宽带与多频天线关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的通信系统一直在向宽带化、集成化发展,同时人们对便携移动通信的需求也越来越高,这要求天线发展出与之相适应的宽带技术、多频技术与小型化技术。论文紧贴目前一些通信系统的需求,围绕VHF/UHF一体化小型天线、板载移动终端天线和宽方向图带宽天线等几个问题展开了研究,主要工作和取得的成果如下:
     1有限地面上电小天线相关理论的研究。介绍了电小天线的尺寸与Q值和带宽之间的关系,着重研究了金属半球上和金属圆盘上天线Q值的理论极限问题,首次提出了求解这两种情况下电小天线Q值的下限的方法,且发现其Q值极限随地面半径按近似贝塞尔函数的规律变化。根据上述结论,提出了一个猜想:对旋转对称导体上的半径为a的封闭半球内的垂直极化全向电小天线来说,获得最小Q值时,半球外的场应与同样导体上单极子的场一致。
     2天线最优化算法的研究。回顾了最优化算法在天线设计领域中的应用,分析了各种算法的特点。考虑到天线设计问题的特点,将粒子群算法与单纯形法相结合,提出了淘金粒子群算法,使用测试函数验证了算法效果。给出了优化算法调用CST软件作为解算器的方法,从而使电磁场仿真软件与最优化技术可以无缝结合,大大提高了天线设计效率。作为应用实例,用此算法设计了串联馈电的波束赋形天线,提出了使用阶梯阻抗线对微带缝隙和同轴缝隙串联馈电以实现赋形波束设计的方法。所设计的900MHz同轴缝隙天线,可以实现H面全向,E面赋形波束设计,适用于基站天线;另一实例为3.5GHz微带缝隙天线,可实现双侧赋形波束,适用于高速公路、隧道等狭长地形的信号覆盖。实验验证了微带缝隙天线的性能,结果表明天线垂直放置时可在95-135度仰角范围内实现近平方余割波束,同时将上半空间副瓣电平抑制在-19dB以下。
     3 VHF/UHF一体化小型天线的研究。研究了两种电小尺寸下一体化天线设计方案,并制作了实验样机。其中一种天线为42cm×20cm的平面结构,在30-86MHz频段及110-600MHz频段VSWR<3,在频率低端增益大于-22dB,频率高端增益大于-5dB,此外还实现了86-110MHz频率的带外阻塞特性,同时考虑了与另一L波段天线共口径设计的问题;而另外一种集总元件加载多臂折叠天线的设计理念来自于天线Q值理论,通过多臂折叠结构和臂间加载实现了天线安装空间的高效利用,并实现了比较理想的辐射效率与阻抗带宽的折衷。分析了两种天线的性能极限,并讨论了接地板大小对宽带天线辐射效率的影响,对实际电小天线设计有很好的指导作用。
     4移动终端板载宽带与多频天线的研究。设计了一种用于数字电视接收终端的小型化板载天线,一种用于WLAN的板载双频天线和一种WLAN/WiMAX频率使用的三频天线,讨论了载体板对天线性能的影响,研究了减少天线性能对载体板依赖性的几种技术手段,提出了小型化与宽带载体板扼流结构,并在此基础上设计了一种受载体板影响小的双频天线。给出了上述几种天线的仿真与实测结果。
     5方向图带宽有特殊要求天线的研究。研究了一种E面全向宽带天线,使用改进的4元T型印刷振子阵列,通过引入了振子间耦合结构,改善天线上电流分布,获得了宽带E面全向特性;还研究了一种应用于WLAN或ISM频率的宽带高增益天线,通过在常规的浅背腔微带缝隙天线上覆盖一开窗金属板,实现了天线增益的提高与阻抗带宽的展宽,其最大增益可达12.3dB,研究了这种天线的工作机理,并给出了设计准则和初始参数选取办法。
With the rapid development of wide band communication system and the increasing requirements on portable mobile communications, compact and multifunctional wireless communication systems have spurred the development of multi-band and wideband antennas with small size. With focus on those new demands, this dissertation is mainly concerned with the VHF/UHF dual-wideband compact antennas, mobile terminal antennas built on planar system ground plane and some antennas with wide radiation pattern bandwidth. The author's major contributions are outlined as follows:
     1、The basic principle on electronically small antennas over finite ground is investigated. Begins with the relation between size, Q value and bandwidth of electrically small antenna, the lower bounds of the radiation Q for electrically small antennas above conductive hemispheres and flat disks are first calculated. It is found that the Q limitation variations with the radius of ground plane according to the Bessel functions. A conjecture is proposed: For an antenna enclosed in a hemisphere over a rotational symmetric conductor, when the lowest Q amplitude is achieved, its field outside the hemisphere should correspond to that of an infinitesimally small dipole.
     2、Optimization methods for antenna design are investigated. After a quick review on some well known optimization design methods for antenna design, a modified Particle Swarm Optimization (PSO), named as Gold Rush PSO is proposed by combining PSO with standard Simplex method. Its performance is verified by several benchmark functions. The combination of optimization methods and the CST software is also considered, where the CST works as a subprogram that can do a full-wave analysis and return results to the main program. As examples, both a multiple circumferential slotted coaxial antenna and a microstrip slot array are designed using this method to achieve shaped radiation pattern. The shaped beam is realized by adjusting the feed line that composed of stepped impedance lines. The slotted coaxial antenna operating at 900 MHz radiates omnidirectional in its H plane, while has a shaped beam in its E plane, which makes it a good candidate for base station antenna. The microstrip slot array antenna has dual-side shaped beam with elevation coverage of 35°, a gain of 10.86dBi and side lobe levels less than -19dB, which make it suit for used in a narrow and long zone such as highways or tunnels. Experimental results demonstrate the validity of this design.
     3、VHF/UHF dual-wideband compact antennas are studied. Two very compact wideband antennas are designed and prototypes are fabricated and measured. One antenna is planar and has a compact size of only 42cm×20cm, while it covers 30-86 MHz and 110-600MHz with VSWR <3 and band notched in 86-110 MHz. This antenna has gain values larger than -21dBi in the lower frequency band and larger than -5 dBi in the upper band, respectively. Besides, the design of sharing aperture with an L band antenna is also considered. The design idea of the other antenna that has multiple-arm folded wire structure comes from the Q value theory, which makes the antenna has a high utilization efficiency of antenna mounting room. A reasonable tradeoff between radiation efficiency and VSWR bandwidth is achieved by folded multiple-arm structure and lumped elements loaded between arms. In addition, the theoretical performance limits of the two antennas and the influence of ground plane size on the antenna bandwidth are both analyzed, which give decisive guidance to electronically small antenna design.
     4、Wide band and dual band onboard antennas are investigated. A compact wideband antenna for digital television (DTV), a dual band antenna for WLAN and a tri-band antenna for WLAN/WiMax are proposed. The influence of system ground board on antenna performance is discussed. Methods to mitigate the strong dependence of impedance bandwidth on the ground plane size for onboard antenna are investigated; a novel compact current chocker and a wide band chocker are proposed. Based on those techniques, a ground plane independent dual band antenna is proposed. Measured results of the aforementioned antennas are given.
     5、Two Antennas with wide radiation pattern bandwidth are designed. A wideband antenna that has omnidirectional radiation in its E plane is proposed. It consists of four modified T-dipoles, with the coupling structure between dipoles the current distribution on the antenna is improved to radiate in omnidirectional E patterns. A novel low profile high gain cavity backed and metallic superstrate covered slot antenna that operates in the 2.4GHz WLAN or ISM band is described. The proposed antenna has a bandwidth of 12% and a gain of 12.3dBi at its center frequency. Moreover, its radiation mechanism is investigated and the design guidelines of this kind of antenna are given.
引文
[1]林昌禄,聂在平.天线工程手册.第1版.北京:电子工业出版社.2002.
    [2]Warren L.Stutzman,Gary A.Thele著,朱守正,安同一 译.天线理论与设计.第2版.人民邮电出版社.2006.
    [3]陈轶鸿,孙琰,肖良勇,郭渭盛.宽带天线阻抗匹配网络设计中的实频法.电子学报.1997,25(03):19-23.
    [4]何瑶,黎滨洪,刘毅军.宽带匹配网络设计中的改进实频法.微波学报.2005,21(03):9-11.
    [5]马银圣,何绍林.天线宽带匹配网络中的改进实频法.中国电子科学研究院学报.2008,3(04):432-435.
    [6]O.M.Ramahi,R.Mittra.Design of a matching network for an HF antenna using the real frequency method.IEEE Transactions on Antennas and Propagation,1989,37(4):506-509.
    [7]Choi Jaewon,Hong Young-Pyo,Choi Seyoul,Yook Jong-Gwan.Broadband Folded Dipole Antenna Using the Real Frequency Method.APMC 2007:1-4.
    [8]高火涛,侯杰昌,杨子杰,石振华.宽带天线阻抗匹配网络的设计.武汉大学学报(理学版).2001,47(05):541-544.
    [9]马国田,梁昌洪.基于遗传算法的宽带匹配网络的优化设计.微波学报.2000,16(01):73-76.
    [10]孙保华,纪奕才,刘其中.VHF/UHF天线宽带匹配网络的优化设计与实验研究.电子学报.2002,30(06):797-799.
    [11]孙保华,周良明,肖辉.天线宽带匹配网络的设计与计算方法.西安电子科技大学学报.1999,26(06):793-797.
    [12]吴建军.遗传算法在天线匹配网络设计中的应用.大连海事大学,2000.
    [13]杨毅民.演化算法在宽带匹配网络设计中的应用.西安电子科技大学,2007.
    [14]朱义胜,郑紫微.短波宽带天线匹配网络的设计.电子学报.2001,(08):1049,1075.
    [15]J.L.Rodriguez,I.Garcia-Tunon,J.M.Taboada,F.O.Basteiro.Broadband HF Antenna Matching Network Design Using a Real-Coded Genetic Algorithm.IEEE Transactions on Antennas and Propagation,2007,55(3):611-618.
    [16]王元坤.线天线的宽频带技术.第1版.西安:西安电子科技大学出版社.1995.
    [17]A.Boag,A.Boag,E.Michielssen,R.Mittra.Design of electrically loaded wire antennas using genetic algorithms.IEEE Transactions on Antennas and Propagation.1996,44(5):687-695.
    [18]S.D.Rogers,C.M.Butler,A.Q.Martin.Design and realization of GA-optimized wire monopole and matching network with 20 ∶ 1 bandwidth.IEEE Transactions on Antennas and Propagation.2003,Mar,51(3):493-502.
    [19]Lorenzo Mattioni,Gaetano Marrocco.Design of a Broadband HF Antenna for Multimode Naval Communications.IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS.2005,4:179-182.
    [20]G.Marrocco,L.Mattioni.Naval structural antenna systems for broadband HF communications,IEEE Transactions on Antennas and Propagation.2006,Apr,54(4):1065-1073.
    [21]G.Marrocco,L.Mattioni,V.Martorelli.Naval structural antenna systems for broadband HF communications-Part Ⅱ:Design methodology for real naval platforms.IEEE Transactions on Antennas and Propagation.2006,Nov,54(11):3330-3337.
    [22]Lorenzo Mattioni,Gaetano Marrocco.Design of a Broadband HF Antenna for Multimode Naval Communications-Part Ⅱ:Extension to VHF/UHF Ranges.IEEE Antennas and Wireless Propagation Letters.2007,6:83-85.
    [23]高峰,杨渊.有损媒质中电容加载圆柱天线的宽带特性.北京邮电大学学报.1985,(S1):26-29.
    [24]延晓荣,金元松,罗翠梅.阻容加载偶极天线的宽带性能及效率分析.电波科学学报.2000,(02):41-45.
    [25]魏忠伟,高火涛,柯亨玉.改进遗传算法对高频宽带加载天线的优化设计.电报科学学报.2004,19(03):343-347.
    [26]纪奕才,刘其中,尹应增,葛德彪.混合遗传算法优化设计宽带加载螺旋天线.电波科学学报.2005,20(02):260-264.
    [27]王巍.超短波宽带螺旋加载天线研究,硕士论文.电子科技大学,2006.
    [28]孙保华,VHF/UHF全向宽带小型化天线的研究,博士论文,西安电子科技大学,2001.
    [29]周斌,刘其中,纪奕才,郭景丽.超短波宽带双鞭天线的研究.电报科学学报.2005,20(01):115-118.
    [30]郭辉萍,蔡文锋,刘学观,周朝栋.一种新型组合式多频带天线的设计与实现.电波科学学报.2008,23(02):368-372.
    [31]李思敏,姜兴,苏光杰,林为干,“嵌入匹配网络的电小天线的优化设计,”2002.
    [32]李峰,张福顺,焦永昌.宽带平面Balun偶极子天线的FDTD分析.现代电子技术.2003,(07)
    [33]D.S.Woo,Y.G.Kim,K.W.Kim,Y.K.Cho.Design of quasi-Yagi antennas using an ultra-wideband balun.Microwave and Optical Technology Letters.2008,Aug, 50(8):2068-2071.
    [34]N.Kaneda,W.R.Deal,Y.X.Qian,R.Waterhouse,T.Itoh.A broad-band planar quasi-Yagi antenna.IEEE Transactions on Antennas and Propagation.2002,Aug,50(8):1158-1160.
    [35]H.K.Kan,R.B.Waterhouse,A.M.Abbosh,M.E.Bialkowski.Simple broadband planar CPW-fed quasi-Yagi antenna.IEEE Antennas and Wireless Propagation Letters.2007,6:18-20.
    [36]Z.W.Zhou,S.W.Yang,Z.P.Nie.A novel broadband printed dipole antenna with low cross-polarization.IEEE Transactions on Antennas and Propagation.2007,Nov,55(11):3091-3093.
    [37]A.P.Gorbachev,V.M.Egorov.The dipole radiating integrated module:Experimental results.IEEE Transactions on Antennas and Propagation.2007,Nov,55(11):3085-3087.
    [38]D.H.Kwon,Y.J.Kim.Suppression of cable leakage current for edge-fed printed dipole UWB antennas using leakage-blocking slots.IEEE Antennas and Wireless Propagation Letters.2006,5:183-186.
    [39]N.Behdad,K.Sarabandi.A compact antenna for ultrawide-band applications.IEEE Transactions on Antennas and Propagation.2005,Jul,53(7):2185-2192.
    [40]J.M.Qiu,Z.W.Du,J.H.Lu,K.Gong.A planar monopole antenna design with band-notched characteristic.IEEE Transactions on Antennas and Propagation.2006,Jan,54(1):288-292.
    [41]A.J.Kerkhoff,H.Ling.Design of a band-notched planar monopole antenna using genetic algorithm optimization.IEEE Transactions on Antennas and Propagation.2007,Mar,55(3):604-610.
    [42]G.Brzezina,L.Roy,L.MacEachem.Planar antennas in LTCC technology with transceiver integration capability for ultra-wideband applications.IEEE Transactions on Microwave Theory and Techniques.2006,Jun,54(6):2830-2839.
    [43]N.Telzhensky,Y.Leviatan.Planar differential elliptical UWB antenna optimization.IEEE Transactions on Antennas and Propagation.2006,Nov,54(11):3400-3406.
    [44]Y.M.Lu,X.X.Yang,G.X.Zheng.Analysis on a novel ultra-wide bandwidth antenna of double-printed circular disc.Microwave and Optical Technology Letters.2007,Feb,49(2):311-313.
    [45]丁婕琛.新型超宽带天线的研究、设计和制作.浙江大学,2008.
    [46]张金平.超宽带天线及其阵列研究,博士论文.中国科学技术大学,2007.
    [47]陈董,程崇虎.宽缝结构超宽带天线的研究.南京邮电大学学报(自然科学版). 2006,26(02):72-75.
    [48]吕文俊,朱洪波.超宽带Koch分形缝隙天线的陷波特性研究.南京邮电大学学报(自然科学版).2008,28(03):44-48.
    [49]Y.Zhang,W.Hong,C.Yu,Z.Q.Kuai,Y.D.Don,J.Y.Zhou.Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line.IEEE Transactions on Antennas and Propagation.2008,Sep,56(9):3063-3068.
    [50]J.Kim,C.S.Cho,J.W.Lee.5.2 GHz notched ultra-wideband antenna using slot-type SRR.Electronics Letters.2006,Mar 16,42(6):315-316.
    [51]W.J.Lui,C.H.Cheng,H.B.Zhu.Compact frequency notched ultra-wideband fractal printed slot antenna.IEEE Microwave and Wireless Components Letters.2006,Apr,16(4):224-226.
    [52]J.Liu,S.Gong,Y.Xu,X.Zhang,C.Feng,N.Qi.Compact printed ultra-wideband monopole antenna with dual band-notched characteristics.Electronics Letters.2008,Jun 5,44(12):710-711.
    [53]Y.H.Zhao,J.P.Xu,K.Yin.Dual band-notched ultra-wideband microstrip antenna using asymmetrical spurlines:Electronics Letters.2008,Aug 28,44(18):1051-1052.
    [54]褚庆昕,杨颖颖.一种小型平面陷波超宽带天线.华南理工大学学报(自然科学版).2008,36(09):77-80.
    [55]吕文俊,朱洪波.具有陷波功能的超宽带缝隙天线的设计与研究.中国电子科学研究院学报.2007,2(04):349-353.
    [56]T.G.Spence,D.H.Werner.A novel miniature broadband/multiband antenna based on an end-loaded planar open-sleeve dipole.IEEE Transactions on Antennas and Propagation.2006,Dec,54(12):3614-3620.
    [57]H.D.Chen,H.M.Chen,W.S.Chen.Planar CPW-fed sleeve monopole antenna for ultra-wideband operation.IET Proceedings-Microwaves Antennas and Propagation.2005,Dec,152(6):491-494.
    [58]S.W.Lee,H.C.Go,Y.W.Jang.A low profile wideband toploading monopole antenna with a ring-shaped plate.Microwave and Optical Technology Letters.2006,Aug,48(8):1458-1460.
    [59]H.Nakano,H.Iwaoka,K.Morishita,J.Yamauchi.A wideband low-profile antenna composed of a conducting body of revolution and a shorted parasitic ring.IEEE Transactions on Antennas and Propagation.2008,Apr,56(4):1187-1192.
    [60]E.Antonino-Daviti,M.Cabedo-Fabres,M.Ferrando-Bataller,A.Valero-Nogueira.Wideband double-fed planar monopole antennas.Electronics Letters.2003,Nov 13, 39(23):1635-1636.
    [61]P.Li,K.L.Lau,K.M.Luk.Wideband folded shorted patch antenna with low profile.Electronics Letters.2005,Feb 3,41(3):112-113.
    [62]S.H.Yeh,K.L.Wong.A broadband low-profile cylindrical monopole antenna top loaded with a shorted cross patch.Microwave and Optical Technology Letters.2002,Feb 5,32(3):186-188.
    [63]Y.Li,R.Chair,K.M.Luk,K.F.Lee.Shorted wideband low-profile patch antenna with two shorting pins.Microwave and Optical Technology Letters.2004,Apr 20,41(2):135-137.
    [64]Y.Y.Liou,J.S.Row,T.Y.Han.Broadband shorted patch antenna with monopole-like radiation patterns.Microwave and Optical Technology Letters.2006,Sep,48(9):1704-1707.
    [65]H.D.Chen.Broadband designs of coplanar capacitively-fed shorted patch antennas.IET Microwaves Antennas & Propagation.2008,Sep,2(6):574-579.
    [66]D.U.Sim,J.I.Choi.A compact wideband modified planar inverted F antenna (PIFA)for 2.4/5-GHz WLAN applications.IEEE Antennas and Wireless Propagation Letters.2006,5:391-394.
    [67]W.S.Chen,W.Y.Chang.Novel U-shaped strip-slot printed antenna for triple-frequency operation.Microwave and Optical Technology Letters.2008,Aug,50(8):2219-2223.
    [68]C.H.See,R.A.Abd-Alhameed,P.S.Excell,N.J.McEwan,J.G.Gardiner.Internal triple-band folded planar antenna design for third generation mobile handsets.IET Microwaves Antennas & Propagation.2008,Oct,2(7):718-724.
    [69]V.Deepu,R.K.Raj,M.Joseph,M.N.Suma,P.Mohanan.Compact asymmetric coplanar strip fed monopole antenna for multiband applications.IEEE Transactions on Antennas and Propagation.2007,Aug,55(8):2351-2357.
    [70]R.L.Li,B.Pan,J.Laskar,M.M.Tentzeris.A novel low-profile broadband dual-frequency planar antenna for wireless handsets.IEEE Transactions on Antennas and Propagation.2008,Apr,56(4):1155-1162.
    [71]K.L.Wong,P.Y.Lai.Wideband integrated monopole slot antenna for WLAN/WiMAX operation in the mobile phone.Microwave and Optical Technology Letters.2008,Aug,50(8):2000-2005.
    [72]J.W.Baik,Y.S.Kim.Printed inset sleeve monopole antennas for dual-band applications.Microwave and Optical Technology Letters.2008,Aug,50(8):1995-1997.
    [73]戚冬生,黎滨洪,刘海涛.新型可用于移动手持设备的小型三频天线.上海交 通大学学报.2004,(12)
    [74]Y.J.Cho,S.H.Hwang,S.O.Park.Printed antenna with folded non-uniform meander line for 2.4/5 GHz WLAN bands.Electronics Letters.2005,Jul 7,41(14):786-788.
    [75]C.H.Lee,S.O.Park.A compact printed hook-shaped monopole antenna for 2.4/5-GHz WLAN applications.Microwave and Optical Technology Letters.2006,Feb,48(2):327-329.
    [76]C.C.Lin,G.Y.Lee,K.L.Wong.Surface-mount dual-loop antenna for 2.4/5 GHz WLAN operation.Electronics Letters.2003,Sep 4,39(18):1302-1304.
    [77]C.C.Lin,S.W.Kuo,H.R.Chuang.A 2.4-GHz printed meander-line antenna for USBWLAN with notebook-PC housing.IEEE Microwave and Wireless Components Letters.2005,Sep,15(9):546-548.
    [78]R.K.Raj,M.Joseph,C.K.Aanandan,K.Vasudevan,P.Mohanan.A new compact microstrip-fed dual-band coplanar antenna for WLAN applications.IEEE Transactions on Antennas and Propagation.2006,Dec,54(12):3755-3762.
    [79]T.H.Kim,D.C.Park.CPW-fed compact monopole antenna for dual-band WLAN applications.Electronics Letters.2005,Mar 17,41(6):291-293.
    [80]L.C.Chou,K.L.Wong.Uni-planar dual-band monopole antenna for 2.4/5 GHz WLAN operation in the laptop computer.IEEE Transactions on Antennas and Propagation.2007,Dec,55(12):3739-3741.
    [81]G.Zhao,F.S.Zhang,Y.Song,Z.B.Weng,Y.C.Jiao.Compact ring monopole antenna with double meander lines for 2.4/5 GHz dual-band operation.Progress in Electromagnetics Research.2007,72:187-194.
    [82]Y.L.Kuo,K.L.Wong.Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations.IEEE Transactions on Antennas and Propagation.2003,Sep,51(9):2187-2192.
    [83]G.L.Xin,J.P.Xu.Wideband miniature G-shaped antenna for dual-band WLAN applications.Electronics Letters.2007,Nov 22,43(24):1330-1332.
    [84]Y.F.Lin,C.H.Lin,H.M.Chen,P.S.Hall.A miniature dielectric loaded monopole antenna for 2.4/5 GHz WLAN applications.IEEE Microwave and Wireless Components Letters.2006,Nov,16(11):591-593.
    [85]S.W.Su,K.L.Wong,Y.T.Cheng,W.S.Chen.Finite-ground-plane effects on the ultra-wideband planar monopole antenna.Microwave and Optical Technology Letters.2004,Dec 20,43(6):535-537.
    [86]G.Ruvio,M.J.Ammann.A novel wideband semi-planar miniaturized antenna. IEEE Transactions on Antennas and Propagation.2007,Oct,55(10):2679-2685.
    [87]M.John,J.A.Evans,M.J.Ammann,J.C.Modro,Z.N.Chen.Reduction of ground-plane-dependent effects on microstrip-fed printed rectangular monopoles.IET Microwaves Antennas & Propagation.2008,Feb,2(1):42-47.
    [88]H.Wang,X.B.Huang,D.G.Fang.A single layer wideband U-slot microstrip patch antenna array.IEEE Antennas and Wireless Propagation Letters.2008,7:9-12.
    [89]孙绍国,张玉梅,卢晓鹏.L波段宽带超低副瓣偶极子阵列天线研制.微波学报.2006,(S1)
    [90]Y.M.Madany.The analysis of wideband conformal microstrip array antenna with cosecant-squared beam shaping.2006 IEEE Radar Conference,Vols 1 and 2.2006:208-214843.
    [91]B.Cantrell,J.Rao,G.Tavik,M.Dorsey,V.Krichevsky.Wideband array antenna concept.IEEE Aerospace and Electronic Systems Magazine.2006,Jan,21(1):9-12.
    [92]V.G.Kasabegoudar,K.J.Vinoy.A wideband microstrip antenna with symmetric radiation patterns.Microwave and Optical Technology Letters.2008,Aug,50(8):1991-1995.
    [93]W.W.Chai,X.J.Zhang,S.G.Liu.Wideband microstrip antenna array using U-slot.Piers 2007 Beijing:Progress in Electromagnetics Research Symposium,Pts Ⅰ and Ⅱ,Proceedings.2007:1532-1535.
    [94]I.Ang,B.L.Ooi.An ultra-wideband stacked microstrip patch antenna.Microwave and Optical Technology Letters.2007,Jul,49(7):1659-1665.
    [95]A.A.Kishk,K.F.Lee,W.C.Mok,K.M.Luk.A wide-band small size microstrip antenna proximately coupled to a hook shape probe.IEEE Transactions on Antennas and Propagation.2004,Jan,52(1):59-65.
    [96]E.C.Wang,S.J.Fang.Wideband dual-band microstrip antenna for WLAN application using organic magnetic substrate.2006 IEEE Annual Wireless and Microwave Technology Conference.2006:19-21.
    [97]S.F.Liu,S.D.Liu,B.R.Guan.A novel wideband high-temperature superconducting microstrip antenna.Journal of Electromagnetic Waves and Applications.2005,19(15):2073-2079.
    [98]S.I.Latif,L.Shafai.Wideband and reduced size microstrip slot antennas for wireless applications.IEEE Antennas and Propagation Society Symposium,Vols 1-42004,Digest.2004:1959-1962.
    [99]C.J.Geisler,M.N.Afsar,R.B.Goldner,J.C.Hill.Numerical and experimental investigation of an ultrawideband hybrid TEM horn antenna with a small aperture. 2006 IEEE International Conference on Ultra-Wideband, Vols 1. 2006:403-407.
    [100] K. H. Chung, S. H. Pyun, J. H. Choi. The design of a wideband TEM horn antenna with a microstrip-type balun. IEEE Antennas and Propagation Society Symposium, Vols 3 2004, Digest. 2004:1899-1902 4566.
    [101] C. M. Coleman, E. J. Rothwell,J. E. Ross. Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas. IEEE Transactions on Antennas and Propagation. 2004, Apr, 52(4): 1007-1014.
    [102] C. M. Coleman, E. J. Rothwell, J. E. Ross,L. L. Nagy. Self-structuring antennas. IEEE Antennas and Propagation Magazine. 2002,Jun, 44(3): 11-23.
    [103] L. J. Chu. Physical limitations of omni-directional antennas. J. Appl.Phys. Dec. 1948,19:1163-1175.
    [104] R. E. Collin. Minimum Q of small antennas. Journal of Electromagnetic Waves and Applications. 1998,12(10):1369-1393.
    [105] Roger F.Harrington.Time-harmonic electromagnetic fields McGraw-Hill. 1961. 463.
    [106] R. L. Fante. Quality factor of general idea antennas, IEEE Transactions on Antennas and Propagation. Mar. 1969,17:151-155.
    [107] R. Hahn,J. Fikioris. Impedance and radiation pattern of antennas above flat discs. IEEE Transactions on Antennas and Propagation, 1973,21(l):97-100.
    [108] D. Kadakia,J. Fikioris. Monopole antenna above a hemisphere. IEEE Transactions on Antennas and Propagation, 1971,19(5):687-690.
    [109] J. S. McLean. A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Transactions on Antennas and Propagation, 1996,44(5):672.
    [110] W. Geyi, F. Jarmuszewski,Y. H. Qi. The foster reactance theorem for antennas and radiation Q. IEEE Transactions on Antennas and Propagation. 2000,Mar, 48(3):401-408.
    [111] Arto Hujanen Johan C.-E. Sten, and Paivi K. Koivisto. Quality Factor of an Electrically Small Antenna Radiating Close to a Conducting Plane. IEEE Transactions on Antennas and Propagation. 2001,49(5):829.
    [112] G. Liu, C. A. Grimes,D. M. Grimes. A time-domain technique for determining antenna Q. Microwave and Optical Technology Letters. 1999,Jun 20,21(6):395-398.
    [113] C. A. Grimes, G. Liu, D. M. Grimes,K. G. Ong. Characterization of a wideband, low-Q, electrically small antenna. Microwave and Optical Technology Letters. 2000,Oct 5, 27(l):53-58.
    [114] G. A. Thiele, P. L. Detweiler,R. P. Penno. On the lower bound of the radiation Q for electrically small antennas. IEEE Transactions on Antennas and Propagation. 2003,Jun,51(6):1263-1269.
    [115] W. Geyi. Physical limitations of antenna. IEEE Transactions on Antennas and Propagation. 2003,Aug, 51(8):2116-2123.
    [116] A. Hujanen, J. Holmberg,J. C. E. Sten. Bandwidth limitations of impedance matched ideal dipoles. IEEE Transactions on Antennas and Propagation. 2005,Oct, 53(10):3236-3239.
    [117] A. D. Yaghjian,S. R. Best. Impedance, bandwidth, and Q of antennas. IEEE Transactions on Antennas and Propagation. 2005,Apr, 53(4):1298-1324.
    [118] A. D. Yaghjian. Improved formulas for the Q of antennas with highly lossy dispersive materials. IEEE Antennas and Wireless Propagation Letters. 2006,5:365-369.
    [119] R. W. Ziolkowski,A. Erentok. At and below the Chu limit: passive and active broad bandwidth meta material-based electrically small antennas. IET Microwaves Antennas & Propagation. 2007,Feb, 1(1): 116-128.
    [120] Y. Yan-Min, T. Yi-Ming,W. Wen. An enhanced bandwidth design technique for Peano fractal loaded monopole antenna. Microwave and Optical Technology Letters. 2008,Aug, 50(8):2045-2048.
    [121] B. Mirzapour,H. R. Hassani. Size reduction and bandwidth enhancement of snowflake fractal antenna. IET Microwaves Antennas & Propagation. 2008,Mar, 2(2):180-187.
    [122] D. Guha,Y. M. M. Antar. Four-element cylindrical dielectric resonator antenna for wideband monopole-like radiation. IEEE Transactions on Antennas and Propagation. 2006,Sep, 54(9):2657-2662.
    [123] A. V. P. Kumar, V. Hamsakutty, J. Yohannan,K. T. Mathew. A wideband conical beam cylindrical dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters. 2007,6:15-17.
    [124] S. A. Malekabadi, M. H. Neshati, J. Rashed-Mohassel,A. R. Attari. Circular polarized cylindrical dielectric resonator antenna using a single probe feed. 2008 International Conference on Microwave and Millimeter Wave Technology Proceedings, Vol 2. 2008:1098-1101.
    [125] M. Lee, B. A. Kramer, C. C. Chen,J. L. Volakis. Distributed lumped loads and lossy transmission line model for wideband spiral antenna miniaturization and characterization. IEEE Transactions on Antennas and Propagation. 2007,Oct, 55(10):2671-2678.
    [126]J.Jung,H.Lee,Y.Lim.Stacked helix monopole antenna with vertical lines for broadband operation.Microwave and Optical Technology Letters.2007,Nov,49(11):2739-2742.
    [127]J.H.Jung,H.Choo,I.Park.Design and performance of small electromagnetically coupled monopole antenna for broadband operation.IET Microwaves Antennas &Propagation.2007,Apr,1(2):536-541.
    [128]M.Kim,N.Khang,I.Woo,H.Choo,I.Park.Small broadband disk-loaded monopole antenna with a vertical ground plane.Microwave and Optical Technology Letters.2007,Jun,49(6):1401-1405.
    [129]原艳宁,席晓莉,樊亚军.不同渐变方式的喇叭结构对电-磁振子组合型超宽带天线特性的影响.强激光与粒子束.2007,19(06):971-974.
    [130]A.Erentok,R.W.Ziolkowski.Efficient metamatefial-inspired electrically-small magnetic-based antennas:Two-and three-dimensional realizations.2007 IEEE Antennas and Propagation Society International Symposium.2007:1193-1196.
    [131]A.Erentok,R.W.Ziolkowski.A dual-band efficient metamaterial-inspired electrically-small magnetic-based antenna:2007 IEEE Antennas and Propagation Society International Symposium,2007:1725-17285525.
    [132]A.Erentok,R.W.Ziolkowski.Lumped element capacitor based two-dimensional efficient metamaterial-inspired electrically-small antenna.IEEE International Workshop on Antenna Technology:Small and Smart Antennas,Metamaterials and Applications.2007:19-22.
    [133]A.Erentok,R.W.Ziolkowski.A summary of recent developments on metamaterial-based and metamaterial-inspired efficient electrically small antennas.Turkish Journal of Electrical Engineering and Computer Sciences.2008,16(1):21-32.
    [134]A.Erentok,R.W.Ziolkowski.Metamaterial-inspired efficient electrically small antennas.IEEE Transactions on Antennas and Propagation.2008,Mar,56(3):691-707.
    [135]S.H.He,H.Xie.A novel compact printed antenna used in TPPMS or other complex and variable environments.IEEE Transactions on Antennas and Propagation.2008,Jan,56(1):24-30.
    [136]J.L.Rodriguez,I.Garcia-Tunon,J.M.Taboada,F.O.Basteiro.Broadband HF antenna matching network design using a real-coded genetic algorithm.IEEE Transactions on Antennas and Propagation.2007,Mar,55(3):611-618.
    [137]黄友火,刘其中,魏文博,纪奕才.天线宽带匹配网络的粒子群优化设计.微 波学报.2007,23(05):11-13.
    [138]Alona Boag,Amir Boag,Eric Michielssen,Raj Mittra.Design of Electrically Loaded Wire Antennas Using Glenetic Algorithms.IEEE Transactions on Antennas and Propagation.1996,44(5):687-695.
    [139]Y.K.Chen,S.W.Yang,Z.P.Nie.The application of a modified differential evolution strategy to some array pattern synthesis problems.IEEE Transactions on Antennas and Propagation.2008,Jul,56(7):1919-1927.
    [140]刘旭峰.微带共形阵列天线的研究.电子工程学院,西安电子科技大学,2007.
    [141]F.Afshinmanesh,A.Marandi,M.Shahabadi.Design of a single-feed dual-band dual-polarized printed microstrip antenna using a Boolean particle swarm optimization.IEEE Transactions on Antennas and Propagation.2008,Jul,56(7):1845-1852.
    [142]L.Lizzi,F.Viani,R.Azaro,A.Massa.A PSO-driven spline-based shaping approach for ultrawideband(UWB)antenna synthesis.IEEE Transactions on Antennas and Propagation.2008,Aug,56(8):2613-2621.
    [143]王凌.智能优化算法及其应用.第1版.北京:清华大学出版社.2001.
    [144]雷英杰,张善文,李续武,周创明.遗传算法工具箱及其应用.第1版.西安:西安电子科技大学出版社.2005.
    [145]K.Chellapilla,A.Hoorfar.Evolutionary programming:an efficient alternative to genetic algorithms for electromagnetic optimization problems.IEEE Antennas and Propagation Society International Symposium-Antennas:Gateways to the Global Network,1998:42-45.
    [146]A.Hoorfar.Evolutionary programming in electromagnetic optimization:A review.IEEE Transactions on Antennas and Propagation.2007,Mar,55(3):523-537.
    [147]O.Quevedo-Teruel,E.Rajo-Iglesias,A.Oropesa-Garcia.Hybrid algorithms for electromagnetic problems and the no-free-lunch framework.IEEE Transactions on Antennas and Propagation.2007,Mar,55(3):742-749.
    [148]Wheeler H.A.Fu ndamentallim itationso fsm allan tennas.Proceedings of the IRE,1947.
    [149]J.C.E.Sten,A.Hujanen,P.K.Koivisto.Quality factor of an electrically small antenna radiating close to a conducting plane.IEEE Transactions on Antennas and Propagation.2001,May,49(5):829-837.
    [150]Joseph R.Jahoda,“JTRS/SINCGARS ultrabroadband airborne blade antenna for subsonic aircraft and helicopters,”RFdesign,2006,20-22.
    [151]Joseph R.Jahoda,“Development of a JTRS/SINCGARS Ultra-Broadband Airborne Blade Antenna,”in High Frequency Electronics,2006,50-56.
    [152]H.R.Stuart.Eigenmode analysis of small multielement spherical antennas.IEEE Transactions on Antennas and Propagation.2008,Sep,56(9):2841-2851.
    [153]陈开周.最优化计算方法.第1版.西安:西安电子科技大学出版社.1985.
    [154]N.P.Agrawall,G.Kumar,K.P.Ray.Wide-band planar monopole antennas.IEEE Transactions on Antennas and Propagation.1998,46(2):294-295.
    [155]D.H.Wolpert,W.G.Macready.No Free Lunch Theorems for Optimization.IEEE Transactions on Evolutionary Computatio.1997,1(1):67-82.
    [156]J.Kennedy,R.C.Eberhart.Particle swarm optimization.Proc.IEEE Conf.Neural Networks Ⅳ,Piscataway,NJ,1995.
    [157]介清 曾建潮,崔志华.微粒群算法.第1版.北京:科学出版社.2004.
    [158]Ganesh Kumar Venayagamoorthy Yamille del Valle,Salman Mohagheghid 等.Particle Swarm Optimization:Basic Concepts,Variants and Applications in Power Systems.IEEE transactions on evolutionary computation.2008,12(2):171-195.
    [159]K.Parsopoulos and M.Vrahatis.Particle swarm optimization method in multiobjective problems.in Proc.ACM Symp.Appl.Comput,2002:603-607.
    [160]R.Eberhart X.Hu,and Y.Shi.Particle swarm with extended memory for multiobj ective optimization.IEEE Swarm Intell.Symp,2003:193-197.
    [161]陈轶博.可重构微带天线及宽带圆极化微带天线研究.电子工程学院,西安电子科技大学,2007.
    [162]邱玉辉 王芳.一种引入单纯形法算子的新颖粒子群算法.信息与控制.2005,34(5):517-522.
    [163]俞金寿 陈国初.单纯形微粒群优化算法及其应用.系统仿真学报.2006,18(4):862-865.
    [164]曾建潮 夏桂梅.一种基于单纯形法的随机微粒群算法.计算机工程与科学.2007,29(1):90-93.
    [165]VrahatisM N Parsopoulos K E,Initializing the particle swarm optimizer using the nonlinear simplex method.Advances in Intelligent Systems,Fuzzy Systems,Evolutionary Computation,2002.
    [166]高雪,胡鸿飞,付德民.移动通信中基站天线波束赋形设计.微波学报.2002,18(1):39-42.
    [167]A.Akdagli,K.Guney.Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm.Microwave and Optical Technology Letters.2003,36(36):16-20.
    [168]J.L.Hu,C.H.Chan,K.M.Luk,S.M.Lin.Shaped-beam pattern synthesis for base station antenna in mobile communication system.Microwave and Optical Technology Letters.2000,Feb 20,24(4):226-228.
    [169]K.F.Tong,H.Y.Tong,J.Hu,Y.B.Pun,C.H.Chan,K.M.Luk.Design of linearly fed shaped-beam-pattern microstrip antenna array.Microwave and Optical Technology Letters.2000,Dec 5,27(5):296-297.
    [170]A.Akdagli,K.Guney.Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm.Microwave and Optical Technology Letters.2003,36(1):16-20.
    [171]D.G.Babas,J.N.Sahalos.Synthesis method of series-fed microstrip antenna arrays.Electronics Letters.2007,43(2):78-80.
    [172]刘瑞斌,鄢泽洪,孙从武.PSO和GA在阵列天线波束赋形中的应用.西安电子科技大学学报.2006,33(5):797-799.
    [173]S.M.Mikki,A.A.Kishk.Quantum particle swarm optimization for electromagnetics.IEEE Transactions on Antennas and Propagation.2006,Oct,54(10):2764-2775.
    [174]G.K.Mahanti,A.Chakrabarty,S.Das.Phase-only and amplitude-phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms.Progress in Electromagnetics Research.2007,68:247-259.
    [175]X.Ze-ming.An efficient method for analyzing multislot coaxial line antennas used in LEO-MSAT.Journal of South China University of Technology.2001,29(10):47-51.
    [176]Z.M.Xie,E.K.N.Yung,R.S.Chen,Y.F.Han.A coaxial multi-slot antenna used for LEO-MSAT.in Antennas and Propagation Society International Symposium,1999.IEEE,1999:2420-2423.
    [177]Douglas H.Werner.A Method of Moments Approach for the Efficient and Accurate Modeling of Moderately Thick Cylindrical Wire Antennas.IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.MARCH 1998,46(3):373-382.
    [178]P.G.Rogers,M.W.Gunn.An entire-domain Galerkin analysis of the moderately thick dipole.IEEE Trans.Antennas Propagat.1980,28(1):117-121.
    [179]D.H.Werner,J.A.Huffman,P.L.Werner.Techniques for evaluating the uniform current vector potential at the isolated singularity of the cylindrical wire kernel.IEEE Transactions on Antennas and Propagation..1994,42:1549-1553.
    [180]D.H.Werner.An exact formulation for the vector potential of a cylindrical antenna with uniformly distributed current and arbitrary radius.IEEE Transactions on Antennas and Propagation.1993,41(8):1009-1018.
    [181]E.E Altshuler.The traveling-wave linear antenna.IEEE Transactions on Antennas and Propagation.1961,
    [182]T.T.Wu,R.W.P.King.The Cylindrical Antenna with Nonreflecting Resistive Loading.IEEE Transactions on Antennas and Propagation.1964,
    [183]曹卫平,杨晓辉.背负式短波天线宽带匹配网络的设计.现代电子技术.2007,(5):35-37.
    [184]纪奕才,贺秀莲,刘其中,田步宁.加载螺旋天线的优化设计.西电学报.2002,29(6):721-724.
    [185]阮成礼,黄春.小型化准分形加载单极子天线.电报科学学报.2006,05(18)
    [186]李思敏,姜兴,等.嵌入匹配网络的电小天线的优化设计.电子学报.2002,30(9):1393-1395.
    [187]Kraus.J.Antennas.London:McGraw Hill.1950.
    [188]NEC-2 Manual,Part Ⅲ:User's Guide,http://www.traveller.com/~richesop/nec/.
    [189]E.Newman and V.Milligan.A survivable low-profile VHF monopole.Antennas and Propagation Society International Symposium,1985:617--620.
    [190]ETSI TR 102 377 V1.1.1(2005-02)European Telecommunications Standards Institute DVB-H implementation guidelines.
    [191]Y.W.Chi,K.L.Wong,S.W.Su.Broadband printed dipole antenna with a step-shaped feed gap for DTV signal reception.IEEE Transactions on Antennas and Propagation.2007,Nov,55(11):3353-3356.
    [192]Jung N.Lee Il H.Choi,Jong K.Park,and Byoung J.Yim.An internal modified rectangular loop antenna for dvb-h applications.Microwave and Optical Technology Letters.2008,Mar,50(6):1592-1595.
    [193]W.Y.Li,K.L.Wong,S.W.Su.Broadband integrated DTV antenna for USB dongle application.Microwave and Optical Technology Letters.2007,May,49(5):1018-1021.
    [194]M.J.R.Ons,J.Hauck,M.Buchholz,F.Aguado-Agelet.Analysis,realization,and measurement of broadband miniature antennas for digital TV receivers in handheld terminals.Microwave and Optical Technology Letters.2008,Feb,50(2):293-297.
    [195]Y.S.Yu,S.G.Jeon,H.Park,D.H.Seo,J.H.Choi.Internal low-profile metal-plate monopole antenna for DTV portable multimedia player applications.Microwave and Optical Technology Letters.2007,Mar,49(3):593-595.
    [196]V.Zachou,C.G.Christodoulou,M.T.Chryssomallis,D.Anagnostou,S.Barbin.Planar monopole antenna with attached sleeves.Antennas and Wireless Propagation Letters.2006,5.
    [197]Yue Song,Yong-Chang Jiao,Hui Zhao.Compact printed monopole antenna for multiband wlan applications.Microwave and Optical Technology Letters.2008,50(2):365-367.
    [198]T.H.Kim,D.C.Park.CPW-fed compact monopole antenna for dual-band WLAN applications.Electronics Letters.March 2005,41(6):291-293.
    [199]G.L Xin,J.P.Xu.Wideband miniature G-shaped antenna for dual-band WLAN applications.Electronics Letters.2007,43(24)
    [200]戚冬生,黎滨洪,刘海涛.新型可用于移动手持设备的小型三频天线.上海交通大学学报.2004,38(12):1979-1985.
    [201]牛凤,李征帆.一种新型缝隙加载三频平面倒F天线.上海交通大学学报.2006,40(9):1492-1495.
    [202]Chen C F,Huang T Y,Wu R B.Design of dual-and triple passband filters using alternately cascaded multiband resonators.IEEE Trans on Microwave Theory Tech.2006,54(9):3550-3558.
    [203]Kin-Lu Wong,Peng-Yu Lai.Wideband integrated monopole slot antenna for WLAN/WiMAX operation in the mobile phone.Microwave and Optical Technology Letters.2008,50(8):2000-2005.
    [204]Wen-Shan Chen,Wen-Yen Chang.Novel u-shaped strip-slot printed antenna for triplefrequency operation.Microwave and Optical Technology Letters.2008,50(3):2219-2223.
    [205]John D.Kraus著,章文勋译.天线.第3版.北京:电子工业出版社.2006年.pp299.
    [206]Z.N.Chen,T.S.P.See,X.M.Qing.Small printed ultrawideband antenna with reduced ground plane effect.IEEE Transactions on Antennas and Propagation.2007,Feb,55(2):383-388.
    [207]L.Jian-Ying,G.Yeow-Beng.Study on open sleeve dipole antenna.Antenna Technology:Small Antennas and Novel Metamaterials.IEEE International Workshop.2005:291-294.
    [208]C.Abatier P.Brachat.Wideband omnidirectional microstrip array.Electronic Letters.2001,37:2-3.
    [209]Yngvesson.K.S.Endfire.tapered slot antennas on dielectric substrates.IEEE Transactions on Antennas and Propagation.1985,33(12):1392-1400.
    [210]K.W.Leung,K.Y.Chow.Theory and experiment of the hemispherical cavity-backed slot antenna.IEEE Transactions on Antennas and Propagation.1998,Aug,46(8):1234-1241.
    [211] Q. Li, Z. X. Shen,P. T. Teo. Microstrip-fed cavity-backed slot antennas. Microwave and Optical Technology Letters. 2002,May 20,33(4):229-233.
    [212] A. Vallecchi,G. B. Gentili. Microstrip-fed slot antennas backed by a very thin cavity. Microwave and Optical Technology Letters. 2007,Jan, 49(l):247-250.
    [213] Zhongxiang Shen Weihua Tan, and Zhenhai Shao. A Gain-Enhanced Microstrip-Fed Cavity-Backed Slot Antenna. IEEE Asian and Pacific Microwave Conference, 2005.