甘蓝型油菜温敏细胞质雄性不育系417S选育与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质雄性不育是油菜杂种优势利用的重要途径。生态型细胞质雄性不育系可以实现一系两用,且恢复源广泛,利于配制杂交种,在育种上具有很大的应用前景。然而,合适的育性转化条件是生态型雄性不育系利用的关键因素。本文以温敏细胞质雄性不育系533S为不育源,利用杂交选育的方法育成新的温敏细胞质雄性不育系417S,并对其育性转化的光温条件、育性的遗传、细胞质类型等进行了研究。取得的主要结果如下:
     1.417S与其不育源的异同
     417S与其不育源的不育性状类似,表现对高温敏感。杂交结果表明417S的细胞质与源不育系细胞质相同。与不育源相比较,417S在育性转换条件、品质性状和农艺学性状上取得了明显的改良。具体表现在:417S的育性转换温度高于源不育系,这使得417S的制种区更易寻找,不育系的硫苷含量由原来的高硫苷(125.6μmol/g饼)改良为低硫苷(24.2μmol/g饼),含油量提高近6个百分点,株高降低了14.6cm,抗倒伏性明显增强。
     2.417S的育性类型、育性转换敏感期及育性转换指标
     通过人工控温、控光试验,对417S的育性敏感类型做了分析。结果表明,417S属温敏型不育系。日自交结实率与日平均气温相关分析表明,417S的育性敏感期为单花开花前3-12天,敏感期长度为10d左右。当开花前3-12天日平均温度低于17.0℃时,417S所开的花为雄性不育花,单株自交结实率很低,而高于20.5℃时, 417S开的花表现雄性可育,自交结实正常。当温度处于17.0-20.5℃之间时,417S表现为半不育,有微量花粉产生,自交可部分结实,为育性转换温度。
     3.417S温敏不育性的遗传
     通过测交、杂交和回交结合人工控温试验和RAPD方法对417S的温敏不育性的遗传进行了分析。结果表明:417S属质核互作型不育系,其温敏不育性受不育细胞质和2对主效隐性重叠基因控制,同时还受数目不定的微效多基因修饰。在大量测交基础上,仍未能从现有的品种或资源中筛选出保持系。所有测交的品种对417S均表现不同程度的育性恢复。正反交结果表明,1102C可能有着与417S不同的细胞质。通过RAPD分析,找到了1个与恢复基因连锁的分子标记BA392-400bp,该标记与恢复基因的遗传图距为6.0cM,同时在分子水平上初步验证了417S的遗传规律。
     4.417S线粒体基因组的PCR分析
     用25对引物对7个甘蓝型油菜线粒体DNA进行PCR分析,在7个材料中共扩增出116条带,共24种带型。平均每对引物在1个材料中扩增出0.7条带。多数引物扩增产物为单一条带。其中,有7对引物在参试的材料中无差异;2对引物(P18、P19,pol cms特异引物)只在pol cms不育系中出现一条带,表明417S与pol CMS不同;有5对引物可将417S和nap CMS区别开,分别涉及线粒体的atp1,atp9,nad4L,orf263和orf222-nad5c-orf139五个基因区域。UPGMA聚类分析结果表明,参试的7个材料可分为3类,第一类包括材料417S和nap CMS,第二类包括1102C、Bronowski和ZS9,第三类包括pol CMS和Westar。417S与nap CMS的育性表现最为相似,可能有着近似的细胞质起源。nap CMS的保持系与1102C(pol CMS系统的恢复系)分为一类,这与遗传试验结果1102C可能为417S的保持系相一致。
     5.RFLP杂交分析
     用7种探针atp1、atp6、atp8、atp9、cob、cox1和cox3结合5种内切酶(EcoR I,EcoR V,HindⅢ, BamH I, Pst I)检测4种甘蓝型油菜417S、pol、nap和ogu cms mtDNA的多态性。在25种有效探针/酶组合中,3个组合在检测的4个不育系间无多态性;1个组合cox1/Hind III能将4种不育细胞质彼此区分开来,417S产生了1条4.5kb的杂交带,pol CMS产生了6.6和4.3kb的两条带,而nap CMS产生了1条6.6kb的条带,ogu CMS产生了1条4.3kb的条带;8个探针/酶组合能将417S细胞质同pol, ogu, nap不育细胞质区分开来;7个探针/酶组合可将pol, nap和ogu cms两两区分开来。在25种有效的线粒体探针/酶组合中,有19种探针/酶组合检测到417S同其它3种不育细胞质的差异,有17个探针/酶组合可将417S与nap CMS分开。结果表明生态雄性不育系417S与pol、nap、ogu CMS在线粒体DNA水平是不同的,为不同的细胞质类型。
     6.417S三个扩增片段序列分析
     将3个orf222/nad5/orf139位点特异引物对417S mtDNA的扩增产物测序,删除冗余序列后,P23、P24、P25扩增产物大小分别为669bp,537bp和806bp。NCBI网站BLAST比对结果表明:P23扩增产物与线粒体全基因组中nad5和orf222序列存在2个碱基差异,与陕2A和pol CMS不育相关基因orf224存在100个碱基差异。P24扩增产物与nad5序列存在5个碱基的差异,与甘蓝型油菜的atp6基因序列存在7个碱基差异,与品种Isuza-natane的atp6基因存在12个碱基的差异。P25扩增产物与线粒体全基因组中nad5序列完全一致,与orf222序列存在7个碱基的差异。将P23和P25扩增序列进行拼接后BLAST比对结果表明,对417S的orf222位点的扩增产物与nap CMS不育基因序列存在7个碱基的差异,主要表现为碱基的插入。其中,在orf222序列的4829、5033bp处分别插入了一个碱基C,在5082处插入了2个碱基CC,在4828和5351bp处分别插入了一个碱基G,而在5444bp处缺失了1个碱基A。这一结果表明,417S与nap CMS在nap CMS不育相关基因orf222/nad5/orf139序列上存在一定差异,属于不同的细胞质不育类型。
Cytoplasmic male sterility(CMS)is a prominent approach to utilizing heterosis in rapeseed. The photo-thermo-sensitive cytoplasmic male sterility (PTMS) can be used to produce hybrid seeds according to the two-line hybrid system model. The PTMS system has been the focus of attention increasingly for its widely restoring ability, easy to screen combinations and to multiple male sterile line by self-pollination. However, it plays the key role that a PTMS line possess available index of fertility conversion for hybrid seed production. Attempts were made in this paper to develop a novel available PTMS line through hybridization breeding by using the PTMS line 533S as the resource of sterility gene, and to study genetics, ecology, molecular characterization of novel PTMS line developed. The main results obtained are as following:
     1. Comparison 417S with its original sterility
     417S was similar to its original sterility in fertility expression. Both were sensitive to higher temperature. The results of reciprocal cross between 417S and its original showed that 417S shared same cytoplasm with its original. By comparison with its original, 417S made a magnificent progress in quality and agronomic traits because glucosinolates content of 417S is 24.2μmol/g cake while its original is 125.6μmol/g cake, oil content increased by 6 percent approximately, plant height decreased by 14.6 centimeter, and possessing a good lodging resistance. It is easy to find a propagating area than its original sterility because the fertility altering temperature of 417S is higher than its original sterility.
     2. Type of fertility altering, critical stage for fertility, and index of fertility altering
     The results of experiments under artificial temperature, photoperiod regime and multi-location environment showed that 417S was a thermo-sensitive male sterile line. The critical stage for fertility of 417S was 3-12 days prior to blossoming when the buds was about 2-3 mm in length because the daily seed-setting rate was highly positive correlative (r=0.906) with the average temperature per day during this period. The hierarchical cluster analysis indicated that the critical air temperature of 417S was 17.0-20.5℃, namely, the 417S exhibits male sterility, when 417S could not produce seed by self-pollinating bagged at average air temperature below 17.0℃but became male fertile over 20.5℃when 417S produce seeds as normal.
     3. Studies on inheritance of 417S and screening of molecular marker
     The results of test cross, cross and backcross combined with artificial environments and RAPD analysis showed that the thermo-sensitive sterility of 417S is controlled by interaction between cytoplasmic genes and two pair major recessive overlapping genic genes with modification by uncertain minor genes. A maintainer has not been developed based on results of test cross with a great deal of varieties or breeding lines. All testers could restore the sterility of 417S at different restore ability. Of which, 1102C may be a different cytoplasm with 417S based on F1, F2 populations of reciprocal cross. The RAPD marker was screen through BSA (Bulked segregant analysis) method. A marker (BA392-400bp) was linked with the restoring genes for the thermo-sensitive male sterile gene (6.0cM), and could be used as marker linked to thermo-sensitive male sterile restoring gene originated from 417S.
     4. PCR analysis of 417S mtDNA genome
     PCR analysis of mtDNA genome from 7 varieties or breeding lines with 25 primer pairs specific for genes of mtDNA rapeseed was performed and yielded 116 bands, i.e. 24 type of band, in all samples. Majority of primer pair could amplify one band at average of 0.7 strip of band in each sample. Of them, seven primer pairs have no polymorphism among the seven samples. 417S is distinguished from pol CMS because primer pair 18 and 19, specific to pol CMS mtDNA gene orf224/atp6, yielded only one band in pol CMS lines, but no product in other samples. There are five primer pairs could distinguish 417S from nap CMS by mitochondrial atp1, atp9, nad4L, orf263, orf222-nad5-orf139 gene regions. The results of cluster analysis with unweighted pair group method with arithmatic mean method (UPGMA)based on PCR profiles showed that seven cytoplasm tested were grouped three clusters. Cluster I, consisting of 417S and nap CMS, Cluster II, consisting of 1102C, bronowski and ZS9, and Cluster III, consisting of pol CMS and Westar, which accorded with the results of genetics testing that cytoplasm of 417S is different from 1102C.
     5. RFLP analysis
     RFLP analysis of the mitochondrial DNA of the 4 CMS lines, i.e. 417S, pol, nap and ogu CMS, combining 7 probes originated from mitochondrial genes of rapeseed with 5 endonuclease, EcoR I, EcoR V, BamH I, Hind III and Pst I (Takara), was performed. Of 25 combinations, three combinations of probe/enzyme have no polymorphism among 4 samples tested. One combination of probe/enzyme, cox1/Hind III could distinguish the 4 CMS each other. One band (4.5kb) in 417S, two band(6.6kb and 4.3kb) in pol CMS , one band(6.6kb) in nap CMS, and one band(4.3kb) in ogu CMS were observed. 8 combinations of probe/enzyme could distinguished 417S from others, 7 combinations of probe/enzyme could distinguish pol, nap, ogu CMS each other. 17 combinations of probe/enzyme could distinguish 417S from nap CMS, 19 combinations of probe/enzyme could powerfully distinguish the 417S from others. These results definitely demonstrated the 417S hold a new type of sterile cytoplasm different from pol, nap and ogu CMS. This provides molecular evidence for the cytoplasmic heterogeneity.
     6. Sequences analysis of 417S
     Three fragments with size of 669bp, 537bp, 806bp respectively amplified from three primer pairs specific to orf222/nad5c/orf139 gene were cloned, sequenced and assembled. The results of alignment via BLAST procedure on NCBI showed that there are two base pairs(bp) differences between sequence of 417S amplified with primer pair P23 and nad5 gene from mitochondrial gene sequence(position 44279-44947) and orf222 gene(position 4151-4819) in nucleotide, 100 base pair differences between 417S and pol CMS in gene orf224. There are 5 bp differences between sequence of 417S from primer pair P24 and nad5 (position 37157-37694), 7 bp differences from atp6 gene of B.napus, 12 bp differences from atp6 gene of Var. Isuza-natane. Sequence of 417S from primer pair 25 was identical to nad5 (position 43514-44319) while 7 bp differences from orf222 (position 4779-5580) gene of B.napus. After assembled fragments of primer pair 23 and 25 via DNASTAR software, seven base pair differences was observed between 417S and orf222 gene, which mostly they are base insertion. The results indicated that 417S and nap CMS were distinct.
引文
陈小荣,贺晓鹏,李云等. 2004.水稻光温敏核不育基因研究进展[J].江西农业大学学报, 26 (2): 228-233.
    程式华,孙宗修,斯华敏等, 1996.水稻两用核不育系育性转换光温反应型的分类研究[J].中国农业科学, 29(4):11-16
    董军刚,董振生,刘创社等. 2001.甘蓝型油菜生态型雄性不育两用系533st的选育[J].陕西农业科学, (7): 8-11.
    董军刚,董振生,刘创社等. 2008.甘蓝型油菜温敏不育系417S选育与鉴定[J].中国油料作物学报, 30 (3) : 306-311
    董军刚,董振生,刘绚霞等. 2004.甘蓝型油菜生态雄性不育系533S花药发育的细胞学研究[J].西北农林科技大学学报(自然科学版), 32(7): 61-66
    傅廷栋,. 2000.杂交油菜的育种与利用(第二版)[M].武汉,湖北科学出版社, 58-59
    耿月明. 2005.中油杂2号成功的启示[J].农产品市场周刊, 27: 7-12
    何觉民. 1994.两系杂交小麦理论与实践[M].湖南科学技术出版社,长沙
    何振才和李建昌. 2000.新型杀雄剂SX-1在油菜上的应用初报[J].陕西农业科学, 3: 12-14.
    胡宝成和陈凤祥. 1993.白菜型油菜雄性不育材料广丰A的研究[J].安徽农业科学,21(4): 337-339
    胡宝成和王毅. 1992.白菜型油菜雄性不育材料的发现和育性观察[J].安徽农业科学, 20(1): 45-48
    靳德明,雷建勋,李泽炳. 1988.水稻光周期敏感雄性不育性的遗传研究[J].作物杂志,
    井苗,汪奎,王斌等. 2009. BHL诱导油菜雄性不育效果再研究[J].西北农业学报,18 (5) :150-152
    雷建勋和李泽炳. 1989.湖北光敏核不育水稻遗传规律研究I.原始光敏核不育水稻与中粳杂交后代育[J].杂交水稻, (2): 39-43.
    李敏,张瑞茂,安万雄. 2003.甘蓝型油菜细胞质雄性不育材料RMcms的育性变化特性的研究[J].种子, (2): 13-15
    李石开,刘其宁,吴学英等. 2002.芥菜型油菜光温敏核不育系K121S的选育[J].中国油料作物学报, 24(3): 1-5
    李云昌,蔡明,郑元本等. 1993.甘蓝型油菜萝卜质不育系的研究及恢保关系测定[J].中国油料作物学报, 3: 8-11
    刘平武,李斌,何庆彪等, 2007.甘蓝型油菜育性恢复基因的分子标记[J].中国油料作物学报, 28(1): 14-19
    刘绚霞,董军刚,刘创社等. 2007.新型化学杀雄剂对甘蓝型油菜的杀雄效果及其应用研究[J].西北农林科技大学学报(自科版), 35(4): 81-85
    刘尊文,彭芝兰,周小平等. 1998.甘蓝型油菜光温敏雄性不育两用系501- 8S的选育[J].中国油料作物学报, 20(1): 13-16.
    刘尊文,吴平,李海龙等. 2005.两系法杂交油菜研究现状及展望[J].江西农业学报, 17(1) : 50-55
    刘尊文,吴平,袁卫红等. 2006.甘蓝型油菜光温敏核不育两用系N196S的选育[J].江西农业大学学报, 28(5): 654-657
    刘尊文,袁卫红,李文信等. 2000.甘蓝型两系杂交油菜两优586的选育[J].中国油料作物学报, 22(2):5-7
    卢兴桂,袁潜华,姚克敏等. 2001.水稻光温敏核不育系生态适应性研究[M].北京:中国气象出版社.
    马力耕,徐小冬,崔素娟等. 1997.细胞外钙调素对花粉萌发和花粉管伸长的影响[J].科学通报, 42 :2648-2652
    马翎健,宋喜悦,胡银岗等. 2004.光敏小麦雄性不育系A31的育性变异及遗传研究[J].西北农林科技大学学报:自然科学版, 32 (4) : 5 - 8.
    梅国志,汪向明,王明金. 1990.农垦58S型光周期敏感雄性不育的遗传分析[J].华中农业大学学报, 9( 4): 400-406
    孟祥红,王建波,利容千. 2000.光周期对光敏胞质不育小麦花药发育过程中Ca2+分布的影响[J].植物学报, 42 :15-22
    戚永明. 2006.新型化学杀雄剂“定军1号”在甘蓝型油菜CMS制种上控制微粉的作用效果[J].种子,25(10): 93-95
    荣德福,李少华,郭拥军等. 2001.两极光温敏感型小麦雄性不育系337S的选育[J].湖北农业科学, 5: 13-16.
    沈金雄,万正杰,景兵等. 2008.油菜细胞质雄性不育及恢复的分子机理研究进展[J].中国油料作物学报, 30 (3) : 374 - 383
    宋喜悦,何蓓如,马翎健等,2005.小麦温敏不育系A3314温敏不育性的遗传研究[J].中国农业科学, 38(6):1095-1099
    宋亚珍,陈天佑,雷国材等. 2003.普通小麦PTS光温敏雄性不育的遗传分析[J].西北农林科技大学报:自然科学版, 31 (3): 47-50.
    苏振喜,邱怀珊,李石开等.1999.芥菜型油菜生态型雄性不育两用系研究[J].中国油料作物学报, 21(2): 5-7.
    孙晓敏,胡胜武,于澄宇. 2009.油菜生态不育系H50S花药败育的细胞学观察[J].西北农业学报,18 (5) :153-158
    谭昌华,余国东,杨沛丰等. 1992.重庆温光型核不育小麦的不育性研究初报[J].西南农学报, 5 (1): 1-4.
    童哲,邵慧德,赵玉锦等. 1992.光敏核不育水稻中调节育性的第二信使.见:袁隆平主编.两系法杂交水稻研究论文集[C].农业出版社,北京, 170-175
    童哲. 1998.光敏核不育水稻的发育生物学研究评述[J].植物学报, 40: 189-199
    王华,汤晓华,赵继献等. 2001.甘蓝型油菜胞核雄性不育材料H90S的遗传研究[J].中国油料作物学报, 23(4): 11-15.
    王俊霞,杨光圣,傅廷栋等. 2000.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记[J].作物学报, 26(5) : 575 - 578.
    王永飞,马三梅,王鸣等. 2001.油菜Polima和陕2A细胞质雄性不育系相关基因的序列比较[J].科学通报, 46: 1559-1564.
    王永飞,马三梅,张鲁刚等. 2002.细胞质雄性不育相关基因orf224的克隆及其植物表达载体的构建[J].西北农林科技大学学报(自然科学版) , 30 (4) : 9-12.
    危文亮,王汉中,刘贵华. 2005.甘蓝型油菜细胞质雄性不育系NCa花药发育的细胞学观察[J].中国农业科学38(6):1232-1237
    危文亮,王汉中,刘贵华. 2005.甘蓝型油菜新型细胞质雄性不育系NCa不育胞质类型的分子鉴定[J].中国农业科学,38(10): 1965-1972
    魏忠芬. 2001.油菜生态型雄性不育的研究与利用进展[J].贵州农业科学, 2001, 29(4):59-61
    邬贤梦,席代汶,宁祖良等. 2001.甘蓝型油菜温敏核不育系湘油402S的选[J]湖南农业科技通讯,2001(3): 12-15
    邬贤梦,席代汶,邓锡兴等. 2005.甘蓝型油菜温敏核不育系湘油402S的选育[J].中国油料作物学报, 27(3): 74-76
    吴平,刘尊文,张迁西等, 2009.生态型两系杂交油菜“赣两优二号”繁育与配套栽培集成技术[J].江西农业学报, 21(1):23-25
    吴巧雯. 2008.植物细胞质雄性不育及其育性恢复的分子生物学研究进展[J].生物技术通讯, 19(3):456-462
    武小金,尹华奇. 1997.温敏核不育基因置于不同遗传背景下的育性表现变异[J].杂交水稻, 12(1): 26-29
    席代汶,范志忠,宁祖良等, 1996.甘蓝型油菜细胞核生态雄性不育及利用研究.Ⅱ:湘油91S对温光的反应[J].湖南农业科学, (4): 4-7.
    席代汶,邬贤梦,宁祖良等. 2005.优质两系杂交油菜湘杂油5号的选育[J].中国油料作物学报, 27(1): 23-25
    薛光行,邓景扬. 1991.对光周期敏感雄性核不育水稻的初步研究—修饰基因对光温敏水稻表型的影响[J].遗传学报, 18(1):59-66
    严自斌,刘创社,董军刚等. 2006.化学杀雄剂ESP对甘蓝型油菜的杀雄效果研究[J].西北农业学报, 15 (6) : 81-84
    杨光圣,傅廷栋, Brown G G. 1998.甘蓝型油菜细胞质雄性不育的遗传分类研究,中国农业科学, 31 (1) : 27-31
    杨光圣,傅廷栋,马朝芝等. 1997.甘蓝型油菜生态雄性不育两用系的研究Ⅱ.环境条件对雄性不育两用系的影响[J].华中农业大学学报, 16(5): 330-334
    杨光圣,傅廷栋,杨小牛等. 1995.甘蓝型油菜生态雄性不育两用系的研究Ⅱ:雄性不育两用系的遗传[J].作物学报, 21( 2) : 129-135.
    杨光圣,傅廷栋, Gregory G. Brown. 1998.甘蓝型油菜细胞质雄性不育的遗传分类研究[J].中国农业科学, 31 (1): 27-31
    杨光圣和傅廷栋.油菜细胞质雄性不育恢保关系的初步研究[J].作物学报, 1991. 17(2):151-156
    杨万年,何之常,张景昱等. 1998.光敏胞质雄性不育小麦育性转换期叶片中NAD激酶和NADP磷酸酶的变化[J].植物生理学报, 24: 385-391
    姚克敏,储长树,卢显富. 1996.水稻两用核雄性不育系的育性模型与鉴定方法[J].南京气象学院学报, 19(4):399-404
    姚克敏,储长树,杨亚新等,. 1995.水稻光(温)敏雄性不育系的育性转换机理研究[J].作物学报, 21(2):187-197
    易平,黄靖宇,刘义等. 2004.高等植物线粒体内RNA编辑的研究进展[J].作物学报, 30(7): 735 - 738
    易平,汪莉,孙清萍等. 2002.红莲型细胞质雄性不育线粒体atp6基因转录本的编辑位点研究[J].生物化学与生物物理进展, 29(5):729-733 .
    于澄宇,李玮,常建军等. 2007.油菜温敏雄性不育系373S的选育[J].中国农学通报,23(7): 245-248
    余凤群,傅廷栋. 1988.甘蓝型油菜几个品种花药发育的细胞学研究[J].中国油料, (4) : 23-25.
    张立平,赵昌平,单福华等. 2007.小麦光温敏雄性不育系BS 210育性的主基因+多基因混合遗传分析[J].作物学报, 33 (9): 1553-1557.
    张瑞茂,李敏,侯燕. 2002.甘蓝型油菜细胞质雄性不育新材料RM5637A的遗传研究,中国油料作物学报,24(2): 17-21
    张少丽,张鲁刚,张明科等. 2008.大白菜温敏雄性不育系育性转化相关基因的cDNA-AFLP分析[J].西北植物学报, 28 (4) : 667-674
    张学昆,李加纳,唐章林等. 1999.化学杂交剂对油菜胞质不育系波利马育性的影响[J].西南农业大学学报,21(2): 140-143.
    张自国,曾汉来,元生朝等. 1992.再论光敏核不育水稻育性转换的光温作用模式[J].华中农业大学学报,11(1):1-6
    赵昌平,王新,张风廷等. 1999.杂种小麦的研究现状与光温敏二系法[J].北京农业科学, 17(4):3-5
    赵凤梧,李慧敏,李爱国. 2001.冬小麦温敏型雄性不育系LT-1-3A选育及育性转换与遗传研究[J].核农学报, 15(2) : 65 - 69.
    赵荣敏,王迎春,范云六. 1996.油菜波里马胞质雄性不育相关线粒体基因orf224在大肠杆菌中的克隆和表达[J].农业生物技术学报, 4 (1) : 15-22.
    赵荣敏,王迎春,范云六. 1996.油菜波里马雄性不育胞质特异性orf224基因在大肠杆菌中表达产物分析[J].农业生物技术学报, 4 (1) : 38-43.
    左宝玉,童哲,姜桂珍, 1996.光周期对光敏核不育水稻叶绿体类囊体膜超分子结构的影响[J].植物学报, 38 : 337-341
    Akagi H, Nakamura A, Yokozeki-Misono Y et al. 2004. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria targeting PPR protein [J]. Theor Appl Genet, 108(8): 1449-1457
    Andre R, Abad A R, Mehrtens B J et al. 1995. Specific expression in reproductive tissues and fate of a mitochondrial sterility- associated protein in cytoplasmic male-sterile bean [J]. The Plant Cell, (3): 271-285
    Banga S S, Labana K S, Srivastava A. 1988. Evaluation of nap cytoplasmic male sterility in Brassica napus L. [J]. J oilseeds Res, 5: 13-16
    Bellaoui M, Grelon M, Pelletier G et al. 1999. The restorer Rfo gene acts post-translational on the stability of the ORF138 Ogura CMS-associated protein in reproductive tissues of rapeseed cybrids [J]. Plant Mol Biol, 40(5): 893-902
    Bentolila S, Alfonso A A, Hanson M R. 2002. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants [J]. Proc Natl Acad Sci, 99(16): 10887-10892
    Bonhomme S, Budar F, Ferault M et al. 1991. A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplamic male sterility in Brassica cybrids [J], Curr Genet, 19(2): 121-127
    Bonhomme S, Budar F, Lancelin D et al. 1992. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids [J]. Mol Gen Genet, 235: 340 - 348.
    Brown G G, Formanova N, Jin H et al. 2003. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats [J]. Plant J, 35:262- 272.
    Brown G G. 1999. unique of cytoplasmic male sterility and fertility restoration in brassica napus[J]. J Hered, 90: 351-356
    Cattaneo R. 1991. Different types of messager RNA editing [J]. Annu Rev Genet, 25: 71-88
    Chase C D. 1994. Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L [J]. Curr Genet, 25: 245- 251.
    Desloire S, Gherbi H, Laloui W et al. 2003. Identification of the fertility restoratioin locus, Rfo, in radish,as a member of the pentatricopeptide-repeat protein family [J]. EMBO Rep, 4:588- 594.
    Dewey R E, Levings C S, Timothy D H. 1986. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm [J]. Cell, 44: 439-449.
    Dewey R E, Timothy D H, Levings C S III. 1991. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize [J]. Curr Genet, 20: 475–482
    Dickson M H. 1970. A temperature sensitive gene in broccoli [J]. Can J Genet Cytol 1: 203–207
    Dieterich J H, Braun H P, Schmitz U K. 2003. Alloplasmic male sterility in Brassica napus is associated with a special gene arrangement around a novel atp9 gene [J]. Mol Genet Genom, 269: 723 - 731.
    Duroc Y, Gaillard C, Hiard S et al. 2005. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae [J]. Biochimie, 87 (12): 1089–1100
    Duroc Y, Gaillard C, Hiard S et al. 2006. Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells [J]. Plant Sci, 170: 755 - 767.
    Fan Z, Stefansson B R, Sernyk J L. 1986. Maintainers and restorers for three male-sterility-inducing cytoplasms in rape (Brassica napus L.) [J]. Can J Plant Sci, 66: 229-234
    Fan Z, Stefansson B R. 1986. Influence of temperature on male sterility of two cms in B.napus [J]. Can. J. Plant Sci.66:229-234
    Fu T D et al. 1990. Studies on "Three Line" Polima cytoplasmic male sterility developed in Brassica napus L. Plant Breeding ,104: 115-120.
    Gallagher L, Betz S K, Chase C D et al. 2002. Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize [J]. Current Genetics, 42(3): 179-184
    Geddy R, Mahe L, Brown G G. 2005. Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter[J]. Plant Journal, 41(3): 333-345
    Gomez-Campo C. 1999. Biology of Brassica Coenospecies [M]. Elsevier, Holland:186-189
    Graves P V, Bégu D, Velours J et al. 1990. Direct protein sequencing of wheat mitochondrial ATP synthase subunit 9 confirms RNA editing in plants [J].J Mol Biol. 5, 214(1): 1–6.
    Grelon M, Budar F, Bonhomme S et al. 1994. Ogura cytoplasmic male sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male sterile Brassica napus [J]. Mol Gen Genet, 243(5): 540-547
    Gunther S,Stephan P,Marie C. 2008. New hybrid system for Brassica napus. European patent, EP2 002711A1.
    Guo R X, Sun D F, Cheng D X et a1. 2006. Inheritance of thermo-photoperiod sensitive male sterility in wheat [J]. Aust J Agric Res, 57:187-192.
    Handa H and Nakajima K. 1992. Different organization and altered transcription of the mitochondrial atp6 gene in the male sterile cytoplasm of rapeseed (Brassica napus L.)[J].Curr Genet, 21: 153-159.
    Handa H, Gualberto J M, Grienenberger J M. 1995. Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the “Polima”male-sterile cytoplasm in rapeseed (Brassica napus L.) [J].Curr Genet, 28(6):546-552
    Handa H. 2003. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed andArabidopsis thaliana [J]. Nucleic Acids Res, 31: 5907-5916.
    Hanson M R and Bentolila S. 2004. Interactions of mitochondrial and nuclear genes that Affect male gametophyte development [J]. The Plant Cell, 16:154-169
    Hanson M R. 1991. Plant Mitochondrial mutations and male sterility [J]. Annual Review of Genetics, 25:461-486
    Hernould M, Suharsono C, Zabaleta E et al. 1998. Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants [J]. Plant Mol Biol, 36(4): 499-508.
    Horn R and Friedt W. 1999. CMS sources in sunflower: different origin but same mechanism?[J] Theor Appl Genet, 98: 195–201
    Huang W, Wang L,Yi P et al. 2006. RFLP Analysis for Mitochondria1 Genome of CMS-Rice [J]. Acta Genetica Sinica, 33 (4): 330-338
    Iwabuchi M K, Yozuka J, Shimamoto K. 1993. Processing followed by complete editing of an altered mitochondrialatp6 RNA restores fertility of cytoplasmic male sterile rice [J].EMBO J, 12(4): 1437-1446.
    IwabuchiM, Koizuka N, Fujimoto H et al. 1999. Identification and expression of the kosena radish (Raphanus sativuscv. Kosena) homologue of the ogura radish CMS-associated gene, orf138 [J]. Plant Mol Biol, 39: 183 -188.
    Jean M, Brown G G, Landry B S. 1997. Genetic mapping of nuclear fertility restorer gene for the‘Polima’cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers [J]. Theor Appl Genet, 95: 321 - 328.
    Kadowaki K, Suzuki T, Kazama S. 1990. A chimeric gene containing the 5′portion of atp6 is associated with cytoplasmic male-sterility of rice [J]. Mol Gen Genet. 224:10-16
    Kaul M L H. 1988. Male sterility in higher plants [M]. Springer-Verlag Press, Berlin. Kazama T, and Toriyama K. 2003. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice [J]. FEBS Lett, 2003, 544(2): 99-102
    Kemble R. J. 1987. A rapid, single leaf, nucleic acid assay for determining the cytoplasmic organelle complement of rapeseed and related Brassica species [J]. Theor Appl Genet, 73(3): 364-370
    Koizuka N, Imai R, Fujimoto H et al. 2004. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.) [J]. Plant J, 37(3): 315-325
    Koizuka N, Imai R, Fujimoto H et al. Genetic characterization of a pentatricopeptide repeat protein gene, orf687 that restores fertility in the cytoplasmic male- sterile Kosena radish [J]. Plant J, 2003, 34: 407-415.
    Koizuka N, Imai R, Iwabuchi M et al. 2000. Genetic analysis of fertility restoration and accumulation of ORF125 mitochondrial protein in the kosena radish (Raphanus sativus cv. Kosena) and a Brassica napus restorer line [J]. Theor Appl Genet, 100:949- 955.
    Komori T and Imaski H. 2004. Transgenic rice hybrids that carry the Rf-1 gene at multiple loci show improved fertility at low temperature [J]. Plant, cell & environment, 28(4): 425 - 431
    Krishnasamy S and Makarof C A. 1994. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish [J].Plant molecular biology, 26(3): 935-946
    L’Homme Y, Brown G G. 1993. Organization differences between cytoplasmic male sterile and fertileBrassica mitochondrial genomes are confined to a single transposed locus [J]. Nucleic Acids Res, 21: 1903-1909.
    L′Homme Y, Stahl R J, Li X Q et al. 1997. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene [J]. Curr Genet, 31: 325 - 335.
    Landgren M, Zetterstrand M, Sundberg E et al. 1996. Alloplasic male sterile Bassica lines containing B. toumefortii mitochondria express an ORF3’of the atp6 gene and a 32kDa protein[J] . Plant Mol Biol, 32:879-890
    Laser K D and Lersten N R. 1972. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms [J].The Botanical Review, 38(3): 425-454
    Laver H K, Reynolds S J, Moneger F, et al. 1991. Mitochondrial genome organization and exp ression associated with cytoplasmic male sterility in sunflower (Helianthus annuus) [J]. Plant J, 1: 185 - 193.
    Leaver C J and Gary M W. 1982. Mitochondrial genome organization and expression in higher plants [J]. Ann. Rev genet, 33: 373-402
    Leving C S III. 1990. The texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility [J]. Science. 250 (4983): 942-947.
    Lin K H, Lee H P, Lo H F et al. 2006. RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis, Hereditas,143: 142-154
    Lurin C, Andrés C, Aubourg S et al. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis [J]. Plant Cell, 16: 2089-2103
    Menassa R, L′Homme Y, Brown G G. 1999. Post-transcriptional and developmental regulation of a CMS-associated mitochondrial gene region by a nuclear restorer gene [J]. Plant J, 17: 491-499.
    Mongkolporn O, Pang E C, Kadkol G P et al. 1999. Evaluation of scar markers for shatter resistance in brassicas[C].10th intern rapeseed congress, 464-465, Canberra, Australia
    Murai K. 1997. Genetic analysis of fertility restoration against photoperiod sensitive cytoplasmic male sterility in Triticum aestivum cv. Norin 61 [J]. Plant Breding, 116: 592-594.
    Nahm S H, Lee H J, Lee SW et al. 2005. Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.) [J]. Theor Appl Genet 111: 1191–1200
    Narayanan K K, Senthilkumar P, Sridhar V V et al. 1995. Organization of the mitochondrial Cob2 pseudogene in different lines of rice [J]. Theoretical and Applied Genetics, 90(7-8): 1087-1093
    Pathania A, Bhat S R, Kumar V D et al. 2003. Cytoplasmic male sterility in alloplasmic Brassica juncea carrying diplotaxiscatholica cytoplasm: molecular characterization and genetics of fertility restoration [J] . Theor Appl Genet, 107(3): 455-461
    Poovaiah B W. 1987. Calcium messenger system: Role of protein phosphorylation and inositol bisphospholipids [J]. Physiologia Plantarum, 69: 569-573
    Sarria R, Lyznik A, Vallejos C E et al. 1998. A cytoplasmic male sterility associated mitochondrial peptide in common bean is post-translationally regulated [J]. Plant Cell, 10: 1217 - 1228.
    Sarvella. 1966. Environmental influences on sterility in cytoplasmic male-sterile Cottons [J]. Crop Sci,6: 361-364
    Schnable P S, Wise R P. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 3: 175-180
    Sernyk J L. 1982. Heterosis and cytoplasmic male sterility in summer rape (Brassica napus L.) [Ph D theses] Univ Manitoba, Canada
    Singh M, Brown G G. 1991. Suppression of cytoplasmic male sterility by nuclear genes alter expression of a novel mitochondrial gene region [J]. Plant Cell, 3: 1349 -1362.
    Singh M, Brown G G. 1993. Characterization of expression of a mitochondrial gene associated with the Brassica Polima CMS: developmental influences [J].Curr Genet, 24: 316-322.
    Shiga T, Ohkawa Y,Takayanagi K. 1983. Cytoplasm types of European rapeseed (Brassica napus L.) cultivars and their ability to restore fertility in cytoplasmic male sterile lines[J]. Bull Nat Ins Agric Sci Ser D, 35: 103-124
    Small I D and Peeters N. 2000. The PPR motif -a TPR-related motif prevalent in plant organellar proteins [J]. Trends in Biochemical Science, 25(2): 45-47
    Somers D J, Friesen K R D, Rakow G G. 1998. Identification of molecular markers associated with linoleic acid desaturation in Brassica napus [J]. Theor Appl Genet, 96: 897-903
    Song J and Hdgcoth C. 1994. A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat [J]. Plant Molecular Biology, 26(1): 535-539
    Song J, and Hdgcoth C. 1994. Influence of nuclear background on transcription of a chimeric gene (orf256) and cox I in fertile and cytoplasmic male-sterile of wheats [J]. Genome, 37(2): 203-209
    Thompson K F. 1972. Cytoplasmic male sterility in oilseed rape [J]. Heredity, 29: 253-257
    Tian H Q, Kuang A, Mudgtave M E et al. 1998. Calcium distribution in fertile and sterile anthers of a photoperiod-sensitivegenic male-sterilerice [J]. Planta, 204: 183-192
    Tong Z, Wang T, Xu Y. 1990. Evidence for involvement of phytochrome regulation in male sterility of a mutant of Oryza satica L [J]. Journal of phyotochemical photobiology, 53: 161-164
    Van Marrewijk G. A. M. 1969. Cytoplasmic male sterility in petunia. I. restoration of fertility with special reference to the influence of environment [J]. Euphytica , 18(1): 1-20
    Wan Z J , Jing B, Tu J X et al. 2008. Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its tranfer to B. napus [J].Theor Appl Genet, 116: 355 - 362.
    Wang H M, Ketela T, Keller W A et al. 1995. Genetic correlation of the orf 224/atp6 gene region with Polima CMS in Brassica somatic hybrids [J]. Plant Mol Biol, 27: 801 - 807.
    Wang Z H, Zou Y J, Li X Y et al. 2006. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing [J] The Plant Cell, 18: 676-687
    Wen L Y, Chase C D. 1999. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize [J]. Current Genetics, 35(6): 521-526
    Xiao H L, Zhang F D, Zheng Y L. 2006. The 5′stem-loop and its role in mRNA stability in maize S cytoplasmic male sterility [J]. The Plant Journal, 47(6): 864-872
    Yamagish H and Terachi T. 1996. Molecular and biological studies on male sterile cytoplasm in the Cruciferae. III. Distribution of ogura-type cytoplasm among Japanse wild radishes and Asian radish cultivars [J].Theor App Genet, 93: 325 - 332.
    Yang J H, Zhang M F, Yu J Q. 2007. Alterations of RNA editing for the mitochondrial atp9 gene in a new orf220-type cytoplasmic male sterile line of stem mustard (Brassica juncea var. tumida) [J]. J. Integr Plant Biol, 49: 672 - 677.
    Yang L. Y. Liu P. W, Yang G. S. 2006. Development of Polima temperature-sensitive cytoplasmic male sterile lines of Brassica napus through isolated microspore culture. Plant Breeding, 125(4): 368-371
    Young E G, Hanson M R. 1987. A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated [J] .Cell, 50: 41-49.
    Yu C, Hu S, He P et al. 2006. Inducing male sterility in Brassica napus L. by a sulfonylurea herbicide, tribenuron-methyl [J]. Plant Breeding, 125(1): 61-64
    Yu, C Y, Dong J G, Hu S W et al. 2009. Efficiency of a novel gametocide amidosulfuron on rapeseed (Brassica napus) [J]. Plant Breeding, 128(5): 538-540
    Yuan M, Yang G S, Fu T D et al. 2003. Transcriptional control of orf224/atp6 by the pol CMS restorer Rfp gene in Brassica napus L[J]. Acta genet Sin, 30: 469-473
    Yuan S C, Zhang Z G, He H H et al. 1993. Two photoperiodic reactions in photoperiod- sensitive genic male-sterile rice [J]. Crop Science, 152: 651-660
    Zabala G, Gabay-Laughnan S, Laughnan J R. 1997. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize [J]. Genetics, 147: 847- 860.
    Zhang M F, Chen L P, Wang B L et al. 2003. Characterization of atpA and orf220 genes distinctively present in a cytoplasmic male sterile line of tuber mustard [J].J Hort Sci Biotechnol, 78(6): 837-841
    Zhang Q F, Shen B Z, Dai X K. 1994. Using bulked extremes and recessive class to map genes for photoperiod sensitive genic male sterility in rice [J]. PNAS, 91: 8675-8679