基于分数布朗运动模型的金融衍生品定价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经典金融学的核心是金融资产定价,而对金融衍生品进行合理的定价是研究的主要内容,也是金融数学最基本和最重要的研究领域之一。作为期权定价里程碑的Black-Scholes-Merton公式自1976年问世以来就得到了广泛的认可,Black和Merton也因为这个奠基性的工作于1997年获得了诺贝尔经济学奖。但是这个公式赖以成立的一个重要假设是标的资产服从几何布朗运动,然而大量的实证研究发现,标的资产在绝大多数情况下并不符合几何布朗运动的特性,而与分数几何布朗运动的特性相符合。为此很多学者提出用分数布朗运动来代替布朗运动。本文从三个方面讨论了Ito型分数金融市场下的期权定价问题。
     ●第一个方面是非完备市场中的期权定价问题。我们以带比例交易成本的期权定价问题为例,应用分数布朗运动随机积分理论和偏微分方程方法推导出了分数布朗运动驱动下带交易成本的欧式期权定价问题,得到了欧式期权价格的显式解。并证明了欧式期权看涨一看跌的平价公式,得到了与标准布朗运动条件下类似的一系列公式。作为本部分的结束,我们还考虑了带比例交易成本的永久美式看跌期权的定价问题,给出了它的显式定价公式,讨论了Hurst指数对期权价格的影响。
     ●第二个方面是随机利率下的期权定价问题。我们以利率服从分数Vasicek随机利率模型为例,讨论了期权定价问题。在假定标的资产价格和利率的运动过程服从几何分数布朗运动的条件下,利用风险对冲技术、分数布朗运动随机分析理论与偏微分方程方法,得到了分数Vasicek随机利率下欧式期权所满足的定价方程,获得了标的资产价格波动率是时间函数的情形下欧式看涨和看跌期权的一般定价公式以及它们的平价公式。
     ●第三个方面是跳-扩散模型下的期权定价问题。在这个问题中,我们利用复合泊松过程来刻划标的资产的随机跳跃,并且假设扩散过程是一个分数布朗运动。我们运用测度变换技巧和拟鞅定价方法,得到了欧式看涨期权定价的显式公式。
     最后,我们将以上讨论得到的结果应用到实际的金融市场中。在当前CPI不断走高,“负利率”倒挂现象愈发突出、物价不断上涨的背景下,我们有针对性选择在当前国内金融市场上受到热捧的一些金融产品,如保本基金、可转换债券等作为我们的研究对象,并且对这两个结构性金融产品做了有关条款设计和定价机制方面的讨论。我们还考虑了结构化模型下的信用风险建模问题。
Financial asset pricing is the core issue of classical finance. The pricing theory of financial derivatives is the main content of financial asset pricing, also it is one of the most fundamental and substantial areas in mathematical finance. Option pricing theory has a long and illustrious history, but it also underwent a revolutionary change in 1973. The break-through in option valuation theory started with the publication of two seminal papers by Black&Scholes and Merton.
     The Black-Scholes model has become the most popular method for option pricing and its generalized version has provided mathematically beautiful and powerful results on option pricing. Nevertheless, classical mathematical models of financial assets are far from perfect. One apparent problem exists in the Black-Scholes formulation, namely that financial processes are not Markovian in distribution. In fact, behavioral finance as well as empirical studies shows that there exists long-range dependence in stock returns and verifies that long-range dependence is one of the genuine features of financial markets. Behavioral finance also suggests the return distributions of stocks are leptokurtic and have longer and fatter tails than normal distribution and there exists long-range dependence in stock returns. These features have some differences with the standard brown motion, while are in accordance with the fractional brown motion. The fractional Black-Scholes model is a generalization of the Black-Scholes model, which is based on replacing the standard Brownian motion by a fractional Brownian motion in the Black-Scholes model.
     This thesis is devoted to the financial derivatives pricing problem in a fractional ltd type financial market, and we want to establish the mathematical model for the financial market in fractional Brownian motion setting, by assuming the underlying asset price obey-ing the stochastic differential equation driven by fractional Brownian motion. Three topics are studied in this thesis.
     ·The first topic is the option pricing problem in incomplete markets. We focused on option pricing with proportional transaction costs. The problem is completely solved using the fractional Brownian motion theory and PDE approach, and general pricing formula for the European option with transaction costs is derived. Meanwhile, we get the explicit expression for the European option price with transaction costs and the call-put parity. The perpetual American put option pricing problem is also considered.
     ·The second topic is the option pricing problem when the risk-free interest rate is stochastic. In this part, we take fractional Vasicek model as an example of stochastic inter-est rate. We establish the mathematical model for the financial market in fractional Brown-ian motion setting. Using the risk hedge technique, fractional stochastic analysis and PDE method, we obtain the general pricing formula for the European option with stochastic in-terest rate. At the same time, we get a explicit expression for European option price with stochastic interest rate and the call-put parity. As we will show, the results in this part extend as well as improve previously known results.
     ·The third topic is the option pricing problem when underlying asset returns are dis-continuous. In this problem. We use compound Poisson process to characterize the jump, and we assume the underlying asset is driven by a mixture of both continues and jump pro-cesses, where we characterize the continues part by a fractional Browian motion. We call the process as the fractional jump-diffusion model. Using measure transformation technol-ogy and quasi-martingale approach, we derive an option pricing formula under fractional jump-diffusion model.
     Finally, we apply these results to actual financial markets, including segregated funds pricing problem, convertible bonds pricing problem and credit risk modeling problem.
引文
[1]K.Aase, B.Oksendal, N.Privault, and J.Uboe. White noise generalizations of the Clark-Haussraann-Ocone theorem with application to mathematical finance. Fi-nance and Stochastic,2000,4:465-496.
    [2]G.Adesi, A.Bermudezand, J.Hatgioannides. Two-factor convertible bonds valua-tionusing the method of characteristics finite elements. Journal of Economics Dy-namics and Control,2003,27:1801-1831.
    [3]E.Aids, O.Mazet, D.Nualart. Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Stock. Proc. Appl,2000,86:121-139.
    [5]E.Aids, I.A.Leon, D.Nualart. Stratonovich stochastic calculus with respect to frac-tional Brownian motion with Hurst parameter less than 1/2. Taiwanesse J. Math, 2001,5:609-632.
    [5]E.Aids, O.Mazet, D.Nualart. Stochastic calculus with respect to Gaussian processes. Ann.Prob,2001,29:766-801.
    [6]E.Aids, D.Nualart. Stochastic integration with respect to the fractional Brownian motion. Stock. Stock Rep,2001,75:129-152.
    [7]L.Andersen, D.Buffum. Calibration and Implimentation of Convertible bonds mod-els. Journal of Computational Finance,2004,7(2):1-34.
    [8]D. Applebaum. Levy processes and stochastic calculus. Cambridge University Press. Cambridge,2004.
    [9]E.Ayache, P.Forsyth, K.R.Vetzal. Valution of convertible bonds with credit risk. Journal of Derivatives,2003,9:9-28.
    [10]L.Bachelier. Theorie de la Speculations. Annales de l'Ecole normale superieure. Vol. 3, Paris,Gauthier-Villars.1999. (English translation in the random character of stock market prices, P.H.Coonter,ed. MIT Press, Cambridge.1964,17-78.
    [11]W.B.Fraktale. Long Memory und Aktienkurse-eine statistische Analyse fur den deutschen Aktienmarkt. EuL-Verlag, Bergisch-Gladbach, Koln,1996.
    [12]M.Beben. A.Ohowski. Correlations in financial time series:Established versus emerging markets. Enr. Phys.J.B,2001,20:527-530.
    [13]F.Biagini, Y.Hu, B.Oksendal, A.Sulem. A stochastic maximum principle for pro-cesses driven by a fractional Brownian motion. Stock. Proc. Appl,2002,100:233-254.
    [14]F.Biagini, B.(?)ksendal. Minimal variance hedging for fractional Brownian motion. Methods Appl. Analysis,2003,10:347-362.
    [15]F.Biagini, B.(?)ksendal, A.Sulem, N.Wallner. An introduction to white noise theory and Malliavin calculus for fractional Brownian motion. University of Oslo, Preprint, 2,2003.
    [16]F.Biagini, B.(?)ksendal. Forward integrals and an Ito formula for fractional Brownian motion. Dept. of Math, University of Oslo,2004,22.
    [17]F.Biagini, Y.Hu, B.(?)ksendal, T.Zhang. Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and Its Applications, Preprint, Springer,2007.
    [38]N.Bingham, R.Kiesel. Modelling asset returns with hyperbolic distributions. In"Re-turn Distributions in Finance", Butterworth-Heinemann.2001,1-20.
    [19]F.Black, M.Scholes. The pricing of options and corporate liabilities. Journal of Po-litical Economy,1973,81:637-654.
    [20]A.Borodin, P.Salminen, Handbook of Brownian motion:facts and fomulae. probo-bility and its application,2nd ed. Boston:Birkhauser Verlag AG Press,2002.
    [21]P.Boyle, T.Vorst. Option pricing in discrete time with transactions costs. Journal of Finance,1992,47:271-293.
    [22]M.Brennan, E.Schwartz. Convertible bonds:Valuation and optimal strategies for call and conversion. Journal of Finance,1977,32(5):1699-1715.
    [23]M.J.Brennan, E.S.Schwartz. Analyzing convertible bonds. Journal of Financial and Quantitative Analysis,1980,15(4):907-929.
    [24]M.Broadie, J.Detemple. American option valuation:New bounds, approximations, and a comparison of existing methods. Review of Financial Studies,1996,9:1211-1250.
    [25]Daniel O.Cajueiro, Benjamin M.Tabak. Testing for time-varying long-range depen-dence in real state equity returns. Chaos, Solitons, Fractals,2008,38(1):293-307.
    [26]P.Carayannopoulos, Valuing convertible bonds under the assumption of stochastic interest rates:an empirical investigation. Quarterly Journal of Business and Eco-nomics,1996,35(3):17-31.
    [27]P.Carayannopoulos, M.Kalimipalli. Convertible bond prices and inherent biases. Journal of Fixed Income,2003,13:64-73.
    [28]J.Cariboni, W.Schoutens. Pricing credit default swaps under Levy Models. UCS Re-port,2004-07, K.U. Leuven.1996,35(3):17-31.
    [30]P.Carmona, L.Coutin. Fractional Brownian motion and the Markov property. Elec-tronic Commun. Prob,1998,3:95-107.
    [30]P.Carmona, L.Coutin, G.Montseny. Applications of a representation of long mem-ory Gaussian processes. Universit'e de Toulouse. Laboratoire de Statistique et Prob-abilit'es Preprint,1998.
    [31]P.Carmona, L.Coutin. Integrale stochastique pour le mouvement brownien fraction-naire. C.R.Acad. Sci. Paris S'er.I Math,2000,330:231-236.
    [32]P.Carmona, L.Coutin, G.Montseny. Stochastic integration with respect to fractional Brownian motion. Ann. lust. Henri Poincar'kme, Prob. Stat,2003,39:27-68.
    [33]P.P.Carr, D.B.Madan. Option valuation using the fast fourier transform. Journal of Computational Finance,1999,2:61-73.
    [34]P.Carr, H.Geman, D.H.Madan and M.Yor. The fine structure of asset returns:an empirical investigation. Journal of Business,2002,75:305-332.
    [35]Chunsheng Zhou. A jump-diffusion approach to modeling credit risk and valuing defaultable securities. Federal Reserve Board Working Paper,1991.
    [36]J.M.Corcuera, J.Guerra, D.Nualart and W.Schoutens. Optimal investment in a Levy market. Applied Mathematics and Optimization,2006,53(3):279-309.
    [37]R.Cont, P.Tankov. Financial modelling with jump processes. Chapman& Hall, Boca Raton, FL.2004.
    [38]R.Cont and E.Voltchkova. A finite difference scheme for option pricing in jump dif-fusion and exponential Levy models. Journal on Numerical Analysis,2005,43(4): 1596-1626.
    [39]Cox, Ingersoll and Ross. An Intertempora] General Equilibrium Model of Asset Prices. Econometrica,1985,53:363-384.
    [40]Cox, Ingersoll and Ross. A Theory of the Term structure of interest rates. Econo-metrica,1985,53:385-408.
    [42]J.C.Cox, C.John and A.R.Stephen. A survey of some new results in financial options pricing theory. Journal of Finance,1976,31:382-402.
    [42]J.Cox, S.A.Ross. The valuation of options for alternative stochastic processes. Jour-nal of Financial Economics,1976,3:145-166.
    [43]J.Cox, S.A.Ross, and M.Rubinstein. Option Pricing:A Simplified Approach. Jour-nal of Financial Economics,1979,7:229-263.
    [44]J.Cox, M.Rubinstein. option markets, Englewood Cliffs. NJ:Prentice Hall,1985.
    [45]Q.Dai and K.J.Singleton. Specification analysis of affine term structure models. Journal of Finance,2000,55:1943-1978.
    [46]W.Dai, C.C.Heyde. Ito's formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stock Analysis,1996,9:439-448.
    [47]M.H.A.Davis, A.R.Norman. Portfolio Selection with Transaction Costs. Mathemat-ics of Operations Research,1990,15(4):676-713.
    [48]M.H.A.Davis, V.G.Panas, and T.Zariphopoulou. European Option Pricing with Transaction Costs. S1AM Journal of Control and Optimization,1993,31(2):470-493.
    [49]M.H.A.Davis, T.Zariphopoulou. American Options and Transaction Fees. Mathe-matical Finance,1995, Springer-Verlag, New York.
    [50]M.Davis, F.Lischka. Convertible bonds with market risk and credit risk. Working paper,1999, Tokyo-Mitsubishi International pic.
    [51]M. Davis, F.Lischka. Convertible Bonds with market risk and credit risk, In Applied Probability. Studies in Advanced Mathematics, American Mathematical Society, 2002,45-58.
    [52]L.Decreusefond, A.S.U stiinel. Fractional Brownian motion:Theory and applica-tions. ESAlMProc,1998,5:75-86.
    [53]L.Decreusefond, A.SXrstunel. Stochastic analysis of the fractional Brownian mo-tion. Potential Analysis,1999,10:177-214.
    [54]D.Duffie, K.Singleton. Credit risk. Princeton University Press, Princeton,2004.
    [55]T.E.Duncan, Y.Hu and B.Pasik-Duncan. Stochastic calculus for fractional Brownian motion. I. Theory. Journal of Control and Optimazation,2000,38:582-612.
    [56]E.Eberlein, U.Keller. Hyperbolic distributions in finance. Bernoulli,1995,1:281-299.
    [57]E.Eberlein, J.Jacod. On the range of options prices. Finance and Stochastics,1997', 1:131-140.
    [58]C.Edirisinghe, V.Naik, and R.Uppal. Optimal replication of options with transac-tions cost and trading restrictions. Journal of Financial and Quantitative Analysis, 1993,28:117-138.
    [59]R.J.Elliott. Stochastic Calculus and Applications. Applications of Mathematics, Springer-Verlag, New York,1982.
    [60]R.J.Elliott, J.van der Hoek. A general fractional white noise theory and applications to finance. Math. Finance,2003,13:301-330.
    [61]C.J.G.Evertsz. Fractal geometry of financial time series. Fractals,1995,3:609-616.
    [62]E.F.Fama. The behavior of stock market prices. Journal of Business,1965,38:34-105.
    [63]L.Feng, V. Linetsky. Pricing Options in Jump-Diffusion Models:An Extrapolation Approach. Operational Research,2008,56(2):304-325.
    [64]F.Fiorani. The variance-gamma process for option pricing, Working paper,2001.
    [65]S.Figlewski, B.Gao. The adaptive mesh model:A new approach to efficient option pricing. Journal of Financial Economics,1999,53:313-351.
    [66]P.Gong, Z.He, S.Zhu. Pricing convertible bonds based on a multistage compound-option model. Physica:A,2006,36(6):449-462.
    [67]G.Gripenberg, I.Norros. On the prediction of Fractional Brownian Motion. J Appl Probab 1996,33:400-410.
    [68]M.Harrison, D.Kreps. Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory,1979,20:381-408.
    [69]M.Harrison, S.R.Pliska. Martingales and stochastic integrals in the theory of contin-uous trading. Stochastic Processes Applications,1981,11:215-260.
    [70]S. Heston, G. Zhou. On the rate of convergence of discrete-time contingent claims. Mathematical Finance,2000,10:53-75.
    [71]T.Ho, S.Lee. Term structure movements and the pricing of interest rate contingent claim. Journal of Finance,1986,42:1129-1142.
    [72]T.Ho, D.Pfeffer. Convertible bonds:model, value attribution and analytics. Financial Analysts Journal,1996, September/October:35-44.
    [73]S.D.Hodges, A.Neuberger. Optimal Replication of Contingent Claims under Trans-action Costs. Review of Futures Markets,1989,8,222-239.
    [74]H. Holden, B.Oksendal, J.Uboe and T.Zhang. Stochastic Partial Differential Equa-tions. Birkhauser,1996.
    [75]Y.Hu, Oksendal, A.Sulem. Optional consumption and portfolio in Black-Scholes market driven by fractional Brownian motion. University of Oslo, Preprint,23,2000.
    [76]Y.Hu,Oksendal, A.Sulem. Optimal portfolio in a fractional Black & Scholes market. In Mathematical Physics and Stochastic Analysis:Essays in Honor ofLudwig Streit, World Scientific,267-279,2000.
    [77]Y.Hu,Oksendal. Fractional white noise calculus and application to finance. J Inf Dim Anal Quantum Probab ReJ Top,2003,6:1-32.
    [78]M.W. Hung, J.Y.Wang. Pricing convertible bonds subject to default risk. Journal of Derivatives,2002,10(2):75-87.
    [79]B.Huang and C.W.Yang. The fractal structure in multinational stock returns. Appl. Econ.Lett,1995,2:67-71.
    [80]Ingersolla. A contingent-claims valuation of convertible securities. Journal of Fi-nancial Economics,1977',4:289-322.
    [81]Ingersolla. An examination of corporate call policies on convertible securities. Jour-nal of Finance,1977,32:463-478.
    [82]K.Ito. Stochastic integral. Proceedings of imperical academy,1944,20:519-524.
    [83]M.Jeanblanc, M.Yor, M.Chesney. Mathematical Methods for Financial Markets. Springer:Berlin Heidelberg, New York,2006
    [84]姜礼尚.期权定价的数学模型和方法.北京:高等教育出版社,2003.
    [85]姜礼尚.金融衍生产品定价的数学模型与案例分析.北京:高等教育出版社,2008.
    [86]R.Jarrow, A.Rudd. Option pricing. Journal of Banking and Finance,1983,10(1): 157-161.
    [87]R.Jarrow, R.Rosenfeld. Jump Risks and the Intertemporal Capital Asset Pricing Model. Journal of Business, University of Chicago Press,1984,57(3):337-51.
    [88]J.Kallsen. Optimal portfolios for exponential Levy processes. Mathematical Meth-ods of Operations Research,2000,51:357-374.
    [89]J. Kallsen, C.Kuhn. Convertible bonds:financial derivatives of game type. EURAN-DOM book on Exotic Option Pricing under Advanced Levy Models, A.Kyprianou, W. Schoutens, P. Wilmott, eds. Wiley, Chichester,2005.
    [90]Karatzas, Ioannis and Steven E.Shreve. Brownian Motion and Stochastic Calculus: 2nd Edition. Springer-Verlag, New York, Inc.,1991.
    [91]I.J.Kim. The analytic valuation of American Options. The Review of Finance Stud-ies,1990,3(4):547-572
    [92]S.G.Kou. A jump-diffusion model for option pricing. Management Science,2002, 48(8):1086-1101.
    [93]S.G.Kou, H.Wang. First Passage times of a jump diffusion process. Advances in AppliedProbobility,2003,35:504-533.
    [94]D.Lando. Credit Risk Modeling. Princeton University Press, Princeton,2004,119-121.
    [95]H.E. Leland. Option pricing and replication with transaction costs. Journal of Fi-nance,1985,40:1283-1301.
    [96]J. Lewellen. Momentum and autocorrelation in stock returns. The Review of Finan-cial Studies,2002,15(2):533-563.
    [97]S.J. Lin. Stochastic analysis of fractional Brownian motion, fractional noises and applications. SIAMReview,1995,10:422-437.
    [98]S.Y. Liu. Fractional Black-Scholes Model of Mathematical Finance. Hunan Normal University,2004.
    [99]J. Linter. The valuation of risky asset and the selection of risky investments in stock portfolio and capital budgets. Review of Economics and Statistics,1965,47:346-382.
    [100]李巧艳,薛红.单资产多噪声情形下的最优消费资产组合问题.山西大学学报(自然科学版),2008,31(3):447-452.
    [101]李巧艳,薛红.多维分数布朗运动环境下的最优投资组合问题.大学数学,2009,25(6):91-95.
    [102]李少华,任学敏.可转换债券定价理论(Ⅰ):违约风险下到期日实施转股条款的转债问题.系统工程理论与实践,2004,8:18-25.
    [103]刘韶跃.数学金融的分数次Black-Scholes模型及应用.湖南:湖南师范大学博士论文,2004.
    [104]A.W.Lo. Long term memory in stock market prices. Econometria,1991,59:1279-1313.
    [105]F. Longsaff, E.Schwartz. Valuing American options by simulations:A simple least-squares approach. Review of Financial Studies,2001,14:113-147.
    [106]B.B.Mandelbrot. Fractional Brownian motions, fractional noises and applications. SIAM review,1968,10(4):422-437.
    [107]B.B. Mandelbrot. The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982.
    [108]B.B. Mandelbrot. Fractals and scaling in finance:discontinuity, concentration, risk:selecta volume E, Springer Verlag,1997.
    [109]A.Manuel, K.Axel and W.Christian. Simulation-based pricing of convertible bonds. Journal of Empirical Finance,2008,15:310-331.
    [110]H.Markowitz. Portfolio selection. Journal of Finance,1952,7:77-91.
    [111]J.J.McConnell, E.S.Schwartz. LYON taming. The Journal of Finance,1986,41(3): 561-577.
    [112]H.McKean. A free boundary problem for the heat equation arsing from a problem in mathematical economics. Indian Manage Review,1965,6:32-39.
    [113]R.N.Mentegna, H.E.Stanley. Scaling behavior in the dynamics of an economic in-dex. Nature,1995,376:46-49.
    [114]R.Merton. Theory of rational option pricing. Bell Journal of Economics,1973,4: 141-183.
    [115]R.Merton. On the Pricing of Corporate Debt:The Risk Structure of Interest Rates. Journal of Finance.,1974,29(2):449-47.
    [116]R.Merton. Option pricing when underlying stock returns discontinuous. Journal of Financial Economics,1976,3:125-144.
    [117]R.Merton. Continuous Time Finance. Basil Blackwell Ltd UK,1990.
    [118]R.Merton. Influence of mathematical models in finance on practice:past, present and future. Mathematical Models in Finance. Howison, et al eds., Chapman&Hall, London,1995.
    [119]T.Moosbrucker. Pricing CDOs with correlated variance gamma distributions. Re-search Report, Department of Banking, University of Cologne,2006.
    [120]E.Mordecki. Optimal stopping and perpetual option for Levy processes. Finance and Stochastics,2002,6:473-493.
    [121]J.Mossin. Equilibrium in a Capital Asset Market-Mossin. Econometric a,1966,35: 768-783.
    [122]K.Nyborg. The use and pricing of convertible bonds. Applied Mathematical Fi-nance,1996,3:167-90.
    [123]C.Necula. Option pricing in a fractional Brownian motion environment. Academy of Economic Studies, Preprint,2002.
    [124]E.Peters. Fractal structure in the capital markets. Financial Analysts Journal,1989, 45(4):32-37.
    [125]E.Peters. Fractal Market Analysis. Wiley, New York,1994.
    [126]P.Protter. Stochastic integration and differential equations. Springer, Berlin,1990.
    [127]D.Revuz, M.Yor. Continuous Martingales and Brownian Motion,3rd edu. Springer, Berlin Heidelberg New York,1999.
    [128]L.C.G.Rogers. Arbitrage with fractional Brownian motion. Mathematical Finance, 1997,7:95-105.
    [129]R.Roll. A Critique of the Asset Pricing Theory's Tests.. Journal of Financial Eco-nomics,19774:129-176.
    [130]S.A.ROSSThe. Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory,1976,13:341-360.
    [131]P.Samuelson. Proof that properly anticipated prices fluctuate randomly. Industrual Management Review,1965,4:41-50.
    [132]K.Sato. Levy processes and infinitely divisible distributions. Cambridge University Presess:Cambridge, UK,1999.
    [133]L.J.Savage. The foundations of statistics. Wiley:New York,1954.
    [134]W.Schoutens. Levy processes in finance:pricing financial derivatives. Wiley:New York,2003.
    [135]W.Sharp. Capital asset prices:a theory of capital market equilibrium under condi-tions of risk. Journal of Finance,1964,19:425-442.
    [136]史树中.金融学中的数学.北京:高等教育出版社,2006.
    [137]I.Simonsen, K.Sneppen. Anti-correlationsin the Nordic Electricity Spot Market. Norwegian University of Science and Technology, Preprint,2001.
    [138]Steven E.Shreve. Stochastic Calculus for Finance Ⅱ:Continuous-Time Models. Springer Finance,2004.
    [139]M.Sullivan. Valuing American put options using Gaussian quadrature. Review of Financial Studies,2000,13:75-94.
    [140]J.Tobin. Liquidity Preference as Behavior Towards Risk. Review of Economic Stud-ies,1958,67:65-86.
    [141]O.Vasicek. An equilibrium characterization of the term structure. Journal of Finan-cial Economics,1977,5:177-188.
    [142]Xiao-Tian Wang, En-Hui Zhu, Ming-Ming Tang, Hai-Gang Yan. Scaling and long-range dependence in option pricing II:Pricing European option with transaction costs under the mixed Brownian fractional Brownian model. Physica A,2010, 389(3):445-451.
    [143]Xiao-Tian Wang. Scaling and long range dependence in option pricing, IV:Pricing European options with transaction costs under the multifractional Black-Scholes model. Physica A,2010,389(4):789-796.
    [144]W. Willinger, M.S.Taqqu and V.Teverovsky. Stock market prices and long-range dependence. Finance and Stochastics,1999,3:1-13.