声表面波传感器及无源胎压监测模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车拥有量的迅速增长和人们对汽车安全驾驶要求的提高,胎压监测系统逐渐成为汽车的必备配置。
     在研究目前国际市场上的轮胎压力监测系统优缺点以及国内外声表面波传感器研究状况的基础上,提出了基于声表面波传感技术的无源无线胎压监测系统。该系统不仅可以同时监测轮胎内部气体的压力和温度,还有无源、体积小、分辨率高等优点。本文对声表面波传感器的理论、设计、加工和封装进行了深入研究,并通过模拟试验对无源胎压监测方案进行了验证。
     论文首先进行声表面波传感器的理论研究。通过研究声表面波的传播特性以及声表面波传感器的工作原理,推导了声表面波速度变化的理论方程;研究了声表面波器件石英基片的特性;并依据石英基片的压力和温度的灵敏度系数、声表面波耦合系数和功率流等参数对传感器基片进行了优化选择。
     通过把叉指换能器的实际电场分布近似为纵、横场交替的一维场分布,分别建立了横场和纵场的等效电路模型,并在此基础上建立了叉指换能器的等效电路模型和反射器的等效电路模型;然后在叉指换能器和反射器等效电路模型的基础上建立了单端对声表面波谐振器的等效电路模型,为声表面波谐振器的内阻抗设计和网络匹配提供理论指导。
     然后进行了声表面波传感器的设计、加工和封装研究。在声表面波传感器理论研究的基础上,设计了可以测量轮胎压力和温度两个参数的双通道声表面波传感器,并用有限元法对传感器的谐振器进行了优化;分析了声表面波传感器的结构设计参数,包括谐振腔长度、叉指换能器、反射器的参数以及金属镀膜设计等;并依据传感器的等效阻抗特性模型设计了压力传感器芯片参数。
     研究了声表面波传感器的加工工艺流程,并依据相应的工艺加工了传感器芯片;设计了低应力的两层全石英封装结构,并用超声波设备制作了封装的石英盖板;通过对低温玻璃焊料和环氧胶的键合工艺研究,为传感器设计了不同键合形式的封装;并利用氦质谱仪和六轴微力测试平台分别对传感器进行了泄漏率检测实验和剪切强度实验。
     其次进行了测试电路、天线和匹配网络的研究。通过对传统测量电路系统构成的分析,设计了一次变频的系统构成方案;测量系统电路通过采用直接数字频率合成、提高系统隔离度和等幅自动增益控制放大等技术手段提高检测精度。通过对天线的特性指标和使用环境的研究,设计了变形的偶极子天线;通过分析声表面波传感器和天线的阻抗特性,设计了合理的匹配网络。
     最后设计了模拟试验对天线的通讯距离、增益等性能以及传感器的阻抗特性、回波信号和压力、温度响应等特性进行了测试。
With the rapid growth of the car ownership and increasing demanding on automobile driving safety, Tire Pressure Monitoring System (TPMS) emerges as an essential requirement.
     Based on the survey of TPMS in the current domestic and international market and research on development of Surface Acoustic Wave (SAW) sensors, a new scheme of batteryless/wireless TPMS is proposed focusing on the technology of SAW sensors. This system could not only monitor the temperature and pressure in tires simultaneously, but also has the advantage of batteryless, small size and high resolution. Fundamental research has been done in this dissertation in terms of theoretics, design, manufacturing and packaging of SAW sensors, and simulating experiments have done to test the scheme of batteryless/wireless TPMS.
     First, research on theoretics of SAW sensors has been done. By researching on the propagation characteristic of surface acoustic wave and fundamental working principle of SAW sensor, the theoretical equation on velocity change of SAW is deducted. Moreover, characteristic of quartz substrate of SAW sensor is studied and optimum selection on SAW sensor substrate is carried out based on their pressure and temperature sensitive coefficients, effective SAW coupling coefficients and power flow angles.
     The real electric field of interdigital transducer (IDT) is approximately decomposed as longitudinal fields and horizontal fields. By modeling the longitudinal field circuit model and horizontal field circuit model,the equivalent circuit model of IDT and the reflectors are proposed. According to the equivalent circuit models of the IDT and reflector, the equivalent circuit models of SAW resonators are proposed. The equivalent circuit models of SAW resonators are instruction of SAW sensor’s impedance design and matching net of circuits.
     Second, research on design, manufacturing and packaging of SAW sensors has been done. A sensor with two IDT is designed for measurement of temperature and pressure based on research on theoretics of SAW sensors, and FEA method is used for optimum design for sensors’resonators. The SAW sensors are analyzed in details, including the length of resonating cavity, parameters of interdigital transducer and reflector, as well as the metal plating. Based on the analysis and the equivalent circuit models of SAW resonators, the parameters for SAW sensor are obtained.
     Process of SAW devices is studied and samples of SAW sensor are manufactured. A two-layer all quartz packaging that induces low stress is proposed for SAW sensors. Quartz caps used as the upper layer of the sensor are manufactured with ultrasonic devices. With study on glass frit of low melting point and epoxy glue, different bonding methods are applied in packaging for the sensor to form a hermetical bonding. Helium mass spectrograph is used to detect the leakage rate of the sensors’packaging, and six-axes micro-tester is used to measure the sensors packaging’s shear strength.
     Third, research on measuring circuit, antenna and matching net has been done. By analyzing the circuit of traditional measurement system, scheme of circuit with one mixer is proposed. In order to improve the precision of system, the system is designed with direct digital synthesize (DDS), high isolation RF switch and equivalent scope amplifier. By analyzing antenna characteristic index and the condition for its using, a transformative dipole antenna is designed. Matching net is design for system circuit by analyzing the impedance characteristic of SAW sensor and antenna.
     Last, simulating experiments are carried out to test the relation between distance and gain of antenna communication, the sensor characteristic of impedance, echo signal, and the response of temperature and pressure.
引文
[1]李威,尹术飞. TPMS的无源化发展方向研究.重型汽车, 2005, 5: 15-16.
    [2]崔胜民等.汽车轮胎行驶性能与测试.北京:机械工业出版社.
    [3]王野平.论轮胎的磨损.汽车技术, 1999, (6): 19-23.
    [4]颜重光. TPMS的设计方案思考.电子与质量, 2005,7: 1-5.
    [5]何仁,胡青训,薛翔.汽车轮胎气压监测系统发展综述.中国安全科学学报, 2005.10, 15(10): 105-110.
    [6] O. Mike. wireless sensors eye tyre pressure. EDN EUROPE, 2004.7, 31-36.
    [7] U.S Department of Transportation. Preliminary Economic Assessment on Tire Pressure Monitoring System. http://www.nhtsa.dot.gov.
    [8]轮胎安全监测网站. http://www.tpms.com.cn/zl_dir.asp.
    [9]娄云,朱命怡.上海别克轿车轮胎气压监视系统检测.汽车电器, 2003, 6: 47.
    [10]杨辉.别克轿车轮胎气压监控系统.汽车实用技术, 2003, 9: 31.
    [11] H. Mayer. Comparative diagnosis of tyre pressures.Control Applications. 1994, 1: 627-632.
    [12]张启中.脉冲数互比法汽车轮胎气压异常报警模式研究.燕山大学工学硕士学位论文, 2004.
    [13]赵庆龙,何超.丰田公司车辆轮胎气压报警系统原理及使用.汽车研究与开发, 2003, 1: 51-53.
    [14]於涛.基于车辆振动的轮胎气压监控系统的研究与开发.东北大学工学硕士论文. 2004.
    [15] T. Umeno, K. Asano, H. Ohashi, et al. Pneumatic monitor for a vehicle based on the disturbance observer. Industry Applications Conference, 1996, 3: 1687-1691.
    [16]吴志琼,吴毅强.机械式轮胎压力监测系统(TPMS)设计及实现.科技广场, 2005, 33: 110-112.
    [17]国家专利局.汽车轮胎防爆气门芯报警器.实用新型专利公报, 2002, 18(13): 84.
    [18]青岛联瑞海商贸有限公司. http://www.qdlrh.com/product/product.htm. 2006.1.16.
    [19] APOLLO. Intelligent Tyre for Accident free Traffic. IST 2001, 34372.
    [20] RDKS? Technical Description. http://www.iqmobil.com/. 2006.1.16.
    [21] Development of Batteryless Tire Pressure Monitoring System (TPMS) Completed. http://www.alps.ie/press/20040421_00.html. 2006.1.16.
    [22] SIEMENS AUTONOMOUS SENSOR. http://w4.siemens.de/FuI/en/archiv/newworld/heft4_00/artikel05/index.html. 2006.1.16.
    [23]福通科技. http://www.tunefu.com/products_1_01.asp. 2006.1.16.
    [24]国家专利局.一种微型振动发电机.适用新型专利,中国专利,专利号:200420107948.9, 2005.11.23.
    [25]武以立,邓盛刚,王永德.声表面波原理及其在电子技术中的应用.北京:国防工业出版社, 1983, 1-5.
    [26] Kenya Hashimoto(著),王景山,刘天飞,孙玮(译).声表面波器件模拟与仿真.北京:国防工业出版社, 2002.
    [27] D. Ciply, M. Shur, N. Pala, et al. Ultraviolet-sensitive AlGaN-based Surface Acoustic Wave Devices. IEEE, 2004, 1345-1348.
    [28] H. Kotani, M. Takasaki, T. Mizuno, et al. Glass Substrate Surface Acoustic Wave Tactile Display With Visual Information. Proceedings of the 2006 IEEE, International Conference on Mechatronics and Automation, 1-6.
    [29]刘艾.基于声表面波传感的无线标签识别系统的研究.上海交通大学博士学位论文, 2000.
    [30]陈明.声表面波传感器的发展与现状.航空计测技术, 1992, 1: 26-30.
    [31]袁小平.国外声表面波传感器开发近况.压电与声光, 1995, 17(4): 6-10.
    [32]陈显曹,姚海伦,李云雷等.声表面波压力传感器.传感器技术, 1992, 6: 1-3.
    [33] A. Turton, D. Bhattacharyya, and D. Wood. Love-mode surface acoustic wave liquid sensors using a polyimide waveguide layer using a polyimide waveguide layer. 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 250-256.
    [34] K. Yamanaka, S. Ishikawa, N. Nakaso, et al. Ultramultiple Roundtrips of Surface Acoustic Wave on Sphere Realizing Innovation of Gas Sensors. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, April 2006, 53(4): 793-801.
    [35]陈裕泉. SAW温度传感器的设计和研制.仪表技术与传感器, 1992, 2: 13-15.
    [36]凌明芳.抽指延迟线型声表面波温度传感器.压电与声光, 1993, 15(2): 10-13.
    [37]陈明,刘国锋. SAW压力传感器的理论计算及推导.传感器技术, 1994, (4): 32-7.
    [38]徐恭勤,朱文章,阎南生等.声表面波温度传感器的研究.传感技术学报, 1996, 9(2): 29-32.
    [39]凌明芳,祝运海. SAW谐振器型温度传感器.仪表技术与传感器, 1997, 12: 8-10.
    [40]范东远,陈明.新型声表面波谐振式压力传感器的研制.仪表技术与传感器, 1998, 1: 7-10, 22.
    [41]陈明,王玮.声表面波谐振式力学量传感器的发展与现状.传感器技术, 2000,19(5): 1-3.
    [42]蔡萍,马伟方,施文康.一种谐振型声表面波传感器.仪表技术与传感器, 2000, 7: 4-5.
    [43]王锋,史国伟,陈明.压膜阻尼在声表面波加速度传感器中的应用.测控技术, 2001, 20(3): 20-23.
    [44]胡兰芳.声表面波温度传感器研究.西南民族学院学报(自然科学版), 2001, 27(1): 53-56.
    [45] K. Lau, K. Yen, R. Kagiwada, et al. Recent Developments in SAW Device Applications. IEEE MTTS Digest, 1984, 80-82.
    [46] V. Varadan, Y. Roh and V. Varadan. Local/global SAW Sensors for Turbulence. IEEE, Ultrasonics symPosium, 1989, 591-594.
    [47] Y. Dake, M. Tokai. Development of SAW Pressure Sensor Using Stain1ess Steel Diaphgragm. lnternational Conference on solid-States sensors and Actuators, Digest of Technical Papers, TRANSDUCERS’91, 199l, 1009.
    [48] N. Vlassov, S. Kozlov, S. Yakovkin, et al. Precison SAW Pressure sensors. IEEE International Frequency Control Symposium, 1993, 665-669.
    [49] L. Yakovkin, T. Vlassov, A. Kozlov, et al. Highly sensitive SAW Sensors. IEEE International Frequency Contro1 Symposium, 1994, 395-400.
    [50] J. Yarovkin, N. Vlassov. SAW pressure sensors. Proceedings of IEEE Instrumentation and Measurement Technology Conference, 1994, 20-23.
    [51] W. Buf. SAW Sensors System Application. Procedings of IEEE Microwave systems Conference, l995, 215-218.
    [52] J. Mrosk, C. Ettl, L. Berger, et al. SAW Sensors for High Temperature Application. IEEE Ultrasonics Symposium, 1998, 2386-2390.
    [53] W. Soluch. Design of SAW Delay Lines for sensors. sensors and Actuators, A: physical, 67: 1-3, 60-64.
    [54] A. Talbl, F. Sarry, O. Elmazria. Surface Acoustic Wave Pressure Sensor. Ferroelectrics, 2002, 273: 53-58.
    [55] F. Seifert, R. Weigel. SAW-Based Radio Sensor and Communication Techniques. 27th European Microwave Conference and Exhibition, September 8-12, 1997, 2: 1323-1346.
    [56] L. Reindl, A. Pohl. SAW-Based Radio Sensor Systems. IEEE Sensors Journal, June 2001, 1(l): 69-78.
    [57] G. Scholl, C. Korden, E. Riha, et al. SAW Based Radio Sensor Systems for Short Range Applications. IEEE Microwave Magazine, December, 2003, 68-76.
    [58] G. Scholl, F. Schmidt. Wireless Passive SAW Sensor Systems for Industrial andDomestic Applications. IEEE International Frequency Control Symposium Proceedings, 1998, 595-601.
    [59] U. Wolf, F. Schmidt. Radio Accessible SAW Sensors for Non-Contact Measurement of Torque and Temperature. IEEE Ultrasonics Symposium, 1996, 359-362.
    [60] J. Beckley, V. Kalinin, M. Lee, et al. Non-Contact Torque Sensors Based on SAW Resonators. IEEE International Frequency Control Symposium and PDA Exhibition, 2002, 202-213.
    [61] A. Pohl, F. Seifert. Wirelessly Interrogable Surface Acoustic Wave Sensors for Vehicular Applications. IEEE Transactions on Instrumentation and Measurement, 1997, 46(4): 1031-1038.
    [62] A. Pohl, G. Ostermayer, L. Reindl, et al. Monitoring the Tire Pressure at Cars Using Passive SAW Sensors. IEEE Ultrasonics Symposium Proceedings, 1997, 471-474.
    [63] A. Pohl, L. Reindl. Measurement of Physical Parameters of Car Tires Using Passive SAW Sensors. The 2nd Conference on Advanced Microsystems for 3,1000 Automotive Applications, 1998, 249-262.
    [64] R. Steindl, A. Pohl, L. Reindl, et al. SAW Delay Lines for Wirelessly Requestable Conventional Sensors, 1998 IEEE Ultrasonics Symposium Proceedings, 1: 351-354.
    [65] S. Reinhard, A. Pohl, S. Franz. Impedance Loaded SAW Sensors Offer a Wide Range of Measurement Opportunities, IEEE Transactions on Microwave Theory and Techniques, Dec 1999, 47(12): 2625-2629.
    [66] W. Buffli, M. Rusko. A Diferential Measurement SAW Device for Passive Remote Sensoring. IEEE Ultrasonics Symposium Proceedings, 1996, 1: 343-346.
    [67] W. Buffli, S. Klett. Passive Remote Sensing for Temperature and Pressure Using SAW Resonator Devices. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(5): 1388-1392.
    [68] R. Steindl, A. Pohl, N. Heinrich. Combination of SAW Transponder and RF Semiconductor Devices Offers New Perspectives for Passive Radio Sensors. IEEE Ultrasonics Symposium, 2000, 162-165.
    [69] A. Pohl. A Review of Wireless SAW Sensors. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, March 2000, 47(2): 317-332.
    [70] A. Pohl, R. Steindl, L. Reindl. The“Intelligent Tire”Utilizing Passive SAW Sensors-Measurement of Tire Friction. IEEE Transactions on Instrumentation and Measurement, December, 1999, 48(6): 1041-1046.
    [71] G. Schimeta, F. Dollinger, R. Weigel. Tire Pressure Measurement Using a SAW Hybrid Sensor, XVIIMEKO World Congress (IMEKO 2000), September 25-28, 2000, 111: 515-520.
    [72] G. Schimeta, F. Dollinger, G. Scholl, et al. Wireless Pressure and Temperature Measurement Using a SAW Hybrid Sensor. IEEE Ultrasonics Symposium, 2000, 445-448.
    [73] G. Schimetta, F. Dollinger, R. Weigel. A Wireless Pressure Measurement System Using a SAW Hybrid Sensor, IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12): 2730-2735.
    [74] G. Schimeta, F. Dollinger, G. Scholl, et al. Optimized Design and Fabrication of a Wireless Pressure and Temperature Sensor Unit Based on SAW Transponder Technology. IEEE MTTS International Microwave Symposium, Phoenix, Arizona, USA, May 20-25, 2001, 1: 355-358.
    [75] M. Binback, W. Buff, S. KIet, et al. A Combination of SAW-Resonators and Conventional Sensing Elements for Wireless Passive Remote Sensing. IEEE Ultrasonics Symposium, 2000, 495-498.
    [76]李源,冯冠平,丁天怀.声表面波力敏传感器的研究.仪表技术与传感, 1997, 5: 1-5.
    [77]李源,冯冠平,丁夭怀.一种新型声表面波温度传感器的研究.清华大学学报(自然科学版), 1997, 37(12): 100-103.
    [78]李源,丁天怀,冯冠平等.声表面波无源传感器及其遥测系统的研究.电子学报, 1997, 25(12): 79-81.
    [79]李源,黎斌.声表面波无源温度传感器及其遥测系统的研究.第五届全国敏感元件与传感器学术会议, 1997, 193-195.
    [80]程卫东,董永贵,王生江,等.基于声表面波器件的无源传感器的研究.仪表技术与传感, 2000, 6: 1-3, 13.
    [81]程卫东,蓝永贵,李源等.无线无源声表面波扭矩传感器的研究.压电与声光, 2000, 22(1): 1-3.
    [82]程卫东,蓝永贵,冯冠平.延迟线型无线SAW传感器的访问信号.清华大学学报(自然科学版), 2001, 41(11): 45-48.
    [83]董永贵,程卫东,王生江等.时间延迟型声表面波无源传感器的无线访问.声学学报(中文版), 2001, 26(2): 109-112.
    [84]程卫东.无源声表面波力敏传感器及无线测量系统研究.清华大学博士学位论文, 2001, 1-13.
    [85] Http://www.uec.com.cn/kjcg.nsf/acjsjweb/NT00002782.
    [86]韩韬.基于声表面波器件的传感器信息无线传输及辨识标签系统研究.上海交通大学博士学位论文, 2002, 5-8.
    
    [87]张国伟.基于LGS的声表面波压力传感器研究.上海交通大学博士学位论文, 2003, 3-7.
    [88]施文康,刘艾.延迟线型声表面波传感器的研究.传感技术学报, 1999, 12(4): 337-340.
    [89]蔡萍,马伟方,施文康.一种谐振型声表面波传感器.仪表技术与传感器, 2000, (7): 4-5.
    [90]韩韬,施文康.声表面波无线传感系统研究.压电与声光, 2001, 23(5): 327-329, 369.
    [91]李平.无源无线声表面波传感器及仪器系统研究.重庆大学博士学位论文, 2003, 145-147.
    [92]李平,文玉梅,黄尚康.声表面波无源无线温度传感系统研究.电子测量与仪器学报, 2002, 16(4): 44-49.
    [93]李平,文玉梅,黄尚康.声表面波谐振器型无源无线沮度传感器.仪器仪表学报, 2003, 24(4): 403-405.
    [94]胡青训,何仁,薛翔.汽车轮胎气压监测系统开发现状与展望. http://www. Aenm- ag.com/tech/end_zyzx.asp?id=5188, 2006.1.16.
    [95] Motorola.轮胎压力监测系统一个“承受压力”的行业.通信与计算机, 2003, 3: 50-52.
    [96]苏楚奇,张靖.轮胎压力监测技术.北京汽车, 2005, (1): 23-25.
    [97] Infineon Sensor公司[EB/OL]. http: //www.infineon.com.cn/, 2004.08.01.
    [98]轮胎安全监测网站, http://www.tpms.com.cn/zl_dir.asp.
    [99] P. David. Morgan History of SAW Devices. IEEE International frequency control symposium, 1998, 439-459 .
    [100] R. White, F. Voltmer. Direct piezoelectric coupling to surface acoustic waves. Appl. Phys. Lett., 1965, 7: 314-316.
    [101]武以立,邓胜刚,王永德.声表面波原理及其在电子技术中的应用.北京:国防工业出版社, 1983, 35-40.
    [102]陈明,范远东,李岁劳.声表面波传感器.西安:西北工业大学出版社, 1997.
    [103]许昌昆(译).声表面波器件及其应用.北京:科学出版社, 1984.
    [104]吴连法.声表面波器件及其应用.北京:人民邮电出版社, 1983.
    [105] H. Jin Chen, W. Tsung Tsong. Bleustein-Gulyaev-Shimizu Surface Acoustic Waves in Two-Dimensional Piezoelectric Phononic Crystals. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, June 2006, 53(6): 1169-1176.
    [106] S. Hickernell. Shear Horizontal BG Surface Acoustic Waves on Piezoelectrics:AHistorical Note. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, May 2005, 52(5): 809-811.
    [107]肖鸣山,宋道仁.声表面波基础.山东:山东科学技术出版社, 1980.
    [108]孙慷,张福学.压电学(上册).北京:国防工业出版社, 1984.
    [109] B. Sinha. On the interaction of temperature gradients with surface wave propagation in anistropic solids. IEEE Trans. Sonics and Ultrasonics, 1985, 32(4): 583-591.
    [110] B. Sinha, H. Tiersten. On the temperature dependence of the velocity of surface waves in quartz. J.Appl.Phys. 1980, 51(9): 4659-4665.
    [111] B. Sinha, H.F. Tiersten. First temperature derivatives of the fundamental elastic constants of quartz. J.Appl.Phys. 1979, 50(4):2732-2739.
    [112] H.F. Tiersten, B.K. Sinha. A Perturbation Analysis of the Atenuation and Dispersion of SurfaceWaves, Journalof AppliedP hysics, 1978, 49(l): 87-95.
    [113] H.F. Tiersten. Perturbation Theory for Linear Electroelastic Equations for Small Fields Superposed on a Bias, Journal of Acoustical Society of America, 1978, 64(3): 832-837.
    [114] B.K. Sinha, H.F. Tiersten. On the Influence of a Flexural Biasing State on the Velocity of Piezoelectric Surface Waves. Wave Motion, 1979, (1): 37-51.
    [115] R.M. Taziev, E.A. Kolosovsky. Deformation Sensitive Cuts for Surface Acoustic Waves in a Quartz. Proceedings of IEEE International Frequency Control Symposium, 1993, 660-664.
    [116] R.M. Taziev, A. Evgeny, A.S. Kozlov. Pressure Sensitive Cuts for Surface Acoustic Waves in a Quartz. IEEE Transactionson Ultrasonics, Ferroelectrics and Frequeny Control, 1999, 42(5): 845-849.
    [117] B.K. Sinha, H.F. Tiersten. On the Temperature Dependence of the Velocity of Surface Wavesin Quartz, Journal of A pplied Physics, 1980, 51(9): 4659-4664.
    [118] R.B. Ward. Temperature Coefficients of SAW Delay and Velocity for Y-Cut and Rotated LiNb03. IEEE Transactionson Ultrasonics Ferroelectrics and Frequency Control, 1990, 37(5): 481-483.
    [119] S. Ballandras, E. Bigler. Surface Acoustic Wave Devices with Low Sensitivity to Mechanical and Thermoelastic Stresses. Journal of Applied Physics, 1992, 72(8): 3272-3281.
    [120] Weifang Ma, Wenkang Shi. Temperature Sensitive Cuts for Surface Acoustic Wavesin Quartz. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2001, 48(1): 333-335.
    [121] B.K. Sinha, S. Ortodera. Temperature Derivative of Stress Coefficients of SAW Resonator Frequency from Pressure Sensor Measurements, Proceedings of IEEEUltrasonics Symposium, 1992, 1: 257-262.
    [122] K. Hashimoto(著),王景山,刘天飞,孙玮(译).声表面波器件模拟与仿真,国防工业出版社, 2002, 180-182.
    [123]郝俊杰,徐廷献.声表面波用基片材料.硅酸盐通报,2000.6.
    [124]张国伟.基于LGS的声表面波压力传感器研究,上海交通大学博士学位论文, 2003, 10-11.
    [125] ChungJen Chung, KuoSheng Kao, ChienChuan Cheng, et al. Proton-Exchanged 36? Y-X LiTaO3 Waveguides for Surface Acoustic Wave. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, february 2006, 53(2): 502-505.
    [126] R.W. Ward. The Constants of Alpha Quartz. IEEE Frequency Control Symposium, 1984, 22-31.
    [127] R. Brendel. Material Nonlinear Piezoelectric Coeficients for Quartz, Journal of Applied Physics, 1983, 54(9): 5339-5346.
    [128] R.N. Thurston, H.J. Mcskimin, Eandreatch. Third-order Elastic Coefficients of Quartz. Journal of Applied Physics, 1969, 37(1): 267-275.
    [129] M.B. Schulz, B.J. Matsinger, M. G. Holland. Temperature Dependence of Surface Acoustic Wave Velocity on a Quartz. Journal of Applied Physics, 1970, 41(7): 2755-2765.
    [130]程卫东.无源声表面波力敏传感器及无线测量系统研究.清华大学博士学位论文, 2001, 20-22.
    [131] R.T. Smith and F.S. Welsh. Temperature Dependence of the Elastic Piezoelectric and Dielectric Constants of Lithium Tantalate and Lithium Niobate, Journal of Applied Physics, 1971, 42(6): 2219-2230.
    [132] Y. Nakagawa, K. Yamanouchi, K. Shibayama. Third-Order Elastic Constants of Lithium Niobate. Journal of Applied Physics, 1973, 44(9): 3969-3974.
    [133]程卫东.无源声表面波力敏传感器及无线测量系统研究.清华大学博士学位论文, 2001, 33-34.
    [134]刘艾.基于声表面波传感的无线标签识别系统的研究.上海交通大学博士学位论文, 2000, 21-22.
    [135]范子坤,葛惟昆. GHz频带声表面波谐振器的研究.电子学报, 2005, 5.
    [136] A.B. Bhattacharyya, S. Thli, S. Majumdar. SPICE Simulation of Surface Acoustic Wave Interdigital Transducers. IEEE Transactionson Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(4): 784-786.
    [137] S. Allandras and E. Bigler. Precise Modeling of Complex SAW Structures Using a Perturbation Method Hybridized with a Finite Element A nalysis, IEEE Transactionson Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(3):567-573.
    [138] S. Lehtonen, P. Plessky, N. Bereux, et al. Phases of the SAW Reflection and Transmission Coefficients for Short Reflectors on 128? LiNbO3. Ieee transactions on ultrasonics, ferroelectrics, and frequency control, december 2004, 51(12): 1671-1682.
    [139] A.N. Nordin, M. Zaghloul, C. Korman, et al. CMOS Surface Acoustic Wave Oscillators. IEEE, 2005, 608-610.
    [140] A. N. Nordin, and M. E. Zaghloul. Modeling and Fabrication of CMOS Surface Acoustic Wave Resonators. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 2007, 55(5): 992-1001.
    [141] A.Z. Sadek, C.O. Baker, D.A. Powell, et al. Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensors—Effect of Nanofiber Diameter on H2 Response. IEEE SENSORS JOURNAL, FEBRUARY 2007, 7(2): 213-218.
    [142] V. Laude, H. Moubchir, L. Robert, et al. Surface acoustic wave trapping in a periodic array of high aspect ratio electrodes. 2006 IEEE Ultrasonics Symposium, 497-500.
    [143] M. Urbanczyk, Z. Waltar, W. Jakubik. Interdigital Transducer Analysis Using Equivalent PSpice Model, Ultrasonics, 2002, 39: 595-599.
    [144] Qiuyun Fu, W.J. Fischer, H. Stab. Simulate Surface Acoustic Wave Devices Using VHDL-AMS, 26th International Spring Seminaron Electronics Technology, May 8-11, 2003, 95-99.
    [145] M.Z. Atashba, B.J. Bazuin, S. Krishnamurthy. Design and Simulation of SAW Sensors for Wireless Sensing. IEEE Ultrasonics Symposium, 2003, 584-589.
    [146] B.D. Zaitsev, l.E. Kuznetsova, S.G. Joshi. Improved Equivalent Circuits for Acoustic Plate Wave Devices, Ultrasonics, 2002, 40: 943-947.
    [147] M. Koshiba and S. Mitobe. Equivalent Networks for SAW Gratings. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1988, 35(5): 531-535.
    [148]栾桂冬等.压电换能器和换能器阵,北京:北京大学出版社, 1990, 146-149, 159-169.
    [149]韩涛,施文康.声表面波器件在无线传感系统中的应用.光学精密工程, 2001,6: 9-12.
    [150] W.J. Tanski. Surface Acoustic Wave Resonator on Quartz. IEEE Transactions on Sonics and Ultrasonics, 1979, 26: 93-104.
    [151] H. Odagawa. SAW Device beyond 5GHz: Advance in Surface Acoustic Wave Technology. System and Application, 2001, 2: 255-258.
    [152] R. Subramanian, J. Welter, R.E. Chang, et al. High Frequency SAW Fabricated by Ion Etch Technology. IEEE Ultrasonic Symposium, 1996, 271-276.
    [153] (美)徐泰然著,王晓浩等译. MEMS和微系统设计与制造.北京:机械工业出版社, 2004.
    [154]徐海林,陈培林.声表面波器件叉指换能器的制作技术.电子工程师, 2004, 4.
    [155] L.L. Pendergrass. SAW resonator design and fabrication for 2.0, 2.6, and 3.3 GHz. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1988, 35(3): 372-379.
    [156]许昌昆,孟秀林,林江等.声表面波器件及其应用.北京:科学出版社, 1984.
    [157] Vallin, P. Rangsten. Direct bonding for true all quartz package and new resonator designs. Joint Meeting EFTF IEEE IFCS, 1999.
    [158] Andreas, Gertrud. Wafer direct bonding: tailoring adhesion between brittle materials. Materials Science and Engineering, 1999, R25: 1-88.
    [159]周岩,刘晓胜,杨乐民等.石英器件加工工艺及最新进展.中国工程机械, 2000, 6: 668-670.
    [160]吴晨曦,陈晓明,成国煌.超硬材料加工技术及发展现状.机械工程师, 2003, 4: 3-6.
    [161]吕正兵,徐家文.工程陶瓷超声加工的基础实验研究.电加工与模具, 2004, (2): 57-60.
    [162]许薇,王玉传,罗乐.玻璃浆料低温气密封装MEMS器件研究.功能材料与器件学报, 2005, 11(3): 343-346.
    [163]张永爱,刘浩,袁坚.玻璃焊料与金属封接技术.佛山陶瓷, 2004, (3): 34-36.
    [164]沈今楷,孙以材,常志宏等.压力传感器芯片的低温玻璃封接技术.传感器技术, 1999, 18(1): 10-12.
    [165] Yi Tao, A.P. Malshe. Theoretical investigation on hermeticity testing of MEMS packages based on MIL STD 883E. Microelectronics Reliability, doi: 10.1016/j.microrel. 2004.08.04.
    [166]陈士新.氟油粗检漏方法的理解与实践.电子标准化与质量, 1999, (2): 23-25.
    [167]顾伯勤.氦质谱检漏法应用研究.南京化工大学学报, 2000, 22(1): 1-5.
    [168] Minfu Lu, Wei Ren, Sheng Liu. A Unique Multi-Axial Thermo-Mechanical Fatigue Tester For Electronic Packaging Materials. The Second International Symposium on Electronic Packaging Technology, Shanghai, Dec.9-12, China, 1996.
    [169] Minfu Lu, Sheng Liu. A Multi-Axial Thermo-Mechanical Fatigue Tester for Electronic Packaging Materials. In Sensing, Modeling and Simulation in Emerging Electronic Packaging, ASME 1996, EEEP, 17: 87-92.
    [170] Wei Ren, Zhengfang Qian, Sheng Liu. Scale Effect on Packaging Materials.Proceedings of the 49th Electronic Components and Technology Conference, 1999.
    [171] Minfu Lu, Wei Ren, Sheng Liu. Unified multi-axial sub-micron fatigue tester with Applications to Electronic Packaging Materials. Proceedings of the 47th Electronic Components and Technology Conference, 1997, 144-148.
    [172] Minfu Lu, Zhengfang Qian, Sheng Liu, et al. Investigation of Electronic Packaging Materials by Using a 6-Axis Mini Thermo-Mechanical Tester. Int. J. Solids Struct., 1999, 36: 65-78.
    [173] Wei Ren, Zhengfang Qian, Sheng Liu, et al. Thermal Mechanical Properties of Two Solder Alloys. In Applications of Experimental Mechanics to Electronic Packaging, ASME, 1997, 226: 125~130.
    [174] Wei Ren, Zhengfang Qian, Sheng Liu. Thermo-Mechanical Creep of Two Solder Alloys. Proceedings of 48th Electronic Components and Technology Conference, Seattle, Washington, 1998, 1431-1437.
    [175] Fulong Zhu, Zhiyong Wang, Sheng Liu, et al. Mechanical Properties of a Lead-Free Solder Alloys. Proceedings of 2005 International Conference on Asian Green Electronics, Shanghai, China, March 15-18, 2005, 107-112
    [176] Fulong Zhu, Zhiyong Wang, Sheng Liu, et al. Mechanical properties investigation of a SnAg solder. Proceedings of 2005 International conference on electronics packaging, Tokyo,Japan,April 13-15, 2005, 208-213.
    [177] Fulong Zhu, Honghai Zhang, Sheng Liu, et al. Mechanical Properties of a Lead-Free Solder Alloys. Proceedings of 6th International Conference on Electronic Packaging Technology, Shenzhen, China, Aug 30-Sep 2, 2005, 466-470.
    [178] Min He, WeeHua Lau, Guojun Qi, et al. Intermetallic compound formation between Sn–3.5Ag solder and Ni-based metallization during liquid state reaction. Thin Solid Films, 2004, 376-383.
    [179]陈邦媛.射频通信电路,北京:科学出版社, 2002, 133-144, 197-198.
    [180] A. Pohl, G. Ostermayer, F. Seifert. Wireless Sensing Using Oscillator Circuits Locked to Remote Hight Q SAW Resonators, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 1998, 45(5): 1161-1168.
    [181]刘双临.无源无线SAW谐振器型传感器信号检测研究.重庆大学硕士学位论文, 2003, 47-51.
    [182]郑敏,李平,文玉梅等.声表面波谐振器无源无线传感虚拟仪器系统,传感器技术, 2004, 23(11): 86-88.
    [183]李平,文玉梅,王军峰等.声表面波谐振器的时域响应特性研究.压电与声光, 2003, 2: 87-91.
    [184] Analog Devices Inc. CMOS 300MSPS Quadrature Complete DDS AD9854. 2000.
    [185] Silicon laborataries Inc. DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS SI4133G. 2000.
    [186] Analog Devices Inc. Wideband, 37dB Isolation at 1 GHz, CMOS 1.65 V to 2.75 V, 2:1 Mux/SPDT Switches ADG918/919. 2003.
    [187]白同云,吕晓德.电磁兼容设计(第一版),北京:北京邮电大学出版社, 2001, 1-130.
    [188]邱成悌,蒋全兴.电子设备结构设计原理(第一版),南京:南大学出版社, 2001, 281-311, 323-341.
    [189]林昌禄,聂在平.天线工程手册.北京:电子工业出版社,2002.
    [190]王增和,卢春兰,钱祖平.天线与电波传播.北京:机械工业出版社, 2003.
    [191]庄继德.汽车轮胎学.北京:北京理工大学出版社, 1996.
    [192]陈抗生.应用电磁学.杭州:浙江大学出版社, 2001.
    [193]谢处方,邱文杰.天线原理与设计.成都:成都电讯工程学院出版社, 1985.
    [194] R. Djordjevic, M.B. Bazdar, T.K. Sarkar, et al. Awas for Windows, Analysis of Wire Antennas and Scatters, Software and User’s Manual, Boston, Artech House, 2000.
    [195] J. S. McLean. The radiative properties of electrically small antennas, Electromagnetic Compatibility. Symposium Record. Compatibility in the Loop. IEEE International Symposium on Aug. 22-26. 1994, 320-324.
    [196] D.M. Grimes, C.A. Grimes. The complex Poynting theorem: reactive power, radiative Q, and limitations on electrically small antennas, Electromagnetic Compatibility, Symposium Record. IEEE International Symposium on Aug. 14-18, 1995, 97-101.
    [197] R.C. Hansen. Antenna applications of superconductors, Microwave Theory and Techniques, IEEE Transactions, Sept. 1991, 39(9): 1508-1512.
    [198]王元坤,李玉权.线天线的宽频带技术.西安:西安电子科技大学出版社, 1995.