轮式移动机器人的运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人在军事和国民经济领域有着广泛的应用前景。本文对基于多传感器的的移动机器人在固定区域非结构化动态环境下的全局定位和运动控制的一些关键技术以及传感器引导进行了较为深入的研究。提出了多种新的便于工程实现的环境感知、路径规划、行为控制的模型和算法。主要内容概括如下:
     1.研究并构建了一个由移动机器人和无线通信系统组成的自主导航控制实验系统。平台硬件系统各模块采用独立微处理器完成控制及信息处理功能,实现了多模块并行运行。模块之间采用的并行通信方式提高了信息传输速度,同时简化了系统的软件设计。无线通信系统基于802.11b、以无线路由器为中心的基础模式,在嵌入式平台构建,实现移动机器人的远程监控。实验表明数据传输稳定、正确率满足远程控制的要求。
     2.研制了一种基于多微处理器的分布式超声探测系统。该探测系统由传感器工作模式控制模块和智能超声测距模块阵列组成。由独立的微处理器控制一个超声传感器,完成测距信息预处理,并可根据不同的控制策略实现分组并行工作,提高了探测系统的实时性。
     3.研究了基于模块化层级的基于行为结构的行为控制策略。以面向任务的方式分解控制系统,为机器人设计了趋向目标行为模块、避障行为模块和沿墙走行为模块,采用基于优先级行为决策控制策略,使移动机器人完成面向目标的任务。这种层级结构便于编程,具有易于添加反应速度快以及不依赖于模型描述等特点。
     4.实现了室内环境下基于视觉路标的全局定位。基于视觉信息的移动机人定位主要内容包括了图像预处理、门的定位、门牌定位,字符分割和字符识别五部分内容。
     基于5/3提升小波变换的软取阈值方法对图像去噪,然后基于边缘提取算法提取机器人工作环境信息,图像处理实验表明,算法能够较好地适应非结构化环境固有的特点,可以抑制细小的边缘而得到路径主要轮廓。提升小波算法降低了计算的复杂程度,因此有效地减少程序运行时间,提高定位系统的实时性,实用性。
     提出一种把提升小波变换对图像信号良好的分解性能与Hough变换直线的检测特性结合起来提取环境信息的方法来实现门的定位的方法。该方法以提升小波变换对环境信息图像进行软取阈值去噪处理,而后获取水平、垂直等高频部分的小波低频分解。实验表明基于提升算法和Hough变换设计的环境信息处理系统有很好的性能。
     基于神经网络分类器进行门牌号码的识别,从而实现单目视觉系统下移动机器人基于视觉路标的室内定位。
     5.用全局规划和局部规划相结合的方法解决全局路径规划问题。系统的全局路径规划分为两种:无障碍环境路径规划、有障碍环境规划。
     对无障碍环境路径规划比较简单,通过人机交互给出移动机器人运行参数,生成机器人的运行路径。
     对有障碍环境,采用超声探测信息和主动视觉信息实现了运动障碍物和静止障碍物类型的识别,并针对障碍物类型采用不同的避障策略,以完成全局导航任务。
     提出把自回归模型来预测动态障碍物的运动轨迹和动态障碍避障策略结合的方法,解决了动态、动态障碍物环境下的路径规划。采用自回归模型来预测动态障碍物的运动轨迹,然后对该预测轨迹的每一点进行在线实时避碰规划。针对自回归模型的参数是以小车参数为基准,在实际应用中必然带来一定的误差的局限,补充了动态障碍避障策略。
     6.解决了信息不完全、环境不确定情况下的全局三维路径规划问题。提出在环境的二维坐标不变的情况下,对每个障碍物固定坐标系来描述位置和姿态的方式实现三维动态环境、动态障碍物的全局环境描述,并设计神经网络三维路径规划器实现三维动态路径规划。
     基于这种方法,三维动态环境路径规划算法没有过多的复杂性,实时性很强。该算法在动态避障策略、行为控制策略、定位等多个方面制定以后,根据路径最短约束条件完成路径搜索,生成从起点到终点的无碰撞路径。对算法的参数优化问题进行了研究,为算法更好的应用提供了有意义的指导。算法所固有的并列性可用并列硬件来实现,运算量小,仿真证明算法能够在实时性要求较高、有较多障碍物、有较多路径点的情况下实现快速的路径规划。
     7.采用基于粒子群优化的模糊控制算法设计路径跟踪控制器。以粒子群算法为优化工具,自动提取控制器参数的模糊规则基,提高了优化模糊控制的控制性能;对粒子群算法进行了改进,在保证稳定性的同时,提高了控制器的收敛速度;仿真和实验表明,由于规则提取是自动获得,减少了人为工作量,控制器具有很好的鲁棒性。
As the robot application range extends constantly, its working condition is getting more and more complex, which is always unknown, dynamic and unstructured. So, it is a new challenge for robot to fulfill a mission in real time under these environments. The idea of mobile robot behavior control based on multi-sensor is put forward.according to a survey of the research on mobile robot control architectures and navigation technology, A mobile robot navigation control experiment system is built to study on environment perception, behavior decision, motion control and so on, in the objective-oriented mission mobile robot behavior control. The system consists of a mobile robot and a set of communication system. The main contents are as follows:
     A modularized distributed control system architecture based on multi-processor with parallel communication is put forward and employed in the hardware system design. Each module is controlled by an individual processor and the data processing is tackled by the same one processor.All modules run and communicate with each other in a parallel method, which improves the speed of data transmission.Deliberated/reactive hierarchical hybrid architecture is used in the software design, which consists of a human-machine interface layer,a mission planning layer and a behavior control layer.
     A distributed ultrasonic detecting system based on multi-processor is developed.It is composed of an upper working method control module and a lower intelligent ultrasonic ranging module array.Each intelligent ultrasonic ranging sensor is controlled by an individual micro-processor which achieves ranging data processing, and the intelligent ultrasonic ranging modules can be grouped to work in parallel mode, which enhances the real-time performance, which can restrain the ultrasonic crosstalk and random interference and improve the accuracy of the detecting system.
     The objective-oriented mission can also be accomplished utilizing visual perception. has two behavior modules:goal approaching behavior, control behavior and escape behavior,each module has a given priority.The behavior arbiter decides which behavior module can control the robot by their given priority when the behaviors are valid.
     Employing the above segmentation technique of visual localization in indoor environment based visual landmarks is conducted on image, Here visual landmarks are those doors of corridor is characterized by topological graph.and doorpalates in corridor.
     Since lifting wavelet transform is suited for image decomposition and Radon transform is fit for line detection, their excellent performances are put together to figure out line detection pattern. This method decrease complexity of count greatly, and reduce run time effectively.The correlative experimental results show that the method can obtain the accurate measurement.
     We proposed a path planning algorithm based on neural network for cleaning robots.In this algorithm, a discrete method is used to approximate the minus gradient direction of the energy. We combined the penalty function with the distance energy function to construct the cost function.The path planning is implemented by determinating the motion tendency of the points set. The parameter optimization of the algorithm is investigated through computersimulation.These provide valuable guidance for the application of the algorithm in practice.
     The study on mobile robot dynamic obstacles avoiding strategy in global navigation is carried out.Something that appeared on the path planned by is regarded as dynamic obstacles which are classified into motorial obstacles and static obstacles. The robot can distinguish the above dynamic obstacles by using the information of ultrasonic detecting system and active vision system.The robot can avoid the dynamic obstacles appeared in global navigation using different obstacle avoiding strategy. The motion trajectories of moving obstacles are predicted by using an auto regressive (AR) model, thus, dynamic path planning is translated into instantaneously static one. This method enables the robot give a quick response when encountering obstacles.
     A novel fuzzy controller with fuzzy non-linear Parameter is proposed. In order to solve the problems of time consuming and hard to satisfy the control demands when seeking the parameters.A non-liner fuzzy method is proposed to generate the parameters. Partiele swarm optimization (PSO) algorithm is used to generate the non-linear fuzzy rule base automatically without prior knowledge.
     The modularized distributed control system architecture based on multi-processor with parallel communication and manufacture methods show the characteristics of practicability and expansibility in intelligent robot research.
引文
[1]彭慧,封锡盛“探索者”号自治式无缆水F机器人控制软件体系结构机器人1995,17(3):177-183。
    [2]张竺英,王棣棠,刘人路.自治式水下机器人回收系统的研究与设计.机器人。1995,17(6):348-351。
    [3]夏锋,孙优贤自动导引车模型设计.工程设计学报2003,10(2):66-69。
    [4]张德民,张慧慧.基于CAN总线的分布式搬运机器人控制系统研制.微计算机信息.2001,12-45。
    [5]欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究机器人2000,22(6):519-526。
    [6]王巍,宗光华基于总线的多机器人楼宇幕墙自动化清洁系统,制造业自动化。2003,25(1):33-36,58。
    [7]王火亮,孙守迁。基于超声波传感器测距的家用自主式移动吸尘器路径规划算法,计算机应用研究.2002,19(8):57-58。
    [8]杨汝清,苑永枯.遥控移动式作业机器人实时多任务管理系统.机器人1997,19(3):212-217。
    [9]于元隆,樊铁银,何克忠.移动机器人THMR-V遥控系统的设计与实现,计算机工程与应用。2003,39(25):202-205。
    [10]Luo R C,Chen T M.Remote supervisory control of a sensor based mobile robot via Interact.In Proceedings of IE EE International Conference On Intelligent Robots and Systems.1997,.1163-1168.
    [11]Saucy P,Mondada F.Khep On The Web:one year of access to a mobile robot on the Internet.In Proceedings of IEEE Conference on Intelligent Robotics and Automation,1998,23-32.
    [12]Ken Goldberg,et at.The mercury Project:A Feasibility Study for Internet Robots.IEEE Robotics & Automation Magazine.2000,.35-40.
    [13]沈进棋.基于网络的机器人控制系统研究与实现.浙江大学硕士学位论文,2004.
    [14]耿海霞,陈启军,王月娟.基于web的远程控制机器人研究.机器人2002,24(4):375-379
    [15]Drik S,et al.Web Interface for mobile robots in public places.IEEE Robotics& Automation Magazine.2000,.48-56.
    [16]Mantel R J,Landeweerd H R A.Design and operational control of an AGV system International Journal of Production Economics.1995,4(1):257-266
    [17]M ellado M,Vendrel IE,et.al.Application of a real time expert system platform for flexible autonomous transport in industrial production.Computers in Industry.19 99,38(2):187-200
    [18]徐常凯,郭全成.现代生产物流系统研究.物流科技.2002,25(6)3-5.
    [19]杨波,张振龙.FMSF A GVS的设计.机电工程.2000,17(5):14-16.
    [20]Chen K H,Tsai W H.Vision-based obstacle detection and avoidance for autonomous land vehicle navigation in outdoor roads.Automation in Construction.2000,10(1):1-25.
    [21]Wu M C,Tung P C.Hsieh T Y Improvement of the horizontal directional drilling method by using an auto nomous land vehicle with a radio direction finding system.Automation in Construction.2002,11(1):75-88.
    [22]龙永新,叶秀清等.ALV路径跟踪模糊控制及参数GA寻优、工程设计学报.1998,1:24-26.
    [23]司秉玉,吕宗涛基于视觉非完整自主车的道路避障.东北大学学报:自然科学版2003,24(2):107-110。
    [24]Chang T H,Lai I S.Analysis of characteristics of mixed traffic flow of autopilot vehicles and manual vehicles.Transportation Research Part C:E merging Technologies.1997,5(6):333-348.
    [25]Bertozzi M,Broggi A,Fascioli A.Vision-based intelligent vehicles:State of the art an perspectives.Robotics and Autonomous Systems.20 00.32(1):1-16
    [26]邢延超,谈止.基于计算机视觉的车道标线与障碍物自动检测.计算机工程与应用.2003,39(6)2:23-225.
    [27]周俊,姬长英.智能车辆横向控制研究.机器人.2003,25(1):26-30.
    [28]Y eC.Borenstein J。 A new terrain mapping method for mobile robots obstacle navigation.In Proceedings of the UGV Technology Conference at the 2003 SPIE Aero Sense Symposium 2003,21-25.
    [29]寒芯,美军发展无人地面车辆.机器人情报.1994,2:26-27。
    [30]R.C.Arkin.Behavior-Based Robotics.Cambridge,MA:MIT Press,1998:124-125.
    [31]M.Mataric.Behavior-Based Control:Main Properties and Implications.Proceedings of Workshop on Intelligent Control Systems,IEEE International Conference on Robotics and Automation.Nice,France,May,1992:46-54.
    [32]T.Dean,M.Wellman.Planning and Control,Morgan Kaufmann Publishers,San Mateo,CA,1991:462
    [33]王天然,朱枫.一个开放式移动机器人体系结构.机器人.1995,17(4):193-1997。
    [34]A.Meystel.Knowledge Based Nested Hierarchical Control.Advances in Automation and Robotics.Vol.2,Ed.G.Saridis.JAI Press,Greenwich,CT,1990:63-152.
    [35]J.Albus,F.G.Proctor.A Reference Model Architecture for Intelligent Hybrid Control System.Proceedings of the International Federation of Automatic Control.San Francisco,CA,June 30-July 5,1996:1-7.
    [36] J.S.Albus,R.Lumia,J.Fiala,et al.Overview of NASREM:The NASA/NBS Standard Reference Model for Telerobot Control System Architecture.Proceedings of the 20th International Symposium on Industrial Robots.Tokyo,Japan,October 4-6,1989:1-10.
    [37] R.Brooks.A Robust Layered Control System for a Mobile Robot.IEEE Transaction on Robotics and Automation. 1986,2(1): 14-23.
    
    [38] J.Connell.A Colony Architecture for an Artificial Creature. MIT AI Laboratory, 1989:18-33.
    [39] L.Laelbeling.Goals as Parallel Program Specifications.Proceedings of the 7th National Conference on Artificial Intelligence.Minnesota, 1988:560-567.
    [40] R. Simmons.An Architecture for Coordinating Planning, Sensing and Action.Proceedings of Workshop on Innovative Approaches to Planning, Scheduling and Control. San Diego, 1990:346-358.
    [41] M.Kasper,G.Fricke,K.Steuernagel,et al.A Behavior-Based Mobile Robot Architecture for Learning from Demonstration.Robotics and Autonomous System,2001(34): 153-164.
    [42] J.Rosenblatt,S.Willams and H.Durrant-Whyte.Behavior-Based for Autonomous Underwater Exploration.Information Sciences.2002,145( 1 -2):69-87.
    [43] R.C.Arkin, T. Balch. AuRA: Principles and Practice in Review, 1997:1-14.http://www.cc.gatech.edu/ai/robot-lab/publications.html.
    [44] R.R.Murphy.Biological and Cognitive Foundations of Intelligent Sensor Fusion.IEEE Transactions on System, Man and Cybernetics. 1996,26(1):42-51.
    [45] R.R.Murphy.Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile Robots.IEEE Transactions on Robotics and Automation. 1998,24(2):1-38.
    [46] M.Slack.Navigation Templates: Mediating Qualitative Guidance and Quantitative Control in Mobile Robots.IEEE Transactions on System, Man and Cybernetics.1993,23(2):452-466.
    [47] E.Gat.Reliable Goal-Directed Reactive Control for Real-World Autonomous Mobile Robots.Ph.D.Dissertation.Dept.of Computer Science, Virginia Polytechnic Institute and State University, 1991:115-127.
    [48] R.J.Firby,R.E.Kahn,P.N.Prokopwiz,et al.An Architecture for Vision and Action.Proceedings of 1995 International Joint Conference on Artificial Intelligence.Morgan Kaufmann Pub.,San Mateo,CA,1995,1:72-79.
    [49]K.Konolige,K.Myers and E.Ruspini.The Saphira Architecture:A Design for Autonomy.Journal of Experimental and Theoretical Artificial Intelligence(JETAI). 1997,9:215-235.
    [50] R.Simmons,J.Fernandez, R. Goodwin,et al.XavienAn Autonomous Mobile Robot on the Web.Robotics and Automation Society Magazine. 1999,6:1 -7.
    [51]R.Simmons,R.Goodwin,K.Haigh,et al.A Layered Architecture for Office Delivery Robots.First International Conference on Autonomous Agents,1997,2:235-242.
    [52]张友军,朱淼良,吴春明,等.自主式移动机器人系统的结构.机器人.1997,19(5):378-383。
    [53]M.Piaggio,A.Sgorbissa,and R.Zaccaria.A Distributed Architecture for Autonomous Robots.Proceedings of 2nd IEEE International Conference on Engineering of Complex Computer Systems.Montreal,Que,1996:21-25.
    [54]J.L.L(?)zaro,J.C.Garc(?)a,A.Gardel,et al.Distributed Architecture for Control and Path Planning of Autonomous Vehicles.Microprocessors and Microsystems.2001,25(3):159-166.
    [55]P.Doherty,P.Haslum,F.Heintz,et al.A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation.The 7~(th) International Symposium on Distributed Robotic Autonomous Systems(DARS2004).Toulouse,France,2004:1-10.
    [56]蔡京平,贾云得.一种用于星球探测机器人的计算系统体系结构.小型微型计算机系统.2006,27(6):1102-1107。
    [57]蔡自兴,周翔,李枚毅,等.基于功能/行为集成的自主式移动机器人进化控制体系结构.机器人.2000,22(3):170-175。
    [58]蔡自兴,郭军华.基于多Agent的移动机器人导航进化控制的体系结构.控制理论与应用.2001,18(Supp 1):111-114。
    [59]C.F.B.Rooney,R.P.S.Odonoghue,B.R.Duffy,et al.The Social Robot Architecture:Towards Sociality in a Real World Domain.Proceedings of Towards Intelligent Mobile Robots 99.Bristol,UK:University of Manchester,1999:77-84.
    [60]M.A.Salichs,L.Moreno.Navigation of Mobile Robots:Open Questions.Robotica.2000,18(3):227-234.
    [61]J.J.Leonard,H.F.Durrant-Whyte.Directed Sonar Sensing for Mobile Robot Navigation.Kluwer Academic Publishers,1992:1-2.
    [62]王荣本,储江伟,冯炎,等.一种视觉导航的实用型AGV设计.机械工程学报.2002,38(11):135-138.
    [63]R.Ara(?)jo,A.T.D.Almeida.Learning Sensor-Based Navigation of a Real Mobile Robot in Unknown Worlds.IEEE Transactions on Systems,Man and Cybernetics,Part B:Cybernetics.1999,29(2):164-178.
    [64]T.Luca,N.Daniele.Hough Localization for Mobile Robots in Polygonal Environments.Robotics and Autonomous Systems.2002,40(1):43-58.
    [65]A.D.L.Escalera,L.Moreno,M.A.Salichs,et al.Continuous Mobile Robot Localization by Using Structured Light and a Geometric Map.International Journal of Systems Science.1996,27(8):771-782.
    [66]J.Borenstein,H.R.Everett,L.Feng,et al.Mobile Robot Positioning:Sensors and Techniques.Journal of Robotic Systems.1997,14(4):231-249.
    [67]K.S.Chong,L.Kleemam.Sonar Based Map Building for a Mobile Robot.Proceedings of IEEE International Conference on Robotics and Automation.1997,2:1700-1705.
    [68]S.Kim,Y.Kim.Robot Localization Using Ultrasonic Sensors.Proceedings of IEEE/SRJ International Conference on Intelligent Robots and Systems.Sendai,Japan,2004,4:3762-3766.
    [69]S.Thrun,M.Beetz,M.Bennewitz,et al.Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva.International Journal of Robotics Research.2000,19(11):972-999.
    [70]S.Thrun.Finding Landmarks for Mobile Robot Navigation.Proceedings of IEEE Inter.Conf.Robotics and Automation.1988,2:958-963.
    [71]O.Wijk,H.I.Christensen.Localization and Navigation of a Mobile Robot Using Natural Point Landmarks Extracted from Sonar Data.Robotics and Automations Systems.2000,31(1-2):31-42.
    [72]贺鑫元,马书根,李斌,等.基于GPS的蛇形机器人导航方法.高技术通讯.2004,(9):67-70。
    [73]蔡皓昌,余成融,潘志浩.消防机器人GPS导航系统的精度提供方案.微计算机信息.2004,20(10):128-129.
    [74]丁毅,邱白晶,周宁.割草机器人GPS/DR组合导航系统的研究.农机化研究.2006,4:68-71.
    [75]K.Demirli,(?).B.Turksen.Sonar Based Mobile Robot Localization by Using Fuzzy Triangulation.Robotics and Autonomous Systems.2000,33(2-3):109-123.
    [76]R.Carelli,E.O.Freire.Corridor Navigation and Wall-Following Stable Control for Sonar-Based Mobile Robots.Robotics and Autonomous Systems.2003,45(3-4):235-247.
    [77]E.Delgado,A.Barreiro.Sonar-Based Robot Navigation Using Nonlinear Robust Observers.Automatica.2003,39(7):1195-1203.
    [78]王栋耀,马旭东,戴先中.基于声纳的移动机器人沿墙导航控制.机器人.2004,26(4):347-350.
    [79]F.Tong,S.K.Tso and T.Z.Xu.A High Precision Ultrasonic Docking System Used for Automatic Guided Vehicle.Sensors and Actuators A:Physical.2005,118(2):183-189
    [80]F.R.Dalgleish,S.Tetlow and R.L.Allwood.Experiments in Laser-Assisted Visual Sensing for AUV Navigation.Control Engineering Practice.2004,12(12):1561-1573.
    [81]V.Subramanian,T.F.Burks and A.A.Arroyo.Development of Machine Vision and Laser Radar Based Autonomous Vehicle Guidance Systems for Citrus Grove Navigation.Computers and Electronics in Agriculture.2006,53(2):130-143.
    [82]A.Diosi,L.Kleeman.Advanced Sonar and Laser Ranger Finder for Simultaneous Localization and Mapping.Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendar,Japan,September 28-October 2,2004:1854-1859.
    [83] L.Marques, D. Almeida and A.Thom.Application of Odor Sensors in Mobile Robotics.Robotics and Automations Systems, Lecture Notes in Control and Information Sciences. 1998,236:264-275.
    [84] R.A.Russell.Survey of Robotic Applications for Odor-Sensing Technology. The International Journal of Robotics Research.2001,20(2): 144-162.
    [85] R.X.Li,K.CH.Di,H.Larry,et al.Rover Localization and Landing Site Mapping Technology for the 2003 Mars Exploration Rover Mission.Photogrammetric Engineering and Remote Sensing.2004,70(1):77-90.
    [86] R.F.Vassallo,H.J.Schneebeli and J.Santos-Victor.Visual Servoing and Appearance for Navigation.Robotics and Autonomous Systems.2000,31(1-2):87-97.
    [87] J.J.Guerrero,C.Sagues. Uncalibrated Vision Based on Lines for Robot Navigation.Mechatronics.2001,11(6):759-777.
    [88] E.Menegatti, T. Maedab and H.Ishiguro.Image-Based Memory for Robot Navigation Using Properties of Omnidirectional Images. Robotics and Autonomous Systems.2004, 47(4):251-267.
     [89] M.Fiala, A.Basu.Robot Navigation Using Panoramic Tracking.Pattern Recognition.2004,37(11):2195-2215.
    [90] K.Kidono, J.Miura and Y.Shirai.Autonomous Visual Navigation of a Mobile Robot Using a Human-Guided Experience.Robotics and Autonomous Systems.2002,40(2-3):121-130.
    
    [91]孙增折等,智能控制理论与技术.清华人学山版社 1997。
    
    [92] M.Y.Kim,H.Cho.An Active Trinocular Vision System of Sensing Indoor Navigation Environment for Mobile Robots.Sensors and Actuators A:Physical.2006,125(2): 192-209.
    [93] Talluri.R, Aggarwal.J. Position Estimation Techniques for an AutonomousMobile Robot—a Review. Handbook of Pattern Recognition and Computer Vision World Scientific: Singapore, Chapter 4.4:769-801.
    [94] Ati ya.S, HagerTransactions on G. Real-time Vision-based Robotics and Automation, 1993 IEEE Robot Localization 9(6):785-800.
    [95]Nishide K.Int.Conf.Automatic Position Findings of Vehicle by Means of Laser. Proc. IEEERobotics and Automation, 1986:1343-1348.
    [96]Fukui.I. TV Image Processing to Determine the Position of a Robot Vehicle.PatteraR ecognition, 1981,14(1): 101-109.
    [97] Lapin.B Of the Adaptive Position Estimation for an Automated Guided Vehicle. Proc1992 SPIE Conference on Mobile Robots, Boston, MA, 1992:82-94.
    [98] Fleury.S, Baron. T, Absolute External Mobile Robot Localization Using a Single Image. Proceedings of the 1992 SPIE Conference on Mobile Robots,Boston,MA,1992:131-143.
    [99]LeonardJ.J.Directed Sonar Sensing for Mobile University of Oxford,Kluwer Academic Press,Robot Navigation.P h.D.thesis,Boston,MA,1992.
    [100]Jenkin M,Milios.E,Jasiobedzki et al.Global Navigation for ARK Proceedings of the 1993IEEE/RSJ International Conference on Intelligent Robotics and Systems,Yokohama,Japan,1993:2165-2171.
    [101]Aufrere R,Chapuis R Chausse F.A dynamic vision algorithm to locate a vehicle on a nonstructured road.The International Journal of Robotics Research,2000,19(5):411-423.
    [102]Fan Chengfa,Li Zhuming,Ye Yiuging,Gu Weikang.An adaptive method of color road segmentation.International Conference CAIP'97,Keil,Germany,1997.
    [103]范成法,李祝明,叶秀清等.道路识别系统中的边缘方法及其实时实现信号处理,1998.14(4):337-345.
    [104]Alberto Broggi.Parallel and local feature extraction:a real time approach to road boundary detecti on.IEEE Transaction on Image Processing.1995,4(2).
    [105]54 Y.J.Beliveau,J.E.Fithian and M.P.Deisenroth.Autonomous Vehicle Navigation with Real-time 3D Laser Based Positioning for Construction.Automation in Construction.1996,5(4):261-272.
    [106]Vitorio M erino,Carlo S Regaztoni,Gian Luca Foresti,et al.A multi level fusion approach to object identification in outdoor roads.International Journal of Pattern Recognition and Artificial Intelligence.1995,9(1):23-65.
    [107]Hofaud R.Skcfdas T.Structural Matching for Stereo Vision.IEEE PAMI,1989,11(11):1158-1180.
    [108]Bolles R C.Cain R A.Recognizing and locating Partially Viable Objects-the local feature focus Method,INT.J,Robotics Res,1982,1(3):57-82.
    [109]Howden,W E-The sofa Problem Comput J.Vol 11,1968,9(1):299-301.
    [110]Gdupa-S,Collision Detection and Avoidance in Computer Controlled Manipulators.Proc.5th Int Conf.Massachusetts inst Technol.1977,7:708-748.
    [111]Brooks-R.A and Lozano-PSrezT,A Subdivision A]gorithm in Configuration Space for Find path with Rotation.MIT Artificial lntell.Lab.Rep AIM-684,Dec.1982.
    [112]Lozano- Perez'T.and W sley,M A.,An Algorithm for Planning Collision- Free Paths Among Polyhedral Obstacles,Common Ass Comput.Math Vol.ACM 82,1979,560-570.
    [113]Qussama Khatib.Real-Time Obstacle Avoidance for Manipulators and Mobile RObots Proc,1994.
    [114]D.H.Nguyen,B.Widrow.Neural Networks for Self-learning Control Systems.IEEE Control Systems Magazine.1990,10(3):1823.
    [115]P.V.C.Hough,"Methods and means for recognizing complex patterns," in U.S.Patent 3069 654,Dec 1962.
    [116]项静恬等.时间系列分析--动态数据处理.北京:气象出版社,1986。
    [117]M.Palaniswami.Robust Tracking Control for Rigid Robot Manipulators.IEEE Trans.onAutomate Control,1994,39(1):154-159.
    [118]M.W.SPong,M.Vidyasagar.RobustLinearComPensatorDesignforNonlinearRobotieControl.IE EETrans·o Robot and Automation,1987,3(8):345-352.
    [119]J.CDoyle,K.Glover,P.P.Khargonekar,etal.State-sPaee Solutions to Standard H Zand Hco Control Problem·IEEE Trans.on Automate Control,1989,34(8):831-847.
    [120]W.Son,J.Choi,O.Kwon.Robust Control of Feedback Linearizable System with the Parameter Uncertainty and InPut Constraint.Proeeedings of the 40~(th) SICE Intemational Conferenee,2001:407-611.
    [121]5.Jauasuriya,C.N.Hwang.Tracking Controllers for Robot Manipulators High Gain Perspective.of Dynamics Systems,Measure and Control,1998,110:39-45.
    [122]王洪斌.不确定性机器人轨迹跟踪鲁棒控制方法研究.博士论文.燕山大学.2005。
    [123]K.Yong.Controller Design for a ManiPulator using Theory of Variable Structure Systems.IEEE.On System,Man and Cyberneties,1978,8(2):210-228.
    [124]Jong-MinYang,Jong-HwanKim.Sliding mode control for trajeetory traeking of nonholonomie Wheeled mobile robots[J].IEEE Transactions on Roboties and Automation.1999,15(3):578-587.
    [125]E.M.Jafarov,M.N.A.Parlakci,Y.Istefano Pulos.A New Variable Structure PID-controller Design for Robot ManiPulators.IEEE Trans.on Control Systems Technology,2005,13(1):122-130.
    [126]W.Son,J.Choi,O.Kwon.Robust Control of Feedback Linearizable System with the Parameter Uncertainty and Input Constraint.Proeeedings of the 40~(th) SICE International Conferenee,2001:407-411.
    [127]K.K.Shyu.A Modified Variable Controller.Automate,1992,28(6):1209-1213.
    [128]R.Fierro,F.L.Lewis.Control of a nonholonomie mobile robot:backstepping kinematics in dynamies.Proeeedings of the 34~(th) Conference in Deeision&Control,New orleans,LA,1995:3805-3810.
    [129]吴卫国,陈辉堂,王月娟。非完整移动机器人的全局轨迹跟踪控制。自动化学报,2001,27(3):326-331。
    [130]Jiang Zhong-Ping,Henk Nijmeijer.Tracking control of mobile robots:a ease study in back stepping[J]automate,1997,33(7):1393-1399.
    [131]徐俊艳,张培仁.非完整轮式移动机器人轨迹跟踪控制研究.中国科学技术大学学报.2004,34(4):376-380。
    [134]谢明江,代颖,施颂椒。机器人鲁棒控制研究进展。机器人,2000,22(1):73-79。
    [135]R.Gareia.fuzzylogiestrategiestoeontrolanautonomousmobllerobot.Cybemetiessystems,1990,21(2):267-276.
    [136]K.Watanabe,K.Izumi,T.Otsubo.A Non linear Robust Contro 1 using a Fuzzy reasoning and its Application to a Robot Manipulator.Journal of Intelligent and Robot systems,1997,20:275-294.
    [137]E.Kim.Out Put Feed back Control of Robot Manipulators with Model Uncertainty via Adaptive Fuzzy Logic.IEEE Trans.Fuzzy Systems,2004,12(3):368-370.
    [138]H Xu.Motion Planning of Nonholonomic Mobile Robots Using A Neural Dynamics A approach.Master of Science Thesis,The University of Guelph,2002.
    [139]Lee,D.T L.,Morf M.and Fried lander,B.,Recursive Least Squares Ladder Estimation Algorithms,IEEE Trans.Acoustic speech,signal processing,vol.29,PP.627-641,June,1981.
    [140]Shnesa,M.J.,Recursive Least Squarts Algorithms-A Geometrical A,IEEE Trans.Auto.O,vol.26,PP.695-702,June,1981.
    [141]Watanabe,K.Tang,J.Nakamura,M.,Koga,5.andFukuda,T.A Fuzzy-Gaussian Neural Network and Its aPPlieationto Mobile Robot Control.IEEE Transactions on Control Systems Technology,v4,nZ,Mareh1996:193-199.
    [142]孙炜.智能神经网络的机器人控制理论方法研究.博士论文,湖南大学,2002。
    [143]B.Widrow,F.W.Smith,Pattern Recognition Control Systems.Proeeeding of Computer Scienee,washington D.C.,1964.
    [144]D.Psaltis,S.Athanasios,A.A.Yamamura.AMuitilayered Neural Network Controller.IEEE Trans.on control Systems.1998:17-21.
    [145]K.S.Narendra,A.M.Parthasarathy,Identifieation and Controlof Dynamieal Systems using Neural networks.IEEE Trans.on Neural Networks,1990,1(1):4-27.
    [146]K.J.Hunt,D.Sbarbaro.Neural Networks for Control Systems ASurvey.Automation,1992,6:1085-1112.
    [147]A.G.Barto,R.5.Sutton,C.W.Anderson.Neuron Adaptive Elements that Can Solve Difficult Earning Control Problems.IEEE Trans.on System,Man and Cybernetics,1983,13:834-846.
    [148]Y.C.Chang.Neural network-based tracking control for robot systems.Control theory Plieations,200,147(3):303-311.
    [149]M.C·Hwang, X.H.Hu. Position for cleaning controller of manipulator nonlinear control and neural networks·IEEE Trans. System Man and Cybernetics B, 2000,30(2):310—321.
    
    [150]H.Yu.Robust Combined Adaptive and Variable Structure Adaptive Control of Robot Manipulators. 1998, 1(16):623-659.
    
    [151]S.Yang, A.Luo, X. Fan. Adaptive Robust Iterative Learning Control for Uncertain Robotic Systems.control Theory and Applications, 2003, 20(5):707-712.