一个遗传性白内障家系致病基因的突变检测及其致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:白内障是全球首要致盲眼病。其中,先天性白内障是一种常见的儿童眼病。环境和遗传因素是先天性白内障的两大病因,其中遗传因素在白内障的发生和发展中起着重要作用。随着分子遗传学技术的发展,越来越多的先天性白内障相关候选基因被定位和克隆。然而,先天性白内障的发病机制还研究得不是很清楚。本研究拟对一个先天性白内障家系进行致病基因的筛查及致病机制研究,以期找到先天性白内障相关的突变位点,揭示先天性白内障的发病机理。
     方法:采用直接测序的方法对一个来自湖北省的常染色体显性遗传先天性白内障家系进行基因突变检测。应用生物信息学工具Expasy蛋白组学服务器(http://www.expasy.org)对aB-晶体蛋白及其突变体进行生物物理学预测。应用基因重组技术在大肠杆菌E. coli BL21(DE3)中表达野生型和R11H突变型aB-晶状体蛋白。应用圆二色光谱技术对野生型和R11H突变型aB-晶状体蛋白的结构进行分析;应用bis-ANS荧光探针结合实验分析aB-晶状体蛋白的表面疏水区域;分别以胰岛素和乙醇脱氢酶(ADH)为底物比较它们的分子伴侣活性。此外利用脂质体方法分别将野生型和R11H突变型CRYAB基因转入HeLa细胞和人晶状体上皮细胞(HLE),应用激光共聚焦显微镜和流式细胞仪对野生型和R11H突变型aB-晶状体蛋白的特征进行了比较分析。通过优化载体,诱导时间,诱导温度,诱导剂浓度等条件摸索aA-晶状体蛋白在大肠杆菌中的表达条件。
     结果:候选基因直接测序在aB-晶状体蛋白基因(CRYAB)第一个外显子上发现了一个新的突变位点,该突变导致第11位密码子由精氨酸变成了组氨酸(R11H)。在家系中正常人和200例正常对照及40例老年性白内障患者中均未发现此突变,排除了多态性的可能。aB-晶状体蛋白计算机模型的构建和分析提示突变型aB-晶状体蛋白基因改变了该蛋白的结构及理化性质。R11H突变型和野生型aB-晶状体蛋白的近紫外和远紫外圆二色光谱呈现较大差异。bis-ANS荧光光谱实验显示突变型蛋白的表面疏水区域减少。而热稳定性测定表明R11H突变并没有改变蛋白的稳定性。分子伴侣活性测定表明突变型aB-晶状体蛋白的分子伴侣活性升高。激光共聚焦显微镜分析表明野生型和R11H突变型aB-晶状体蛋白都主要分布在细胞质里面,两者在细胞内的定位无明显差异。流式细胞术分析表明R11H突变型aB-晶状体蛋白能诱导晶状体上皮细胞的早期凋亡。利用pET-32a(+)重组表达菌株,在0.5 mM IPTG,37℃下诱导5 h成功表达并纯化得到aA-晶状体蛋白。
     结论:在一常染色体显性遗传先天性白内障家系中发现了一个新的CRYAB基因突变(R11H)。突变型aB-晶状体蛋白基因改变了蛋白的结构,导致aB-晶状体蛋白的分子伴侣活性升高。同时突变基因能诱导晶状体上皮细胞的早期凋亡。这种结构与功能上的改变可能与白内障的发生相关。
Background Cataract is a leading cause of blindness worldwide and congenital cataract is a common eye disease that a child is born with or develops soon after birth. Genetic factors as well as environmental factors play a significant part in cataract aetiology and about one third of all congenital cataracts are inherited. With the development of advanced molecular biological techniques, more and more genes causing congenital cataracts have been identified; however, the underlying mechanisms are not fully understood. The aim of this study was to identify the causative genetic mutation among the known cataract candidate genes in a Chinese family and to investigate the molecular mechanism of cataract that may develop due to the mutation.
     Methods Because of the small family size, we used the functional candidate gene analysis approach. We screened the Chinese family, clinically documented to have congenital nuclear cataracts, for mutation in the candidate genes CRYG (C & D), GJA8, CRY (AA & AB), CRYBA and CRY (BB1 & BB2) through polymerase chain reaction analyses and sequencing. Biophysical predictions of the altered protein were analyzed using the Bioinformatics tool of the Expasy Proteomics server (http://www.expasy.org). Recombinant wild-type and R11H mutant aB-crystallin were expressed in E.coli BL21 (DE3) and purified to homogeneity. The recombinant wild-type and mutant aB-crystallin were characterized by UV circular dichroism, bis-ANS fluorescence and thermal stability. The chaperone activities were measured using insulin and alcohol dehydrogenase (ADH) as substrates. Furthermore, wild-type and R11HαB-crystallin were expressed in HeLa and human lens epithelial (HLE) cells. The functional characteristics of mutant aB-crystallin were examined using confocal fluorescence microscopy and flow cytometry in comparison with wild-type aB-crystallin. The optimal condition for the expression of aA-crystallin in E.coli was studied.
     Results Sequencing of the exons of the CRYAB gene identified a sequence variation in exon 1 (32 G>A) with a substitution of Arg to His at position 11. All affected family members revealed this change but it was not observed in any of the unaffected members of the family or in the randomly selected 200 DNA samples from ophthalmologically normal individuals and in 40 unrelated senile cataract patients of the same ethnic background of the family members. Computer-assisted prediction suggested that this mutation affected the biochemical properties as well as structure of aB-crystallin. The R11H mutant exhibited altered structures, decreased surface hydrophobicity and enhanced chaperone-like activity compared with the wild-type aB-crystallin. It was remarkably similar to the wild-type protein in its subcellular distribution and thermal stability, but it resulted in increased cell apoptosis. After optimization of aA-crystallin expression in E.coli, recombinant aA-crystallin was purified by Ni-NTA sepharose resin affinity chromatography under natural conditions.
     Conclusions This study identified a novel mutation in CRYAB gene (R11H) in a Chinese family with autosomal dominant congenital cataract. The mutation in aB-crystallin resulted in altered folding, decrease in hydrophobicity and abnormal ability to induce cell death which could contribute to turbidity and loss of transparency of the lens.
引文
1 Rahi JS, Dezateaux C, British Congenital Interest Group. Measuring and interpreting the incidence of congenital ocular anomalies:lessons from a nation study of congenital cataract in the UK. Invest Vis Sci 2001; 42:1444-1448.
    2 Wirth MG, Russell-Eggitt IM, Craig JE, et al. Aetiology of congenital and paediatric cataract in an Australian population. Br J Ophthalmol 2002; 86:782-786.
    3 Hejtmancik JF, Smaoui N. Molecular genetics of cataract. Dev Ophthalmol,2003, 37:67-82.
    4 Reddy MA, Francis PJ, Berry V, et al. Molecular genetic basis of inherited cataract and associated phenotypes. Surv ophthalmology,2004,49:300-315.
    5 乐琦骅。先天性白内障的基因定位。国外医学眼科学分册,2002,26:193-198.
    6 布娟,赵堪兴。先天性白内障分子发病机制的研究进展。国际眼科杂志,2005,5:973-977.
    7 Litt M, Kramer P, LaMorticella DM, et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Human Molecular Genetics.1998; 7:471-474.
    8 Mackay DS, Boskovska OB, Knopf HLS, et al. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet.2002; 71:1216-1221
    9 Yao K, Tang XJ, Shentu XC, et al. Progressive polymorphic congenital cataract caused by a CRYBB2 mutation in a Chinese family. Molecular Vision.2005; 11:758-63
    10 Gu F, Li R, Ma XX, et al. A missense mutation in the yD-crystallin gene GRYGD associated with autosomal dominant congenital cataract in a Chinese family. Molecular Vision.2006; 12:26-31
    11. Klopp N, Lo"ster J, and Graw J. Characterization of a 1-bp deletion in the a-crystallin gene leading to a nuclear and zonular cataract in the mouse. Invest Ophthalmol Vis Sci.2001;42:183-187
    12 Vanita V, Singh JR, Hejtmancik JF, et al. A novel fan-shaped cataract microcornea syndrome caused by a mutation of CRYAA in an Indian family. Mol Vis.2006; 12:518-22.
    13 Litt M, Carrero-Valenzuela R, LaMorticella DM, et al. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet.1997; 6:665-8.
    14 Sun H, Ma Z, Li Y, et al. Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet.2005; 42:706-10.
    15 Arora A, Minogue PJ, Liu X, et al. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract:further evidence for gap junction dysfunction in human cataract. J Med Genet.2006; 43:2-8.
    16 Conley YP, Erturk D, Keverline A, et al. A juvenile-onset, progressive cataract locus on chromosome 3q21-22 is associated with a missense mutation in the beaded fragment structural protein-2. Am J Hum Genet.2000; 66:1426-1431.
    17 Shiels A, Bassnett S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet.1996; 12:212-215.
    18 Semina Ev, Ferrell RE, Mintz-Hittner HA, et al. A novel homeobox gene PITX3 is mutated in families with autosomal dominant cataracts and ASMD. Nat Genet. 1998; 19:167-170.
    19 Bu L, Jin Y, Shi Y et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cateract. Nat Genet.2003; 31:276-278.
    20 Stambolian Dm Ai Y, Sidjanin D et al. Cloning of the galactokinase cDNA and identification of mutations in two families with cataracts. Nat Genet.1995; 10:307-312.
    21 Brady JP, Garland D, Duglas-Tabor Y, et al. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc. Natl. Acad. Sci. U.S.A.1997; 94:884-889.
    22 Brady JP, Garland DL, Green DE, et al. AlphaB-crystallin in lens development and muscle integrity:a gene knockout approach. Invest Ophthalmol Vis Sci 2001.42: 2924-2934.
    23 Litt M, Kramer P, LaMorticella DM, et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 1998; 7:471-474.
    24 Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 2003; 11:784-793.
    25 Santhiya ST, Soker T, Klopp N, et al. Identification of a novel putative cataract-causing allele in CRYAA (G98R) in an Indian family. Mol Vis 2006; 12: 768-773.
    26 Vicart P, Caron A, Guicheney P, et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 1998; 20:92-95.
    27 Liu Y, Zhang X, Luo L, et al. A Novel{alpha} B-Crystallin Mutation Associated with Autosomal Dominant Congenital Lamellar Cataract. Invest Ophthalmol Vis Sci.2006; 47:1069-1075.
    28 Liu M, Ke T, Wang Z, et al. Identification of a CRYAB mutation associated withautosomal dominant posterior polar cataract in a Chinese family. Invest Ophthalmol Vis Sci.2006; 47:3461-6.
    29 Devi RR, Yao W, Vijayalakshmi P, et al. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol. Vis.2008; 14:1157-1170.
    30 Safieh L Abu, Khan AO, Alkuraya FS. Identification of a novel CRYAB mutation associated with autosomal recessive juvenile cataract in a Saudi family. Mol. Vis. 2009; 15:980-984.
    31 Kumar LV, Ramakrishna T, Rao CM. Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem.1999; 274:24137-24141.
    32 Bova MP, Yaron O, Huang Q, et al. Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc. Natl. Acad. Sci. U. S. A 1999; 96:6137-6142.
    33 Perng MD, Muchowski PJ, van Den I JsselP, et al. The cardiomyopathy and lens cataract mutation in aB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J Biol Chem.1999; 274: 33235-33243.
    34 Kumar LV S, Ramakrishna T, Rao Ch M. Structural and functional consequences of the mutation of a conserved arginine residue in aA and aB crystallins. J. Biol. Chem.1999; 274:24137-24141.
    35 Vicart P, Caron A, Guicheney P, et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 1998; 20:92-95.
    36 Selcen D, Engel AG. Myofibrillar myopathy caused by novel dominant negative aB-crystallin mutations. Ann Neurol.2003; 54:804-810.
    37 Berry V, Francis P, Reddy MA, et al. Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet. 2001; 69:1141-1145.
    38 Liu Y, Zhang X, Luo L, et al. A novel alphaB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest Ophthalmol Vis Sci.2006; 47:1069-1075.
    39 Liu M, Ke T, Wang Z, et al. Identification of a CRYAB mutation associated with autosomal dominant posterior polar cataract in a Chinese family. Invest Ophthalmol Vis Sci.2006; 47:3461-3466.
    40 Graw J, Loster J. Developmental genetics in ophthalmology. Ophthalmic Genet. 2003; 24:1-33.
    41 Graw J. Genetics of crystallins:Cataract and beyond. Exp Eye Res.2009; 88:173-189.
    42 Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA.1992; 89:10449-10453.
    43 Horwitz J. The function of alpha-crystallin in vision. Semin Cell Dev Biol.2000; 11:53-60.
    44 Liu S, Li J, Tao Y, et al. Small heat shock protein aB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun.2007; 354:109-114.
    45 Kato K, Shinohara H, Kurobe N, et al. Immunoreactive aA-crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. Biochim Biophys Acta.1991; 1080:173-180.
    46 Kato K, Shinohara H, Kurobe N, et al. Tissue distribution and developmental profiles of immunoreactive aB-crystallin in the rat determined with a sensitive immunoassay system. Biochim Biophys Acta.1991; 1074:201-208.
    47 Chen Q, Ma J, Yan M, et al. A novel mutation in CRYAB associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis. 2009; 15:1359-1365.
    48 Pilotto A, Marziliano N, Pasotti M, et al. aB-crystallin mutation in dilated cardiomyopathies:low prevalence in a consecutive series of 200 unrelated probands. Biochem Biophys Res Commun.2006; 346:1115-1117.
    49 Inagaki N, Hayashi T, Arimura T, et al. aB-crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun.2006; 342:379-386.
    50 Devi RR, Yao W, Vijayalakshmi P, et al. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis.2008; 14:1157-1170.
    51 Safieh LA, Khan AO, Alkuraya FS. Identification of a novel CRYAB mutation associated with autosomal recessive juvenile cataract in a Saudi family. Mol Vis. 2009; 15:980-4.
    52 Combet C, Blanchet C, Geourjon C, et al. NPS@:network protein sequence analysis. Trends Biochem Sci.2000; 25:147-50.
    53 Deleage G, Combet C, Blanchet C, et al. Antheprot:An Integrated Protein Sequence Analysis Software With Client/server Capabilities. Comput Biol Med. 2001; 31:259-67.
    54 Lambert C, Leonard N, De Bolle X, et al. ESyPred3D:Prediction of proteins 3D structures. Bioinformatics.2002; 18:1250-6.
    55 Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis.1997; 18:2714-23.
    56 Andley UP. Crystallins in the eye:function and pathology. Prog. Retin. Eye Res. 2007; 26:78-98.
    57 Brady JP, Garland D, Duglas-Tabor Y, et al. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc. Natl. Acad. Sci. U. S. A.1997; 94:884-889.
    58 Brady JP, Garland DL, Green DE, et al. AlphaB-crystallin in lens development and muscle integrity:a gene knockout approach. Invest Ophthalmol Vis Sci.2001; 42: 2924-2934.
    59 Horwitz J. Alpha-crystallin. Exp Eye Res.2003; 76:145-153.
    60 Bai F, Xi JH, Wawrousek EF, et al.Hyperproliferation and p53 status of lens epithelial cells derived from alphaB-crystallin knockout mice. J Biol Chem, 2003,278(38):36876~36886.
    61 Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA.1992; 89:10449-10453.
    62 Huang Q, Ding L, Phan KB, et al. Mechanism of Cataract Formation in aA-crystallin Y118D Mutation. Invest Ophthalmol Vis Sci.2009; 6:2919-2926.
    63 Koteiche HA, McHaourab HS. Mechanism of a hereditary cataract phenotype. mutations in alpha A-crystallin activate substrate binding. J Biol Chem.2006; 281: 14273-14279.
    64 Li H, Li C, Lu Q, et al. Cataract mutation P20S of alphaB-crystallin impairs chaperone activity of alpha crystallin and induces apoptosis of human lens epithelial cells. Biochim Biophys Acta.2008; 1782:303-309.
    65 Fu L, Liang JJ. Alteration of protein-protein interactions of congenital cataract crystallin mutants. Invest Ophthalmol Vis Sci 2003; 44:1155-1159.
    66 Eifert C, Burgio MR, Bennett PM, et al. N-terminal control of small heat shock protein oligomerization:changes in aggregate size and chaperone-like function. Biochim Biophys Acta.2005; 1748:146-56.
    67 Takemoto L, Emmons T, Horwitz J. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation. Biochem J.1993; 294:435-8.
    68 Plater ML, Goode D, Crabbe MJ. Effects of site-directed mutations on the chaperone-like activity of alphaB-crystallin. J Biol Chem.1996; 271:28558-66.
    69 Reddy GB, Kumar PA, Kumar MS. Chaperone-like activity and hydrophobicity of alpha-crystallin. IUBMB Life.2006; 58:632-41.
    70 Berengian AR, Bova MP, Mchaourab HS. Structure and function of the conserved domain in alphaA-crystallin. Site-directed spin labeling identifies a beta-strand located near a subunit interface. Biochemistry.1997; 36:9951-7.
    71 Hansen L, Yao W, Eiberg H, et al. Genetic heterogeneity in microcornea-cataract: five novel mutations in CRYAA, CRYGD, and GJA8. Invest Ophthalmol Vis Sci. 2007; 48:3937-44.
    72 Graw J, Klopp N, Illig T, et al. Congenital cataract and macular hypoplasia in humans associated with a de novo mutation in CRYAA and compound heterozygous mutations in P. Graefes Arch Clin Exp Ophthalmol. 2006;244:912-9.
    73 Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet.2003; 11:784-93.
    74 Litt M, Kramer P, LaMorticella DM, et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet.1998; 7:471-4.
    75 Biswas A, Das KP. Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. J Biol Chem. 2004; 279:42648-42657.
    76 Horwitz J. The function of alpha-crystallin in vision. Semin Cell Dev Biol.2000; 11:53-60.
    77 Kamradt MC et al. The small heat shockprotein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem.2002; 277:38731-38736.
    78 Yu S, Thomas H. The small heat shock proteins and their role in human disease. FEBS J.2005,272:2613-2627.
    79 Clark JI, Muchowski PJ. Small heat-shock proteins and their potential role in human disease. Current opinion in Structural biology.2000,1:52-59.
    80 Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet.2003; 11:784-793.
    81 Sandilands A. et al. Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. Embo J 2002; 21:6005-6014.
    82 Bucciantini M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature.2002; 416:507-511.
    83 Li H, Li C, Lu Q, et al. Cataract mutation P20S of alphaB-crystallin impairs chaperone activity of alpha crystallin and induces apoptosis of human lens epithelial cells. Biochim Biophys Acta.2008; 1782:303-309.
    84 Li WC, Kuszak JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J Cell Biol.1995,130:169-181.
    85 Li WC, Spector A. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract. Free Radic Biol Med.1996; 20(3):301-11.
    86 Li WC, Kuszak JR, Wang GM, et al. Calcimycin-induced lens epithelial cell apoptosis contributes to cataract formation. Exp Eye Res.1995; 61(1):91-8.
    87 Andley UP, Song Z, Wawrousek EF, et al. Differential protective activity of alpha A-and alpha B-crystallin in lens epithelial cells. journal of biological chemistry 2000; 47:36823-36831.
    88 Wieske M, Benndorf R, Behlke J, Dolling R, Grelle G, Bielka H, Lutsch G. Defined sequence segments of the small heat shock proteins HSP25 and alphaB-crystallin inhibit actin polymerization. Eur J Biochem.2001 Apr;268(7):2083-90.
    89 Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S. Phosphorylation of alphaB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem.1998 Oct 23;273(43):28346-54.
    90 den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC. Nuclear import of{alpha} B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem.2005; 280 (44):37139-48.
    91 Morrison LE, Hoover HE, Thuerauf DJ, et al. Mimicking phosphorylation of alpha B-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circ Res.2003; 92:203-211.
    92 Kannan R, Ouyang B, Wawrousek E, et al. Regulation of GSH in alpha A-expressing human lens epithelial cell line and in alpha A knock out mouse lenses. Invest Ophthal mol Vis Sci.2001; 42:409-416.
    93饶桂荣,陈文吟,栗宽源,等。重组人抗HBsAg单链抗体的中试发酵工艺研究。中国生化药物杂志,2005,26(3):141-143.
    94杨旭,郭葆玉,叶正良,等。重组人胸腺素原α在大肠杆菌中的表达优化。药物生物技术,2001,8(3):135-138.
    95 Ling Fu, Jack JN. Alteration of protein-protein interactions of congenital cataract crystalline mutants. Invest Ophthalmol Vis Sci.2003; 44:1155.
    1. Rahi JS, Dezateaux C. British Congenital Interest Group. Measuring and interpreting the incidence of congenital ocular anomalies:lessons from a nation study of congenital cataract in the UK. Invest Vis Sci 2001; 42:1444-1448.
    2. Wirth MG, Russell-Eggitt IM, Craig JE, et al. Aetiology of congenital and pediatric cataract in an Australian population. Br J Ophthalmol 2002; 86:782-786.
    3.胡诞宁.眼科遗传学,上海科学技术出版社,1986.
    4. Reddy MA, Francis PJ, Berry V, et al. Molecular genetic basis of inherited cataract and associated phenotypes; Surv Ophthalmol 2004; 49:300-15.
    5. Graw J, Loster J. Developmental genetics in ophthalmology. Ophthalmic Genet. 2003; 24:1-33.
    6. Bassnett S, Beebe DC. Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev Dyn 1992; 194:85-93.
    7. Horwitz J. The function of alpha-crystallin in vision. Semin Cell Dev Biol 2000; 11:53-60.
    8. Kamradt MC, Chen F, Sam S, et al. The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 2002; 277:38731-38736.
    9. Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 1992; 89:10449-10453.
    10. Wang X, Garcia CM, Shui YB, et al. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Invest Ophthalmol Vis Sci 2004; 45:3608-3619.
    11. Andley UP. Crystallins and hereditary cataracts:molecular mechanisms and potential for therapy. Expert Rev Mol Med.2006; 8:1-19.
    12. Aquilina JA, Benesch JL, Bateman OA, et al. Polydispersity of a mammalian chaperone:mass spectrometry reveals the population of oligomers in alpha-B crystallin. Proc Natl Acad Sci USA 2003; 100:10611-10616.
    13. Koteiche HA, McHaourab HS. Mechanism of a hereditary cataract phenotype: mutations in alphaA-crystallin activate substrate binding. J Biol Chem 2006; 281:14273-14279.
    14. Hsu CD, Kymes S, Petrash JM. A transgenic mouse model for human autosomal dominant cataract. Invest Ophthalmol Vis Sci 2006; 47:2036-2044.
    15. Xi JH, Bai F, Andley UP. Reduced survival of lens epithelial cells in the alphaA-crystallin knockout mouse. J Cell Sci 2003; 116:1073-1085.
    16. Andley UP, Song Z, Wawrousek EF, et al. Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability. Faseb J 2001; 15:221-229.
    17. Bai F, Xi JH, Wawrousek EF, et al. Hyperproliferation and p53 status of lens epithelial cells derived from alphaB-crystallin knockout mice. J Biol Chem 2003; 278:36876-86.
    18. Litt M, Kramer P, LaMorticella DM, et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha-crystallin gene CRYAA. Hum Mol Genet 1998; 7:471-474.
    19. Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 2003; 11:784-793.
    20. Pras E, Frydman M, Levy-Nissenbaum E, et al. A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest Ophthalmol Vis Sci 2000; 41:3511-3515.
    21. Berry V, Francis P, Reddy MA, et al. Alpha-B crystallin gene (CRYAB) dominant congenital posterior polar cataract in human. Am J Hum Genet 2001; 69:1141-1145.
    22. Sanbe A, Osinska H, Villa C, et al. Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 2005; 102:13592-13597.
    23. Liu Y, Zhang X, Luo L, et al. A novel alphaB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest Ophthalmol Vis Sci 2006; 47:1069-1075.
    24. Lubsen NH, Aarts HJM, Schoenmakers JGG. The evolution of lenticular proteins: the beta-and gamma-crystallin supergene family. Prog. Biophys. Mol. Biol 1988; 51:47-76.
    25. Wistow G, Turnell B, Summers L, et al. X-ray analysis of the eye lens protein gamma-II crystallin at 1·9 A resolution. J. Mol. Biol 1983; 170:175-202.
    26. Reddy MA, Bateman OA, Chakarova C, et al. Characterization of the G91del CRYBA1/3-crystallin protein:a cause of human inherited cataract. Hum Mol Genet 2004;13:945-953.
    27. Mackay DS, Boskovska OB, Knopf HL, et al. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet 2002; 71:1216-1221.
    28. Willoughby CE, Shafiq A, Ferrini W, et al. CRYBB1 mutation associated with congenital cataract and microcornea. Mol Vis 2005; 11:587-593.
    29. Litt M, Carrero-Valenzuela R, LaMorticella DM, et al. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet 1997; 6:665-668.
    30. Liu BF, Liang JJ. Interaction and biophysical properties of human lens Q155* betaB2-crystallin mutant. Mol Vis 2005; 11:321-327.
    31. Santhiya ST, Manisastry SM, Rawlley D, et al. Mutation analysis of congenital cataracts in Indian families:identification of SNPS and a new causative allele in CRYBB2 gene. Invest Ophthalmol Vis Sci 2004; 45:3599-3607.
    32. Riazuddin SA, Yasmeen A, Yao W, et al. Mutations in betaB3-crystallin associated with autosomal recessive cataract in two Pakistani families. Invest Ophthalmol Vis Sci 2005; 46:2100-2106.
    33. Heon E, Priston M, Schorderet DF, et al. The gamma-crystallins and human cataracts:a puzzle made clearer. Am J Hum Genet 1999; 65:1261-1267.
    34. Santhiya ST, Shyam MM, Rawlley D, et al. Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet 2002; 39:352-358.
    35. Stephan DA, Gillanders E, Vanderveen D, et al. Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci U S A 1999; 96:1008-1012.
    36. Kmoch S, Brynda J, Asfaw B, et al. Link between a novel human gammaD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet 2000; 9:1779-1786.
    37. Sun H, Ma Z, Li Y, et al. Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet 2005; 42:706-710.
    38. Shiels A, Mackay D, Ionides A, et al. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosomelq. Am J Hum Genet 1998; 62:526-32.
    39. Arora A, Minogue PJ, Liu X, et al. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract:further evidence for gap junction dysfunction in human cataract. J Med Genet 2006; 43:e2.
    40. Willoughby CE, Arab S, Gandhi R, et al. A novel GJA8 mutation in an Iranian family with progressive autosomal dominant congenital nuclear cataract. J Med Genet 2003 Nov; 40(11):el24.
    41. Berry V, Mackay D, Khaliq S, et al. Connexin 50 mutation in a family with congenital "zonular nuclear" pulverulent cataract of Pakistani origin. Hum Genet 1999; 105:168-70.
    42. Polyakov AV, Shagina IA, Khlebnikova OV, et al. Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin Genet 2001; 60:476-8.
    43. Zheng JQ, Ma ZW, Sun HM. A heterozygous transversion of connexin50 in a family with congenital nuclear cataract in the northeast of China, Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2005; 22:76-8.
    44. Geyer DD, Spence MA, Johannes M, et al. Novel single-base deletional mutation in major intrinsic protein (MIP) in autosomal dominant cataract. Am J Ophthalmol 2006; 141 (4):761-3.
    45. Quinlan R. Cytoskeletal competence requires protein chaperones. Prog Mol Subcell Biol 2002; 28:219-233.
    46. Huang Q, Ding L, Phan KB, et al. Mechanism of Cataract Formation in aA-crystallin Y118D Mutation. Invest Ophthalmol Vis Sci 2009; 6:2919-2926.
    47. Derham BK, Harding JJ. Effects of modifications of alpha-crystallin on its chaperone and other properties. Bio chem J 2002; 364:711-717.
    48. Kumar LV, Ramakrishna T, Rao CM. Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alpha B crystallins. J Biol Chem 1999; 274:24137-24141.
    49. Shroff NP, Cherian-Shaw M, Bera S, et al. Mutation of R116C results in highly oligomerized alphaA-crystallin with modified structure and defective chaperone-like function. Biochemistry 2000; 39:1420-1426.
    50. Bera S, Abraham EC. The alphaA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with alphaB-crystallin. Biochemistry 2002; 41:297-305.
    51. Goenka S, Rao CM. Inability of chaperones to fold mutant zeta crystallin:an aggregation-prone eye lens protein. Mol Vis 2000; 6:232-236.
    52. Sakurai T, Fujita Y, Ohto E, et al. The decrease of the cytoskeleton tubulin follows the decrease of the associating molecular chaperone alphaB-crystallin in unloaded soleus muscle atrophy without stretch. Faseb J 2005; 19:1199-1201.
    53. Conley YP, Erturk D, Keverline A, et al. A juvenile-onset, progressive cataract locus on chromosome3q21-q22 is associated with a missense mutation in the beaded filament protein-2. Am J Hum Genet 2000; 66:1426-1431.
    54. Jakobs PM, Hess JF, FitzGerald PG, et al. Autosomal-dominant cataract associated with a deletion in the human beaded filament protein gene BFSP2. Am J Hum
    Genet 2000; 66:1432-1436.
    55. Kamradt MC, Chen F, Cryns, VL. The small heat shock protein alpha B-crystallin negatively regulates cytochrome C-and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 2001; 276:16059-16063.
    56. Andley UP, Patel HC, Xi JH. The R116C mutation in alpha A-crystallin diminishes its protective ability against stress-induced lens epithelial cell apoptosis. J Biol Chem 2002; 12:10178-10186.
    57. Brady JP, Garland D, Duglas-Tabor Y, et al. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A1997; 94:884-889.
    58. Andley UP, Song Z, Wawrousek EF, et al. Differential protective activity of alpha A-and alphaB-crystallin in lens epithelial cells. J Biol Chem 2000; 47:36823-36831
    59. Sandilands A, Hutcheson AM, Long HA, et al. Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. Embo J 2002; 21:6005-6014.
    60. Bucciantini M, Giannoni E, Chiti F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002; 416:507-511.
    61. Mackay DS, Boskovska OB, Knopf HL, et al. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet 2002; 5:1216-1221.
    62. Pande A, Annunziata O, Asherie N, et al. Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-crystallin. Biochemistry 2005; 44:2491-2500.
    63. Pande A, Pande J, Asherie N, et al. Crystal cataracts:human genetic cataract caused by protein crystallization. Proc Natl Acad Sci U S A 2001; 98:6116-6120.
    64. Pande A, Pande J, Asherie N, et al. Molecular basis of a progressive juvenile-onset hereditary cataract. Proc Natl Acad Sci U S A 2000; 97:1993-1998.
    65. Fu L, Liang JJ. Alteration of protein-protein interactions of congenital cataract crystallin mutants. Invest Ophthalmol Vis Sci 2003; 44:1155-1159.
    66. Perng MD, Wen SF, Ijssel PVD et al. Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 2004; 15:2335-2346.
    67. Bera S, Thampi P, Cho WJ, et al. A positive charge preservation at position 116 of alpha A-crystallin is critical for its structural and functional integrity. Biochemistry 2002; 41:12421-12426.
    68. Treweek TM, Rekas A, Lindner RA, et al. R120G alphaB-crystallin promotes the unfolding of reduced alpha-lactalbumin and is inherently unstable. Febs J 2005; 272:711-724.
    69. Brady JP, Garland D, Duglas-Tabor Y, et al. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A 1997; 94:884-889.
    70. Brady JP, Garland DL, Green DE, et al. AlphaB-crystallin in lens development and muscle integrity:a gene knockout approach. Invest Ophthalmol Vis Sci 2001; 42:2924-2934.