依博素ste11基因的功能性质及乳酸菌糖基转移酶基因对ste7和ste22的置换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies of Function, Characterization for Ste11 Involving in Ebosin Biosynthesis and the Replacement of Ste7, Ste22 with the Glycosyltransferase Originated from Streptococcus Thermophilus
  • 作者:鲍勇刚
  • 论文级别:博士
  • 学科专业名称:微生物与生化药学
  • 学位年度:2008
  • 导师:李元
  • 学科代码:100705
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2008-06-01
摘要
链霉菌139产生一种新型微生物胞外多糖依博素,具有明显抗类风湿性关节炎的作用,已申报临床研究,有望发展成为新药。
     我们已确定依博素生物合成基因簇,其包含27个开放阅读框(stel-ste27)。以往已对ste6,ste7,ste10,ste15,ste17,ste19和ste22基因在依博素生物合成中的作用进行了研究。
     Ste11基因大小为2100bp。经同源性分析,ste11基因编码的蛋白与不同微生物来源的苏氨酸脱氢酶(TDH)具有较高同源性。
     为确定ste11编码蛋白的性质,将该基因克隆至大肠杆菌表达载体pET-30a,转化至E.coli BL21,SDS-PAGE分析表明,在预计的分子量大小处出现了一条新的蛋白条带。重组蛋白采用组氨酸亲合层析柱进行纯化。纯化的重组蛋白酶促反应表明在NAD~+存在的条件下该酶可催化苏氨酸生成2-氨基-3酮基丁酸(AKB)和NADH,表明其为苏氨酸脱氢酶,Km值为0.2mM,最适温度为37℃,最适pH为7.5。
     为了解ste11在依博素生物合成中的功能,通过同源重组双交换对ste11进行了基因阻断研究,获得基因阻断变株Streptomyces sp.139(ste11~-),Southern杂交证明ste11基因已被成功阻断。对突变株进行了基因回复实验,得到基因互补株。单糖分析表明Streptomyces sp.139(ste11~-)产生的胞外多糖EPS-m单糖比例与依博素相似。基因互补株Streptomyces sp.139(pKC11C)产生的胞外多糖EPS-c单糖比例与EPS-m相似。IL-1R的拮抗活性显示,EPS-m的拮抗活性较依博素明显降低,但EPS-c的拮抗活性有所恢复。此外EPS-m的分子量明显低于依博素,上述结果表明ste11对依博素的生物活性及单糖重复单元的聚合度有显著影响,据此推测苏氨酸可能存在于依博素分子侧链,ste11在依博素的生物合成中可能起修饰基因作用。
     糖基转移酶在微生物胞外多糖的生物合成过程中起重要作用,在多糖生物合成基因簇中引入异源糖基转移酶基因可改变多糖结构获得新衍生物,并可验证被置换基因功能及多糖构效关系。本研究从产生胞外多糖的乳酸菌基因组DNA,PCR扩增获得其多糖生物合成簇的葡萄糖糖基转移酶基因。分别以缺失sre22(编码鼠李糖糖基转移酶)、ste7(编码岩藻糖糖基转移酶)的依博素产生菌突变株为受体菌,通过同源重组双交换将该糖基转移酶基因置换至依博素生物合成基因簇中。Southern杂交验证获得了基因置换菌株Streptomyces sp.139(ste7HC)和Streptomyces sp.139(ste22HC),分离纯化了两菌株产生的胞外多糖EPS-HC22、EPS-HC7,结果表明其单糖组分与依博素相比,葡萄糖均有显著提高;但对白介素Ⅰ受体拮抗活性显著降低;分子量低于依博素。这说明鼠李糖和岩藻糖在依博素生物活性中有重要作用,此外乳酸菌葡萄糖糖基转移酶基因与依博素的葡萄糖糖基转移酶基因同源率仅25%,因此异源表达的葡萄糖可能在糖键类型上与依博素不同,从而影响生物活性及单糖重复单元聚合度,相关研究尚需进一步深入研究。
     综上所述,本研究通过对ste11基因的表达、敲除及异源置换ste22、ste 7基因等策略,有效的确定了上述基因在依博素生物合成中的作用,并获得相应的新的依博素衍生物。为通过组合生物学途径研究多糖结构与生物活性关系奠定了较好的基础。苏氨酸脱氢酶在链霉菌中的研究尚属首次报道。
Ebosin produced by Streptomyces sp.139 is a novel exopolysaccharide(EPS) with remarkable anti-rheumatic arthritis activity in vivo. It may be developed to a new drug in the future.
     A biosynthesis gene cluster consisting of 27 ORFs (ste1-ste27) for Ebosin was identified in our lab. Among them, ste 6, ste7, ste10 ste15 and ste22 were confirmed to play important roles in the biosynthesis of Ebosin before.
     Ste11 (2100bp) was predicted to specify a protein with homology to known threonine dehydrogenase from different sources of microbes. For characterization of the protein encoding by ste11, the gene was cloned and expressed in E. coli BL21. The recombinant Ste11 was purified with the affinity chromatography and found capable of catalyzing NAD~+ and L-threonine to NADH and 2-amino-3-ketobutyrate, hence identified as a threonine dehydrogenase with optimum temperature 37℃, pH 7.5 and Km 0.2mmol/L.
     To investigate its function in the biosynthesis of Ebosin , the ste11 gene was knocked out with a double crossover via homologous recombination to produce Streptomyces sp. 139 (ste11~-),which was identified by Southern Blot. Gene complementation of the knock-out mutant was achieved producing the ste11 -complemented mutant strain Streptomyces sp. 139 (pKC11). GC analysis of monosacharride composition in EPS-m produced by Streptomyces sp. 139 (ste11~-) showed that it was composed of the same monosaccharides found in Ebosin but some proportional changes occurred in comparison with Ebosin. Analysis of EPS-c produced by the ste11-complemented mutant strain with GC showed no significant changes compared with EPS-m for most of the monosaccharides. The antagonist activities of EPS-m for IL-1R were much lower than those of Ebosin but the activities of EPS-c recovered partly compared from EPS-m. The Mw of EPS-m and EPS-c are remarkably smaller than Ebosin. With its function verified, we assume that threonine presents in the molecule of Ebosin, although the direct evidence has yet to be provided. Ste11 affects not only the bioactivity significantly but also the polymerization of the repeating units consisting of monosaccharides in Ebosin. The gene may function as a modificator gene of Ebosin during its biosynthesis.
     Glycosyltransferases (GTs) that sequentially link sugars from intracellular nucleotide sugar to a lipid carrier are key enzymes in EPSs biosynthesis. Replacing the GTs gene in the biosynthesis of Ebosin with the heterologous GTs gene will be benefit to produce Ebosin derivatives and study the relationship between structure and activity of Ebosin. The gene encoding glucosyltransferase originating from Streptococcus thermophilus was amplified with PCR and cloned into Streptomyces sp.139(ste 7~-) and Streptomyces sp.139 (ste22~-) respectively using a double crossover via homologous recombination. The mutants Streptomyces sp.139 (ste22HC) and Streptomyces sp.139( ste7 HC) were identified by Southern Blot.
     GC analysis of monosaccharide composition in EPS-HC22 and EPS-HC7 produced by Streptomyces sp. 139 (ste22 HC) and Streptomyces sp. 139 (ste7 HC) separately showed that glucose increased remarkably , at meant wile rhamnose and fucose decreased tremendously in two Ebosin derivatives in comparison with Ebosin. The antagonist activities of IL-1R for two Ebosin derivatives lost and their Mw were significantly lower than Ebosin. Such results demonstrated that rhamnose, fucose and gluocse are essential in biosynthesis of Ebosin.
     In briefly, these studies have laid the ground works for producing more new derivatives of Ebosin with various bioactivities. As our knowledge, the threonine dehydrogenase was reported in Streptomyces at first time.
引文
[1]Jolly L,Vincent SL,Duboc P,el al. Exploiting expolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek,2002,82(1-4):376-374.
    
    [2]De Vuyst L,Degeest B. Exopolysaccharides from lactic acid bacteria.Technological Bottlenecks and practical solutions. Macromol.Symp,1999,140: 31-41.
    
    [3]Alan DW,Maddox IS. Exopolysaccharides from lactic acid bacteria:perspectives and Challwnges. Trend in Biotech,2003,21:269-274.
    
    [4]Hee SH, Sung HL, Yu MB, el al. Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl Microbiol Biotechnol,2008,74: 419- 429.
    
    [5]Chabot S. Exopolysaccharides from Lactobacillus rhamnous RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells and IFN-γ in mouse splenocytes. Lait,2001,81: 683-697.
    
    [6]Gohar Y,Bashay U,Daba A,et al. Bioactive compounds from Streptomyces nasi and its mutants with sspecial reference to proteopolysaccharides. Pol J Microbiol,2006,55 (3): 179-187.
    
    [7]Nakajima H. Cholesterol lowering activity of rupy fermented milk. J.FoodSci, 1992,57: 1327-1329.
    
    [8]Barreras M,Bianchet MA,Ielpi L. Crystallization and preliminary crystallographic characterization of GumK,a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Acta Crystallograph Sect F Struct Bio Cryst Commun,2006,62:880- 883.
    
    [9]da Silva AC,Ferro JA,Reinach FC,et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature,2002,417:459-463.
    
    [10]Hung CH,Wu HC,Tseng YH. Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage (phi)L7 adsorption. Biochem Biophys Res Commun,2002, 291:338-343.
    
    [11]Ielpi L,Couso RO,Dankert MA. Sequential assembly and polymerization of the polyprenol- linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris.J Bacteriol,1993,175:2490-2500.
    [12]Lamothe GT,Jolly L,Mollet B.Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp.bulgaricus.Arch Microbiol,2002,178(3):218-228.
    [13]Laure Jolly,Francesca Stingele.Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria.Int Dairy J,2001,11:733-745.
    [14]陈晶,吴剑波,刘叶民,徐桂芸.一种微生物来源的白细胞介素1受体拮抗剂.多糖139A的化学结构研究.药学学报,2001,36(10):787-789.
    [15]吴倩,吴剑波,李元.白细胞介素1受体拮抗剂139A的理化性质及体内活性研究.中国抗生素杂志,1999,24(6):401-403.
    [16]Wang LY,Li ST,Li Y.IdentiWcation and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces.FEMS Microbiol Lett,2003,220:21-27.
    [17]张天宇,中国协和医科大学博士论文,2005,5.
    [18]孙庆莉,中国协和医科大学博士论文,2005,5.
    [19]MacNeil DJ,Gewain KM,Ruby CL,Dezeny G,Gibbons PH,MacNei T.Analysis of Streptomyces avermitilis genes required for avermecin biosynthesis utilizing a novel integration vector.Gene,1992,111:61-68.
    [20]Bierman M,Logan R,O'Brien K,Seno ET,Schoner BE.Plasmid cloning vectors for conjugal transfer of DNA from Escherichia coli to Streptomyces spp.Gene,1992,116:43-69.
    [21]萨姆布鲁克,弗里奇,曼尼阿蒂斯著,金冬雁,黎孟枫等译,分子克隆实验指南(第三版).北京:科学出版社.
    [22]卢圣栋.现代分子生物学实验技术(第二版).北京:中国协和医科大学出版社,1999.
    [23]Kieser T,Bibb MJ,Butter MJ,Chater KF,Hopwood DA.Practical Streptomyces genetics.The John Innes Foundation,Norwich,England 2000.
    [24]Stephen C,Bell and John M,Turner.Bacterial Catabolism of Threonine:Threonine Degradation Initiated By L-Threonine-NAD~+ Oxidoreductase.Biochem J,1976,156: 449-458.
    [25]赵永芳,等.生物化学技术原理及应用(第三版).北京:科学出版社,2002.
    [26]Xu G,Chang W,Fei LH.Composition analysis of carbohydrate released from bovine submaxillary mucin by capillary gas chromatography.J Anal Chem,1998,26:922-926.
    [27]Bitter T,Muir HM.A modiWed uronic acid carbazole reaction.Anal Biochem,1962,4:330-334.
    [28]Bentley SD,Chater KF,Cerdeno-Tarraga AM,et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).Nature,2002,417(6885):141-147.
    [29]Deppenmeier U,Johann A,Hartsch T,et al.The genome of Methanosarcina mazei:Evidence for lateral gene transfer between Bacteria and Archaea.J Mol Microbiol Biotechnol,2002,4(4):453-461.
    [30]Raymond CK,Sims EH,Kas A,et al.Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa.J Bacteriol,2002,184(13):3614-3622.
    [31]Higashi N,Fukada H& Ishikawa K.Kinetic study of thermostable L-threonine dehydrogenase from an archaeon Pyrococcus horikoshii.J.Biosci.Bioeng,2005,99:175-180.
    [32]Takayuki Kazuoka,Shouhei Takigawa,Noriaki Arakawa,et al.Novel Psychrophilic and Thermolabile L-Threonine Dehydrogenase from Psychrophilic Cytophaga sp.Strain KUC-1.Bacter J,2003,185:4483-4489.
    [33]Lows A.Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria.Biotechnol Adv,2001,19:597-625.
    [34]Roberts LS.The biochemistry and genetics of capsular polysaccharide production in bacteria.Annu Rev Microbiol,1996,50:285-315.
    [35]Petronella J,Looijesteijn IC,Boels MK,Jeroen H.Regulation of exopolysaccharide production by Lactococcus lactis subsp,cremoris by the sugar source.Applied and Environmental Micobiology,1999,65:5003-5008.
    [36]Bill RE,Eugene ED.L-Threonine dehydrogenase from Escherichia coli.J Biol Chem,1991,266:6086-6092.
    [37]Boylan SA, and E E Dekker. L-threonine dehydrogenase. Purification and properties of the homogeneous enzyme from Escherichia coli K-12. J Biol Chem, 1981,256: 1809-1815.
    
    [38] Noriko H, Harumi F, Kazuhiko I. Kinetic study of thermostable L-threonine dehydrogenase from an archaeon Pyrococcus horikoshii. Journal of Bioscience and Bioengineering, 2005,99: 175-180.
    
    [39]Ray M and S Ray. L-Threonine dehydrogenase from goat liver.Feedback inhibition by methylglyoxal. J Biol Chem,1985,260:5913-5918.
    
    [40]Mancini MA, Castric PA. Threonine metabolism by Pseudomonas aeruginosa. Curr Microbiol, 1989,18:105-108.
    
    [41]Arbatsky NP, Shashkov AS, Literacka E, Widmalm G, Kaca W, Knirel YA. Structure of the O-specific polysaccharide of Proteus mirabilis O11, another Proteus O-antigen containing an amide of D-galacturonic acid with L-threonine. Carbohydr Res,2000,323 (1-4):81-86.
    
    [42] Aldert AB, GJ van Dam, JP Rotmans, AM Deelder, JP Kamerling and JF Vliegenthart. The immunologically reactive part of immunopurified circulating anodic antigen from Schistosoma mansoni is a threonine- linked polysaccharide consisting of →6)-(β-D-GlcpA-(1→3))-β-D-GalpNAc (1→repeating units. J Biol Chem, 1994,269: 31510-31517.
    
    [43]Zygmunt S, Anna S, Yuriy AK, Eugeny VV, Anatoly YC, Leonid OK, Maciej C, Antoni R, Wieslaw K, Aleksander SS, Nikolay KK. Structure and epitope specificity of the O-specific polysaccharide of Proteus penneri strain 12(ATCC 33519) containing the amide of D-galacturonic acid with L-threonine. Eur. J Biochem, 1995,230: 713-721.
    
    [44] Vinogradov EV, Knirel YA, Kochetkov NK, Radziejewska LJ, Kaca W. Structural study of the O- antigens of Proteus mirabilis O28 and 3/6 containing amides of D-galacturonic acid with L-amino acids; β-elimination and C-methylation in L-serine and L-threonine in methylation analysis. Bioorg Khim,1993,19: 1132-1136.
    
    [45]Van Kranenburg R, Boels IC, Kleerebezem M, et al. Genetics and engineering of microbial exopolysaccharides for food: approach for the production of existing and polysaccharides. Current Opinion in Biotechnology, 1999,10: 498-453.
    
    [46]Suthedand 1W. Biosynthesis and cmnposifien of Gram-negative bacterial extracelular and wall polysaccharide.Annu Rev Microbial,1985,39:243-249.
    [47]Whiftield C,Valvano MA.Biosynthesis and expression of cell surface polysaccharid in Gram- negative bacterial.Adv Microbial Physiol,1993,35:136.
    [48]Griffin,Morris VJ,Q1MJ.The cpsABCDE genes involved in polysaccharide predueduction in Streptococcus salimdus ssp.Thermophilus strain NCBF2393.Gene,1996,183:23-27.
    [49]Van Kranenburg R,Van Swam Ⅱ,Marugg JD,et al.Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40:function analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone.J Bacterial,1999,181:338-343.
    [50]Van Kranenburg R,Kleerebezem M,de Vos WM.Nucleotide sequence analysis ofthe lactococcal EPS plasmid pNZ4000.Plasmid,2000,43(2):130-135.
    [51]Stingele F,Neeser JR,Mollet B.Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6.J Bacteriol,1996,178:1680-1686.
    [52]Stingele F,Vincent SJF,Faber VJ,et al.Introduction ofthe exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363:production and characterization of an altered polysaccharide.J Bacterial,1999,32:1287-1295.
    [53]王玲燕,李师弢,郭连宏,姜蓉,李元.链霉菌胞外多糖139A生物合成中引导糖基转移酶基因的克隆和鉴定.遗传学报,2003,30(8):723-732.
    [54]百利平,中国协和医科大学博士论文,2007,5.
    [55]Sun QL,Wang LY,Shan JJ,Jiang R,Guo LH,Zhang Y,Zhang R,Li Y.Knockout of the gene(ste15) encoding a glycosyltransferase and its function in biosynthesis of exopolysaccharide in Streptomyces sp.139.Arch Microbiol,2007,188:333-340.
    [56]Zhang T,Wang L,Xu G,Chen Y,Zhang Y,Li Y.Disruption of ste22 gene encoding a glycosyltransferase and its function in biosynthesis of Ebosin in Streptomyces sp.139.Current Microbiology,2006,52:55-59.
    [57]Hassler RA,Doherty DH.Genetic engineering of polysaccharide structure:production of xanthan gum in xamhomonas mmpestris.Biotechnol Prog.1998.6:182.
    [58]Malin Svensson,Elisabet Waak,et al.Metabolically Improved Exopolysaccharide Production by Streptococcus thermophilus and Its Influence on the Rheological Properties of Fermented Milk. Applied and Environmental Microbiology 2005,71: 6398-6400.
    
    [59]Willemiek H. M. van Casteren, Cor Dijkema,et al. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B39. Carbohydrate Research 2000,324:170-181.
    
    [60]Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ, Broadbent JR. Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl Environ Microbiol, 1998, 64:2147-2151.
    
    [61] Alexander Bolotin,Benoit Quinquis,et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotech 2004 22:1554-1558.
    
    [62] Guillaume Tyvaert,Catherine Morel,et al. The eps locus of Streptococcus thermophilus IP6756 is not involved in exopolysaccharide production. International Dairy Journal 2005,12:1-7.
    
    [63] Doco T, Wieruszeski J-M, Fournet B, Carcano D, Ramos P, Loones A.Structure of an exocellular polysaccharide produced by Steptococcus thermophilus. Carbohydr Res, 1990, 198:313-321.
    [1]McGilvray,D, and J. G. Morris.Utilization of L-threonine by a species of Arthrobacter. A novel catabolic role for"aminoacetone synthase."Biochem. J, 1969,112: 657-671.
    
    [2]Ohshima,T.,Soda,K.Biochemistry and biotechnology of amino acid dehydrogenases. Adv. Biochem. Eng. Biotechnol, 1990,42:187-208.
    
    [3]Paulad. Ravnikar., Ronald L.,Somerville. Localization of the Structural Gene for Threonine Dehydrogenase in Escherichia coli. J Bacteriol,1986,168(1): 434—436.
    
    [3]Yi-Shiow Liu,Yi-Hsiung Tseng, Juey-Wen Lin, and Shu-Fen Weng. Molecular Characterization of the Gene Coding for Threonine Dehydrogenase in Xanthomonas campestris. Biochem.Biophy.R.Commu,1997,235:300-305
    
    [3]Makoto Ashiuchi, Kanoktip Packdibamrung ,Toshiyuki Miyajib,Shinji Nagata,Haruo Misono. Nucleotide sequence, cloning, and overexpression of the D-threonine dehydrogenase gene from Pseudomonas cruciviae. FEMS Microbiology Letters, 1998, 167:75-80
    
    [4] Brunhuber, N.M.W. and Blanchard, J.S. The biochemistry and enzymology of Amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol, 1994,29(6): 415-467.
    
    [5]Bater, A. J., and W. A. Venables. The characterization of inducible dehydrogenases specific for the oxidation of D-alanine,allo-hydroxy-D-proline, choline and sarcosine as peripheral membrane proteins in Pseudomonas aeruginosa. Biochim. Biophys. Acta, 1977,468:209-226.
    
    [6] Misono, H., Y. Shinagawa, S. Nagata, and S. Nagasaki. Occurrence of D-threonine dehydrogenase in Pseudomonas cruciviae. Agric. Biol. Chem,1987,51: 1467-1469.
    
    [7] McGilvray, D., and J. G. Morris. Utilization of L-threonine by a species of Arthrobacter:A novel catabolic role for "aminoacetone synthase." Biochem. J,1969,112: 657-671.
    
    [8] Reid, M. F. & Fewson, C. A. Molecular characterization of microbial alcohol dehydrogenases.Crit. Rev. Microbiol, 1994,20:13-56.
    
    [9] Aronson BD, Somerville RL, Epperly BR, Dekker EE. The primary structure of Escherichia coli L-threonine dehydrogenase. J Biol Chem, 1989,264:5226-5232.
    
    [10]Epperly BR,Dekker EE.L-Threonine dehydrogenase from Escherichia coli. Identification of an active site cysteine residue and metal ion studies. J Biol Chem, 1991, 266: 6086-6092.
    
    [11] Eklund H,Nordstrom B, Zeppezauer E, Soderlund G, Ohlsson I, Boiwe T, Soderberg BO, Akeson A. Three dimensional structure of horse liver alcohol dehydrogenase at 2.4 A resolution.J Mo 1 Biol, 1976,106:27-59.
    
    [12] Jeffery J, Chesters J, Mills C, Sadler PJ, Jornvall H. Sorbitol dehydrogenase is a zinc enzyme. EMBO J,1984,3:357-360.
    
    [13]Haruo Misono, Ichiro Kato, Kanoktip Packdibamerung,et.al. NADP~+-Dependent D-Threonine Dehydrogenase from Pseudomonas cruciviae IFO 12047.App.Envir. Microbiol, 1993,59:2963-2968.
    
    [14] Boylan, S. A., and E. E. Dekker. L-threonine dehydrogenase. Purification and properties of the homogeneous enzyme from Escherichia coli K-12. J. Biol. Chem,1981, 256: 1809-1815.
    
    [15] Wagner, M., and J. R. Andreesen. Purification and characterization of threonine dehydrogenase from Clostridium sticklandii. Arch. Microbiol, 1995,163:286-290.
    
    [16] Takayuki Kazuoka, Shouhei Takigawa, Noriaki Arakawa,et.al. Novel Psychrophilic and Thermolabile L-Threonine Dehydrogenase from Psychrophilic Cytophaga sp. Strain KUC-1.Bacter.J,2003,185:4483-4489
    
    [17] Higashi, N., Fukada, H. & Ishikawa, K. Kinetic study of thermostable L-threonine dehydrogenase from an archaeon Pyrococcus horikoshii. J. Biosci. Bioeng,2005, 99: 175-180.
    
    [18] Aoyama, Y., and Y. Motokawa. L-Threonine dehydrogenase of chicken liver. Purification, characterization, and physiological significance. J. Biol.Chem,1981, 256: 12367- 12373.
    
    [19] Ray, M., and S. Ray. L-Threonine dehydrogenase from goat liver.Feedback inhibition by methylglyoxal. J. Biol. Chem,1985,260:5913-5918.
    
    [20] Kao, Y. C., and L. Davis. Purification and structural characterization of porcine L-threonine dehydrogenase. Protein Expr. Purif,1994, 5:423-431.
    
    [21]B .L. Valley and D.S. Auld. Faraday Discuss.93,1992:47.
    
    [22]Kazuhiko Ishikawa, Noriko Higashi, Tsutomu Nakamura,et.al. The First Crystal Structure of L-Threonine Dehydrogenase. J.Mol.Biol,2006,366:857-867
    
    [23]Sharon A. Boylan and Eugene E. Dekker. L-Threonine Dehydrogenase:Purification and properties of the homogeneous enzyme from Escherichia.coli K-12.J.Bio.Chem, 1981,256:1809-1815.
    
    [24]Craig PA,Dekker EE. Cd2+ activation of L-threonine dehydrogenase from Escherichia coli K-12. Biochim Biophys Acta, 1988,957:222-229.
    
    [25]Craig PA,Dekker EE. L-threonine dehydrogenase from Escherichia coli K-12: thiol-dependent activation by Mn2+.Biochemistry, 1986,25:1870-1876.
    
    [26] Kimber Clark-Baldwin,Adam R. Johnson, Yen-Wen Chen,et.al. Structural characterization of the zinc site in Escherichia coli L-threonine dehydrogenase using extended X-ray absorption fine structure spectroscopy. Inorganica Chimica Acta,1998, 275:215-221
    
    [27]Craig, P. A., and Dekker, E. E. Biochim. Biophys. Acta, 1990,1037:30-38.
    
    [28] Adam R. Johnson,Yen-Wen Chen,and Eugene E. Dekker. Investigation of a Catalytic Zinc Binding Site in Escherichiacoli L-Threonine Dehydrogenase by Site-Directed Mutagenesis of Cysteine-38. Arch.Biochem. Biophy,1998,358:211-221
    
    [29]Adam R. Johnson and Eugene E. Dekker. Site-Directed Mutagenesis of Histidine-90 in Escherichia coli L-Threonine Dehydrogenase Alters Its Substrate Specificity. Arch. Biochem. Biophy, 1998,352:8-16.
    
    [30] Esposito, L., Sica, F., Raia, C. A., Giordano, A., Rossi,M., Mazzarella, L. & Zagari, A. Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution. J. Mol. Biol,2002,318:463-477.
    
    [31] Guy, J. E., Isupov, M. N. & Littlechild, J. A. The structure of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. J. Mol.Biol, 2003,331:1041-1051.
    
    [32] Fan, F. & Plapp, B. V. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes.Arch. Biochem. Biophys, 1999,367:240-249.
    
    [33]Komatsubara, S., K. Murata, M. Kisumi, and I. Chibata. Threonine degradation by Serratia marcescens. J. Bacteriol, 1978,135:318-323.
    
    [34]Dale, R. A. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochim. Biophys. Acta, 1978, 544:496-503.
    
    [35]Boylan, S. A., and E. E. Dekker. Growth, enzyme levels, and some metabolic properties of an Escherichia coli mutant grown on L-threonine as the sole carbon source. J. Bacteriol, 1983,156:273-280.
    
    [36] Chan, T. T. K., and E. B. Newman. Threonine as a carbon source for Escherichia coli.]. Bacteriol, 1981,145:1150-1153.
    
    [37] Mancini, M. A., and P. A. Castric. Threonine metabolism by Pseudomonas aeruginosa. Curr. Microbiol,1989,18:105-108.
    
    [38]Ravnikar, P. D., and R. L. Somerville. Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli. J. Bacteriol, 1987, 169: 2611-2617.
    [39]Bird,M.I.,and P.B.Nunn.Metabolic homeostasis of L-threonine in the normallyfed rat.Biochem.J,1983,214:687-694.
    [40]Newman,E.B.,V.Kapoor,and R.Potter.Role of L-threonine dehydrogenase in the catabolism of threonine and synthesis of glycine by Escherichia coli.J.Bacteriol,1976,126:1245-1249.
    [41]Yeung,Y.G.L-Threonine aldolase is not a genuine enzyme in rat liver.Biochem.J,1986,237:187-190.
    [42]Umbarger,H.E.Amino acid biosynthesis and its regulation.Annu.Rev.Biochem,1978,47:533-606.
    [43]Goss,T.J.,and P.Datta.Molecular cloning and expression of the biodegradative threonine dehydratase gene tdc of Escherichia coli K-12.Mol.Gen.Genet,1985,201:308-314.
    [44]Potter,R.,V.Kapoor,and E.B.Newman.Role of threonine dehydrogenase in Escherichia coli threonine degradation.J.Bacteriol,1977,132:385-391.
    [45]John P.Marcus and Eugene E.Dekker.Threonine Formation via the Coupled Activity of 2-Amino-3-Ketobutyrate Coenzyme A Lyase and Threonine Dehydrogenase.J.Bacteriol,1993,175:6505-6511.
    [46]Debabov V G.The threonine story[J].Adv Biochem Eng Biotechnol,2003,79:113-136.
    [47]LeuchtenbergerW.Amino acids:Technical production and use[M]//RoehrM.Biotechnol.VCH,Weinheim,1996:465-502.
    [48]Debabov.Method for preparing strains which produce aminoacids:U.S.A,4278765[P],1981:07-14.
    [49]焦瑞身.微生物工程[M].北京:化学工业出版社,2003:16-17.
    [50]常尊学,李福德.L-苏氨酸产生菌选育的研究[J].沈阳药学院学报,1990,7(3):185-188
    [51]Yamada.Process for producing L-threonine by fermentation with Prettgeri.U.S.A:5342766[P],1994:08-30.
    [52]Kramer R.Genetic and physiological approaches for production of amino acid[J].J Biotechnol,1996,45:1221.
    [53]Arbatsky NP,Shashkov AS,Literacka E,Widmalm G,Kaca W,Knirel YA.Structure of the O-specific polysaccharide of Proteus mirabilis Oll,another Proteus O-antigen containing an amide of D-galacturonic acid with L-threonine.Carbohydr Res,2000,323(1-4):81-6.
    [54]Aldert AB,GJ van Dam,JP Rotmans,AM Deelder,JP Kamerling and JF Vliegenthart.The immunologically reactive part of immunopurified circulating anodic antigen from Schistosoma mansoni is a threonine- linked polysaccharide consisting of →6)-(β-D-GlcpA-(1→3))-β-D-GalpNAc(1→repeating units.J Biol Chem,1994,269:31510-31517.
    [55]Zygmunt S,Anna S,Yuriy AK,Eugeny VV,Anatoly YC,Leonid OK,Maciej C,Antoni R,Wieslaw K,Aleksander SS,Nikolay KK.Structure and epitope specificity of the O-specific polysaccharide of Proteus penneri strain 12(ATCC 33519) containing the amide of D-galacturonic acid with L-threonine.Eur.J Biochem,1995,230:713-721.
    [56]Vinogradov EV,Knirel YA,Kochetkov NK,Radziejewska LJ,Kaca W.Structural study of the O- antigens of Proteus mirabilis 028 and 3/6 containing amides of D-galacturonic acid with L-amino acids;β-elimination and C-methylation in L-serine and L-threonine in methylation analysis.Bioorg Khim,1993,19:1132-1136.