带落角约束的BTT飞行器制导控制一体化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BTT飞行器因其气动稳定性好,升阻比大等优点受到国内外广泛关注,很多学者都对BTT飞行器的相关技术进行研究,其中制导控制问题已经成为主要的研究问题之一。如何充分发挥飞行器机动性能,提高制导精度,越来越多的学者建议进行制导控制一体化设计。本文围绕BTT飞行器制导控制一体化设计完成落角与控制回路动态的制导律设计方法和带落角约束的制导控制一体化设计方法初步研究。主要包括以下内容:
     首先,建立平面地球假设下的飞行器运动模型、目标运动模型和弹目相对运动模型,考虑BTT飞行器高速飞行时地球扁率和自转的影响,在椭球旋转地球假设下建立飞行器数学模型,为以后的设计和仿真奠定模型基础。
     其次,针对BTT飞行器末制导段存在的主要制导控制问题,给出带落角约束并考虑控制回路动态的制导律设计方法。基于视线坐标系内弹目相对运动模型,推导出与BTT飞行器控制特性相适应的相对运动模型,结合控制回路动态特性,建立考虑控制回路动态的制导律设计模型,应用变结构控制理论设计带落角约束并考虑控制回路动态的制导律,通过3自由度仿真对该制导律进行分析验证。
     再次,针对BTT飞行器末制导过程中可能出现的频谱分离条件无法满足的问题,给出带终端角度约束的制导控制一体化设计方法。结合前面相对运动模型和简化的BTT飞行器运动模型,建立一种BTT飞行器制导控制一体化设计模型。应用多滑模面滑模控制理论设计带落角约束的制导控制一体化规律。通过标称情况下的6自由度仿真对制导控制一体化规律的有效性进行分析验证。
     最后,综合全文内容对带落角约束并考虑控制回路动态的制导律和制导控制一体化规律进行仿真验证和对比分析。仿真结果表明,标称和各种偏差情况下带落角约束并考虑控制回路动态的制导律与制导控制一体化规律均能满足位置偏差和落角约束指标要求,其中制导控制一体化规律有更好的制导控制性能。
In recent years, BTT missile receives extensive attentions, considering its outstanding aerodynamic stability and high lift-to-drag ratio. The techniques pertinent to BTT missile are investigated by many researchers. Among these techniques, guidance and control is one of the most important. Integrated guidance and control design is proposed by researchers to enhance maneuver capability and improve guidance precision. In this paper, design method for guidance law with impact angle constraint and control loop dynamics is researched. Then, an integrated guidance and control method with impact angle constraint for BTT missile are presented. The contents are listed as follows:
     First, models of target and missile, as well as missile-target engagement geometry model are established in a planet-fixed coordinate frame for guidance law design. Then, the motion of missile is formulated mathematically considering the curvature and self-rotation of Earth to support the guidance and control demonstration.
     Second, design method for BTT missile guidance law with impact angle constraint and control loop dynamics is proposed. Based on the missile-target engagement geometry model defined in line-of-sight coordinate frame and BTT concept, a guidance law design model is formulated. Using sliding mode control theory, guidance law with impact angle constraint and control loop dynamic is designed. The above guidance law is demonstrated via 3DOF simulation.
     Third, an integrated guidance and control method for BTT missile with impact angle constraint using multiple sliding surface control theory is presented. Based on the aforementioned missile-target engagement geometry model and the motion model of BTT missile, an integrated guidance and control model is presented. According to multiple sliding surfaces control theory, integrated guidance and control laws are designed. 6DOF simulation is conducted under nominal conditions to validated the integrated guidance and control method.
     Finally, numerical simulation are conducted to demonstrate the guidance law with impact angle constraint and control loop dynamic, as well as integrated guidance and control law under various conditions. Pertinent analysis is given at the end of this paper. Simulation result suggests that both the guidance law and integrated guidance and control law can satisfy the requirement of miss distance and angle constraint, the integrated guidance and control law shows better guidance and control performances.
引文
[1]杨林冲,陈勇.小型精确制导武器关键技术及发展现状分析[J].飞航导弹. 2010, (11):11-14.
    [2]孙未蒙,刘湘洪.多约束条件下的精确制导技术分析[J].飞航导弹. 2010, (1):75-79.
    [3]栾泽威,杨涤.倾斜转弯控制技术综述[J].航空兵器. 1991, (1):14-21.
    [4] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems. 1998, 34(1): 277-288.
    [5] Ashwini Ratnoo, Debasish Ghose. Satisfying Terminal Angular Constraint using Proportional Navigation[C].AIAA 2009-6088.
    [6] Kim M, Grider K V. Terminal Guidance for Impact Attitude Angle Constrained Flight Trajectories. IEEE Transactions on Aerospace and Electronic Systems. 1973, 9(6): 852-859.
    [7] York R J, Pastrick H L. Optimal terminal guidance with constraints at final time[J]. Journal of Spacecraft and Rockets. 1977, (14):381-382.
    [8] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics. 2005, 28(4): 724-732.
    [9] Hangju Cho, Chang-Kyung Ryoo, Min-Jea Tahk. Optimal Guidance for Missiles with Varying Velocity. AIAA. Journal of Guidance, Control, and Dynamics. 1996, 19(5):1017-1022.
    [10] Ratnoo A, Ghose D. State Dependent Riccati Equation Based Guidance Law for Impact Angle Constrained Trajectories[J]. Journal of Guidance, Control, and Dynamics. 2009, 32(1):320-326.
    [11]陈克俊,赵汉元.一种适用于攻击地面固定目标的最优再入机动制导律[J].宇航学报. 1994, (1):1-7.
    [12]陈海东,余梦伦,董利强.具有终端角度约束的机动再入飞行器的最优制导律.航天控制. 2002, (1):6-11.
    [13]王川,马清华,刘新学.一种再入机动弹头最优制导律研究.弹箭与制导学报. 2007, 27(2):8-10.
    [14] Kim, B S, Lee J G, Han HS. Homing guidance with terminal angular constraint against non-maneuvering and maneuvering targets [R]. AIAA-97-3474, 1997.
    [15]宋建梅,张天桥.带末端落角约束的变结构导引律.弹道学报, 2001, 13(1):16-19.
    [16]胡正东,郭才发,蔡洪.带落角约束的再入机动弹头的复合导引律.国防科技大学学报. 2008, 33(3):22-25.
    [17]孙未蒙,郑志强.一种多约束条件下的三维变结构制导律[J].宇航学报. 2008, 28(2):344-349.
    [18] Ching-Fang Lin. Classical Vs Modern Control System Design for Terminal Guidance for Bank-to-Turn Intercept[J]. AIAA 83-2203.
    [19] Cunningham E P. Guidance of a Bank-to-Turn Missile with Altitude Control Requirements[J]. J. Spacecraft. 1974, 11(5):340-342.
    [20] Asif Farooq, David J. N. Limebeer. Bank-to-Turn Missile Guidance with Radar Imaging Constraints[J]. Journal of Guidance, Control, and Dynamics. 2005, 28(6): 1157-1170.
    [21]栾泽威,李风雷.飞航导弹BTT制导规律研究[J].战术导弹技术. 1991, (4):26-31.
    [22]张友安.倾斜转弯飞航导弹的制导与控制问题研究[J].宇航学报. 2000, 21(4):71-75.
    [23] Stallard D V. An Approach to Optimal Guidance for a Bank-to-turn Missile[C]. AIAA 80-1747.
    [24] Jium-Ming Lin, Shih-Wen Lee. Bank-to-Turn Optimal Guidance with Linear Exponential Quadratic Gaussian Performance Criterion[J]. Journal of Guidance, Control, and Dynamics. 1995, 18(5):951-958.
    [25] Aggarwal R K, Moore C M. Near-Optimal Guidance Law for a Bank-to-Turn Missile[C]. American Control Conf. 1984, (3):1408-1415.
    [26] Aggarwal, R. K., Moore, C. M. Terminal Guidance Algorithm for Ramjet-Powered Missiles. Journal of Guidance, Control, and Dynamics. 1998, 21(6):862-866.
    [27] Froning H D, Gieseking D L. Bank-to-Turn Steering for Highly Maneuverable Missile. AIAA 73-860.
    [28] Riedel F W. Bank-To-Turn Control Technology Survey for Homing Missile. NASAControlReport3322, April1980.
    [29] Liang-Boon Wee. Nonlinear Autopilot Design for Bank-to-Turn Steering of a Flight Vehicle[J]. Journal of Guidance, Control, and Dynamics. 1996, 19(4):978-979.
    [30] Ming Xin, Balakrishnan S N. Nonlinear Bank-to-Turn/Skid-to-Turn Missile Outer-LoopInner-Loop Autopilot Design withθ-D Technique[C] .AIAA 2003-5581.
    [31] Huang J, Lin C F. Application of Sliding Mode Control to Bank-To-Turn Missile Systems[C]. Aerospace Control System,1993:569-573.
    [32]崔平远,全胜,吴雁林. BTT导弹机动飞行非线性解耦控制.飞行力学. 2000, 18(2):39-41.
    [33] Duan Chaoyang, Zhang Yingxin, Dong Chaoyang, SunRui. Adaptive Sliding Mode Control for Bank-To-Turn Missiles[C]. The Ninth International Conference on Electronic Measurement & Instruments. 2009.
    [34]周军,周凤岐,冯文剑,郑焕敏.基于变结构控制理论的BTT导弹自动驾驶仪的三通道独立设计[J].宇航学报. 1994, (1):42-96.
    [35]朱志刚,周凤岐. BTT导弹滚动通道变结构最终滑态控制系统设计西北工业大学学报. 1995, 13(2):292-297.
    [36]黄万伟,周凤岐. BTT导弹俯仰偏航通道变结构控制律设计[J].西北工业大学学报. 1998, 16(1):47-50.
    [37] William R Yueh, Ching-ffang Lin. Optimal Controller for Homing Missile[C]. American Control Conference. 1984.
    [38] Evers J H, Cloutier J R, Lin C F, Yueh W R. Application of Integrated Guidance and Control Schemes to a Precision Guided Missile[C]. Proceedings of American Control Conference,.1992, 3225-3230.
    [39] Menon P K, Ohlmeyer E J. Nonlinear Integrated Guidance and Control Laws For Homing Missiles[C].AIAA 2001-4160.
    [40] Menon P K, Ohlmeyer E J. Integrated Design of Agile Missile Guidance and Control Systems[C]. Proceedings of the 7th Mediterranean Conference on Control and Automation, Haifa, Israel, June 28-30,1999.
    [41] Johnny H Eves, James R Cloutier, Lin C F, Yueh W R. Application of Integrated Guidance and Control Schemes to A Precision Guided Missile[C]. American Control Conference. 1992.
    [42] Neil Palumbo, Brian E Reardon. Integrated Guidance and Control for Homing Missiles. Johns Hopkins APL Technical Digest. 2004,25(2):121-139.
    [43] Tal Shima, Moshe Idan. Sliding-Mode Control for Integrated Missile Autopilot Guidance[J]. Journal of Guidance, Control, and Dynamics. 2006, 29(2):250-260.
    [44] Chridtian H Tournes, Yuri B Shtessel. Integrated guidance and autopilot for dual controlled missiles using higher order sliding mode controllers and observers[C].AIAA 2008-7433.
    [45]李红春,蔡洪,孙明玮.基于制导一体化设计实现大入射角攻击目标的技术研究战术导弹技术[J]. 2008,(5):54-58.
    [46]查旭,崔平远,常伯浚.攻击固定目标的飞行器制导控制一体化设计[J].宇航学报. 2005, 26(1):13-18.
    [47]张保群,导弹俯仰通过制导与控制一体化设计.哈尔滨工业大学硕士学位论文. 2008:22-32
    [48]张有济.战术导弹飞行力学设计[M].北京:宇航出版社, 1998:90-121.
    [49]张毅.弹道导弹弹道学[M].长沙:国防科技大学出版社, 1999:8-29.
    [50]赵汉元.飞行再入动力学和制导[M].长沙:国防科技大学出版社, 1997:208-230.
    [51]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1996:31-34.
    [52]夏小华,高为炳.非线性系统控制及解耦[M].北京:科学出版社, 1993:51-56.
    [53] Yip P Patrick, Hedrick J Karl, Swaroop D. The Use of Linear Filtering to Simplify Integrator Backstepping Control of Nonlinear Systems [J]. 1996 IEEE Workshop on Variable Structure Systems. 1996:211-215.
    [54]周荻.寻的导弹新型导引规律[M].北京:国防工业出版社, 2002: 1-14.
    [55] Hedrick J K, Yip P P. Multiple Sliding Surface Control: Theory and Application[J]. Journal of Dynamic Systems, Measurement, and Control. 2000, 122:586-592.
    [56] Swaroop D, Hedrick J K, Yip P P, Gerdes J C. Dynamic Surface Control for a Class of Nonlinear Systems [J]. IEEE Transactions on Automatic Control. 2000, 45(10): 1893-1899.
    [57]宁国栋.可重复使用航天器再入动力学特性分析及制导控制研究.北京航空航天大学博士学位论文. 2008:68-69.
    [58]史小平,王旭,王子才.空间拦截器非线性姿态系统的变结构解耦控制[J].制导与引信. 1998, (4): 27-29.