1032: 79-87.
    3. Corderio MF. Beyond mitomycin: TGF-β and wound healing. Prog Reyin Eye Res, 2002, 21: 75-89.
    4. Eisenstein R, Grant-Bertacchini D. Growth inhibitory activities in avascular tissues are recognized by anti-transforming growth factor-beta antibodies. Curr Eye Res, 1991, 10: 157-162.
    5. Kehrl JH, Thevenin C, Riechmann P, et al. Transforming growth factor-beta suppresses human B lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J Immunol, 1991, 146: 4016-4023.
    6. Jampel HD, Roche N, Stark WJ, et al. Transforming growth factor-beta in human aqueous humor. Curr Eye Res, 1990, 9: 963-969.
    7. Tripathi RC, Li J, Borisuth NS, et al. Trabecular cells of the eye express messenger RNA for transforming growth factor-beta 1 and secrete this cytokine. Invest Ophthalmol Vis Sci, 1993, 34: 2562-2569.
    8. Tripathi RC, Li J, Chan WF, et al. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta2. Exp Eye Res, 1994, 59: 723-727.
    9.曹阳,魏厚仁,富名水等.体外培养牛眼小梁细胞转化生长因子-β及其受体蛋白.眼科研究,2000,21:235-237.
    10. Wordinger RJ, Clark AF, Agarwal R, et al. Cultured human trabecular meshwork cells express functional growth factor receptors. Invest Ophthalmol Vis Sci, 1998, 39: 1575-1589.
    11. Pena JD, Taylor AW, Ricard CS, et al. Transforming growth factor beta isoforms in human optic nerve heads. Br J Ophthalmol, 1999, 83: 209-218.
    12. Knepper PA, Goossens W, Hvizd M, et al. Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci, 1996, 37: 1360-1367.
    13. Lutjen-Drecoll E, Shimizu T, Rohrbach M, et al. Quantitative analysis of 'plaque material' in the inner- and outer wall of Schlemm's canal in normal- and glaucomatous eyes. Exp Eye Res, 1986, 42: 443-455.
    14. Doyle JW, Smith MF, Garcia JA, et al. Treatment of bleb leaks with transforming growth factor-beta in the rabbit model. Invest Ophthalmol Vis Sci, 1997, 38: 1630-1634.
    15.曹阳,魏厚仁,张缨等.转化生长因子-β 2对牛眼小梁细胞外基质合成的影响.中华眼科杂志,2002,38:429-432.
    16.钟丽春,李美玉.转化生长因子-β1诱导培养的人眼小梁细胞产生弹性蛋白的实验研究.中华眼科杂志,1999,35:383-385.
    17.李梅,李美玉.转化生长因子-β1对培养人眼小梁细胞分泌Ⅳ型胶原的影响.眼科学报,2000,16:217-219.
    18.刘菲,张德秀,曹培龙等.转化生长因子-β1对体外培养的牛眼小梁细胞MMP3和MMP9表达的影响.眼科研究,2002,20:428-430.
    19. Wordinger RJ, Clark AF, Agarwal R, et al. Cultured human trabecular meshwork cells express functional growth factor receptors. Invest Ophthalmol Vis Sci, 1998, 39: 1575-1589.
    20. Tamm ER, Siegner A, Baur A, et al. Transforming growth factor-betal induces alpha-smooth muscle-actin expression in cultured human and monkey trabecular meshwork. Exp Eye Res, 1996, 62: 389-397.
    21.钟丽春,李美玉.转化生长因子-β1对培养的人眼小梁细胞微丝肌动蛋白的影响.中华眼科杂志,1999,35:186-189.
    22. Cordeiro MF, Gay JA, Khaw PT. Human anti-transforming growth factor-beta2 antibody: a new glaucoma anti-scarfing agent. Invest Ophthalmol Vis Sci, 1999, 40: 2225-2234.
    23. Nguyen NX, Kuchle M, Martus P, et al. Quantification of blood-aqueous barrier breakdown after trabeculectomy: pseudoexfoliation versus primary open-angle glaucoma. J Glaucoma, 1999, 8: 18-23.
    24. O'Kane S, Ferguson MWJ. Transforming growth factor β s and wounding healing. Int J Biochem Cell Biol, 1997, 29: 63-78.
    25. Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type Ⅱ, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol, 1999, 179: 325-335.
    26. Tripathi RC, Li J, Chalam KV, et al. Expression of growth factor mRNAs by human Tenon's capsule fibroblasts. Exp Eye Res, 1996, 63: 339-346.
    27. Codeiro MF, Reichel MB, Gay JA, et al. Transforming growth factor-beta1, -beta2, and-beta3 in vivo: effects on normal and mitomycin C-modulated cojunctival scarfing. Invest Ophthalmol Vis Sci, 1999, 40: 1975-1982.
    28. Picht G, Welge-Luessen U, Grehn F, et al. Transforming growth factor 3 2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefe's Arch Clin Exp Ophthalmol, 2001, 239:199-207.
    
    29. Denk PO, Roth-Eichhorn AM, Gressner AM, et al. Effect of cytokines on regulation of the production of transforming growth factor beta-1 in cultured human Tenon's capsule fibroblasts. Euro J Ophthalmol, 2000,10:110-115.
    
    30. Riikonen T, Koivisto L, Vihinen P, et al. Transforming growth factor-beta regulates collagen gel contraction by increasing alpha 2 beta 1 integrin expression in osteogenic cells. J Biol Chem, 1995, 270:376-382.
    
    31. Kay EP, Lee HK, Parl KS, et al. Indirect mitogenic effect of transforming growth factor-beta on cell proliferation of subconjunctival fibroblasts. Invest Ophthalmol Vis Sci, 1998,39: 481-486.
    
    32. Addicks EM, Quigley A, Green WR, et al. Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol, 1983, 101: 795-798.
    
    33. Hitchings RA, Grierson I. Clinicopathological correlation in eyes with failed fistulizing surgery. Traps Ophthalmol Soc, 1983,103: 84-88.
    
    34. Bindlish R, Condon GP, Schlosser JD, et al. Efficacy and safety of mitomycin-C in primary trabeculectomy: five-year follow-up. Ophthalmology, 2002, 109: 1336-1341.
    
    35. Jampel HD, Pasquale LR, Dibernardo C. Hypotony maculopathy following trabeculectomy with mitomycin C. Arch Ophthalmol, 1992, 110: 1049-1050.
    36. Crowston JG, Akbar AN, Constable PH, et al. Antimetabolites-induced apoptosis in Tenon's capsule fibroblasts. Invest Ophtbalmol Vis Sci, 1998, 39: 449-454.
    37. 37 Khaw PT, Doyle JW, Sherwood MB, et al. Prolonged localized tissue effects from 5-minute exposures to fluorouracil and mitomycin C. ArchOphthalmol, 1993, 111: 263-267.
    38.38谢琳,贺翔鸽.转化生长因子-β抑制剂Decorin抗眼结膜滤过泡瘢痕形成的实验研究.中华创伤杂志,2003,19:102-106.
    39.39曹阳,魏厚仁,簦邦红.Tranilast抑制TGF-β 2对人眼小梁细胞胶原合成的促进作用.中国实用眼科杂志,2003,21:555-557.
    40. 40 Yasukawa T, Kimura H, Dong J, et al. Effect of tranilast on proliferation, collagen gel contraction, and transforming growth factor beta secretion of retinal pigment epithelial cells and fibroblasts. Ophthalmic Res, 2002, 34: 206-212.
    41. 41 Mietz H, Krieglstein GK. Suramin to enhance glaucoma filtering procedures: a clinical comparison with mitomyein. Ophthalmic Surg Lasers, 2001, 32: 358-369.
    42. 42 Shah M, Foreman DM, Ferguson MW. Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet, 1992, 339: 213-214.
    43. 43 Siriwardena D, Khaw PT, King AJ, et al. Human anti-transforming growth factor-beta2 monoclonal antibody-a new modulator of wounding healing in trabeculectomy. Ophthalmology, 2002, 109: 427-430.
    44. Cordeiro MF, Mead A, Ali RR, et al. Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther, 2003,10:59-71.
    
    45. Angella GJ, Sherwood MB, Balasubramanian L, et al. Enhanced short-term plasmid transfection of filtration surgery tissues. Invest Ophthalmol Vis Sci, 2000,41:4158-4162.
    
    46. Skaf M, di Martino DS, de Arruda Mello PA, et al. Adenoviral-mediated gene transfer to the filtering bleb in rabbits. J Glaucoma, 2001, 10: 470-476.