硫酸软骨素蛋白多糖在视觉发育可塑性关键期终止前后对大鼠视皮层神经元兴奋性回路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弱视是一种眼科常见疾病,弱视患者占世界人口的2-5%,中国有1000多万弱视患者。弱视患者的矫正视力低于相同年龄正常人的视力,同时还有对比敏感度,立体视觉,运动知觉等的损害。大量研究表明弱视主要的损害部位在视皮层,弱视的发生和治疗与视觉发育可塑性关键期密切相关,在视觉发育可塑性关键期内,如先天性白内障或斜视等异常的视觉环境可以导致弱视,在可塑性关键期内如果能及时地消除异常的视觉环境,弱视能治愈;在视觉发育可塑性关键期终止以后,异常的视觉环境则不再能引起弱视,但弱视的治疗效果明显降低,在临床上成年和大于12岁的弱视患者基本不能被治愈。因此,视觉发育可塑性关键期的终止与否对弱视治疗效果具有非常重要的意义。
     人类和哺乳动物出生后,视觉系统在外界环境刺激和内在基因调控下,会发生形态和功能的适应性变化,这种变化的最敏感时期称为视觉发育可塑性关键期。近年来的研究发现对视觉发育可塑性关键期终止有重要影响的因素是:视皮层内突触可塑性、局部兴奋性/抑制性神经元回路的成熟、神经元细胞外基质、神经营养因子及一些相关基因的表达。近年研究发现细胞外基质中一些成分,如硫酸软骨素蛋白多糖(chondroitin sulphate proteoglycan, CSPG)在中枢神经系统发育晚期逐渐浓缩在神经元周围,形成包围神经元胞体和树突的神经元周围网络(Perineuronal nets, PNNs)。大鼠视皮层内CSPG形成PNNs的过程在视觉发育可塑性关键期后期,暗饲养能延迟大鼠视觉发育可塑性关键期的终止,也能导致视皮层内PNNs数目显著减少,从而表明由CSPG形成的PNNs参与了视觉可塑性关键期的终止。大鼠视皮层内兴奋性突触传递主要由NMDA受体和AMPA受体介导,正常大鼠视觉发育可塑性关键期高峰后,NMDA受体电流在兴奋性突触后电流中所占比率降低,AMPA受体电流所占比率增加,暗饲养能延迟大鼠NMDA受体电流的发育性变化,提示兴奋性突触的发育变化可能也参与了大鼠视觉可塑性关键期的终止过程。这些研究结果虽然表明CSPG和兴奋性突触的发育都与大鼠视觉发育可塑性关键期终止有关,但它们参与关键期终止的具体机制仍不明确。
     本课题提出如下假说:在视觉发育可塑性关键期后期,视皮层内CSPG逐渐发育成熟,形成PNNs包裹在神经元胞体和树突周围,对神经元的兴奋性突触后受体具有选择性屏蔽作用。在可塑性关键期终止前后及成年阶段,PNNs选择性屏蔽NMDA受体,导致兴奋性突触传递中NMDA受体介导的成分逐渐降低,AMPA受体介导的成分逐渐增加,兴奋性突触的结构和功能逐渐达到成年的稳定状态,兴奋性突触可塑性水平降低,这些变化参与视皮层可塑性关键期终止过程。为了验证此假说,我们从以下几个方面进行研究。
     第一部分研究:正常大鼠视皮层可塑性关键期终止前后兴奋性突触后电流的发育变化。通过膜片钳技术,我们研究了出生后3周到8周(P3W-P8W),正常大鼠视皮层谷氨酸能兴奋性突触后电流(Glutamatergic excitatory postsynaptic current, Glu-EPSC)及其两种成分,NMDA受体电流(NMDA receptor-mediated excitatory postsynaptic current, NMDA-EPSC)和AMPA受体电流(AMPA receptor-mediated excitatory postsynaptic current, AMPA-EPSC)的发育变化。这部分结果显示:1. P3W-P8W正常大鼠视皮层神经元Glu-EPSC幅值随发育逐渐升高,P7W达峰值,P3W-P8W正常大鼠视皮层神经元NMDA-EPSC幅值随发育变化无统计学意义,P3W-P8W正常大鼠视皮层神经元AMPA-EPSC幅值随发育逐渐升高, P6W达峰值, P6W以后无显著变化。2.NMDA-EPSC/Glu-EPSC比率随发育降低, P6W时达到最小值,AMPA-EPSC/Glu-EPSC比率随发育增加,P6W时达到最大值。这些结果提示发育过程中视皮层兴奋性神经元网络受体亚型构成比的变化是导致视皮层可塑性关键期终止的机制之一。
     第二部分研究:降解CSPG对大鼠视皮层神经元兴奋性突触后电流的影响。通过大鼠视皮层内注射硫酸软骨素酶(chondroitinaseABC, chABC)制作成CSPG降解大鼠模型,用膜片钳技术记录了P3W-P8WCSPG降解大鼠视皮层Glu-EPSC, NMDA-EPSC, AMPA-EPSC的发育变化,并与同期正常大鼠比较,结果显示: 1. P5W-P8WCSPG降解大鼠视皮层神经元Glu-EPSC幅值显著高于同期正常大鼠,P4W-P8WCSPG降解大鼠视皮层神经元NMDA-EPSC幅值显著高于同期正常大鼠,P6W-P8WCSPG降解大鼠视皮层神经元AMPA-EPSC幅值显著高于同期正常大鼠。2. P6W-P8WCSPG降解大鼠视皮层神经元NMDA-EPSC/Glu-EPSC比率显著高于同期正常大鼠,P6W-P8WCSPG降解大鼠视皮层神经元AMPA-EPSC/Glu-EPSC比率较同期正常大鼠显著降低。3.降解CSPG后,大鼠视皮层神经元NMDA-EPSC幅值的增长百分率明显大于AMPA-EPSC幅值的增长百分率。这部分结果提示可塑性关键期后期到终止期CSPG对NMDA-EPSC具有选择性抑制作用。
     第三部分研究:降解CSPG对大鼠视皮层NMDA/AMPA受体表达的影响。通过免疫荧光标记技术和蛋白质印迹技术我们研究了可塑性关键期终止前后CSPG降解大鼠和正常大鼠视皮层NMDA受体和AMPA受体表达的变化。免疫荧光标记结果显示:1. P3W-P8W正常大鼠视皮层2-3层NR1阳性细胞数目无显著性变化,4层NR1阳性细胞数目在P5W以后显著降低,P5W-P8W差异不显著;P4W-P8WCSPG降解大鼠视皮层2-4层NR1阳性细胞数目显著高于同期正常大鼠。2. P3W-P8W正常大鼠视皮层2-3层GluR2阳性细胞数目随发育增加,4层GluR2阳性细胞数目在P3W-P5W期间增加,P5W-P8W差异不显著。P6W-P8WCSPG降解大鼠视皮层2-3层GluR2阳性细胞数目显著高于同期正常大鼠,P7W-P8WCSPG降解大鼠视皮层4层GluR2阳性细胞数目显著高于同期正常大鼠。3.降解CSPG以后,大鼠视皮层2-4层NR1阳性细胞数目的增长百分率大于GluR2阳性细胞数目的增长百分率。蛋白质印迹技术的结果显示: 1. P3W-P4W正常大鼠视皮层NR1表达水平较高,然后逐渐降低,P3W-P4W与P7W-P8W之间差异具有统计学意义,降解CSPG后,P4W-P8WCSPG降解大鼠视皮层NR1的表达水平显著高于同期正常大鼠。2.正常大鼠GluR2表达水平在P3W-P6W随发育逐渐升高,P6W-P8W之间差异无统计学意义;降解CSPG后,P6W-P8WCSPG降解大鼠视皮层GluR2表达水平显著高于同期正常大鼠。
     这些结果表明:从视觉可塑性关键期后期到终止期,视皮层神经元NMDA受体是存在的,CSPG选择性抑制NR1蛋白的表达水平而屏蔽了神经元上NMDA受体与递质的结合;同时,提示CSPG对视皮层神经元AMPA受体的影响只表现在成年期。综上所述,本研究可以得到以下结论:从视觉可塑性关键期高峰到终止期,CSPG形成的PNNs选择性地“屏蔽”了NMDA受体的表达和功能,导致AMPA受体的表达和功能相对增强,AMPA受体在谷氨酸能兴奋性突触传递中发挥优势作用,兴奋性突触被增强和固化,突触可塑性降低,可塑性关键期终止。因此CSPG形成的PNNs选择性“屏蔽”谷氨酸能兴奋性突触中NMDA受体,导致了视皮层兴奋性神经元网络NMDA受体和AMPA受体构成比的变化。大鼠视皮层兴奋性神经元网络NMDA受体和AMPA受体构成比的变化是视皮层可塑性关键期终止的机制之一。
Amblyopia is a common disease in ophthalmology. In world, 2-5% population are amblyopia patients including more than 10 million amblyopia children in China. Amblyopia patients have correct acuity lower than that of normal person at same age, impaired contrast sensitivity, stereoscopic vision and motion perception. Many studies suggest that visual cortex is the crucial impaired target of amblyopia. Development and therapy of amblyopia have relation with the critical period of visual plasticity. During critical period of visual plasticity, abnormal visual experience, such as congenital cataract and strabilismus, can lead to amblyopia and amblyopia can be cured after abnormal visual experience removed. After the end of critical period of visual plasticity, abnormal visual experience can not lead to amblyopia and amblyopia developed previously can not be cured. Clinically adult amblyopia patients and amblyopia children elder than 12 year can not be cured. Therefore whether the critical period of visual plasticity end or not has very important significance for therapeutic efficacy of amblyopia.
     Development of the visual cortex is strongly modified by visual experience during early short period of postnatal development called critical period of visual plasticity. Recently investigations suggest that factors have effects on the end of critical period of visual plasticity, including synaptic plasticity in visual cortex, maturation of excitatory circuit and inhibitory circuit, extracellular matrix, neurotrophic factors and expression of related gene. Recent studies found that chondroitin sulphate proteoglycan(CSPG), a component of extracellular matrix, condensed around a group of neurons and formed perineuronal nets(PNNs) encapsuling the soma and dendrites of neurons in central nervous system. The PNNs was formed with CSPG during the late phase of critical period. Dark rearing delay the end of critical period of visual plasticity, also decrease the number of PNNs, suggesting that the PNNs formed with CSPG is involved in the end of critical period of visual plasticity.
     In rat visual cortex, glutamatergic excitatory transmission is mediated by NMDA receptor and AMPA receptor. After the peak of critical period of rat visual plasticity, the proportion of NMDA receptor mediated excitatory postsynaptic current(NMDA-EPSC) in glutamatergic excitatory postsynaptic current(Glu-EPSC) gradually decrease and the proportion of AMPA receptor mediated excitatory postsynaptic current(AMPA-EPSC) in Glu-EPSC gradually increase. Dark rearing can delay developmental changes in properties of NMDA-EPSC in rat visual cortex, implying that developmental changes in Glu-EPSC might be involved in the end of critical period of visual plasticity. These investigations suggest that developmental changes in CSPG and excitatory synapses have relation with the end of critical period of visual plasticity. However mechanisms ending the critical period are not well known.
     We hypothesized that: During late phase of critical period, the PNNs formed with CSPG encapsule the soma and dendrites of neurons in visual cortex, and preferentially“shield”NMDA receptor. This leads to NMDA receptor mediated component in excitatory transmission decrease, and AMPA receptor mediated component in excitatory transmission increase, which result in the plasticity of excitatory synapses decrease gradually and the end of critical period of visual plasticity. To identify this hypothesis, the present study was performed.
     Part 1. Developmental changes in glutamatergic excitatory postsynaptic current in normal rat visual cortex around the end of cirtical period.
     Using patch clamp technique, we studied developmental changes in Glu-EPSC, NMDA-EPSC and AMPA-EPSC in normal rat visual cortex from P3W to P8W. Results in this study suggested that: 1. The NMDA-EPSC amplitude had no significant changes from P3W to P8W, whereas amplitudes of Glu-EPSC and AMPA-EPSC increased gradually from P3W to P8W, achieved peak value at P7W and P6W, respectively. 2. The NMDA-EPSC/Glu-EPSC ratio decreased gradually and achieved lowest level at P6W, whereas the AMPA-EPSC/Glu-EPSC ratio increased gradually and achieved peak level at P6W. These results indicated that developmental changes in NMDA-EPSC/Glu-EPSC ratio and AMPA-EPSC/Glu-EPSC ratio might be one of mechanisms ending the critical period of visual plasticity.
     Part 2. Effects of degradating CSPG on Glu-EPSC, NMDA-EPSC and AMPA-EPSC in rat visual cortex
     CSPG degradation rats were made by normal rats visual cortex chondroitinase ABC(chABC) injection. Developmental changes in Glu-EPSC, NMDA-EPSC and AMPA-EPSC in CSPG degradation rat visual cortex were studied by patch clamp technique. To explore the effect of CSPG on developmental changes in Glu-EPSC, NMDA-EPSC and AMPA-EPSC in rat visual cortex, data from CSPG degradation rats were compared with those from normal rats. Results in this study suggested that: 1. NMDA-EPSC amplitudes of CSPG degradation rats were significant higher than those of normal rats from P4W to P8W. AMPA-EPSC amplitudes of CSPG degradation rats were significant higher than those of normal rats from P6W to P8W. 2.From P6W to P8W, the NMDA-EPSC/Glu-EPSC ratio of CSPG degradation rat was significant higher than that of normal rat, whereas the AMPA-EPSC/Glu-EPSC ratio of CSPG degradation rat was significant lower than that of normal rat. 3. After CSPG degradated, the increase percentage of NMDA-EPSC amplitude was higher than that of AMPA-EPSC amplitude in rat visual cortex. These results suggested that CSPG preferentially had inhibitory effect on the NMDA-EPSC amplitude in rat visual cortex before the end of critical period.
     Part 3. Effects of degradating CSPG on expression of NMDA receptor and AMPA receptor in rat visual cortex
     Using immunofluorescence, we investigated developmental changes in NMDA receptor subunit NR1 immunoreactive(NR1-IR) neurons and AMPA receptor subunit GluR2 immunoreactive(GluR2-IR) neurons in visual cortex of CSPG degradation rat and normal rat. Results in this study suggested that: 1. The number of NR1-IR neurons in normal rat visual cortex layer 2-3 had no significant changes from P3W to P8W. The number of NR1-IR neurons in normal rat visual cortex layer 4 decreased from P3W to P5W, and had no significant changes from P5W to P8W. The number of NR1-IR neurons in visual cortex layer 2-4 of CSPG degradation rat was significant higher than that of normal rat from P4W to P8W. 2. The number of GluR2-IR neurons in normal rat visual cortex layer 2-3 gradually increased from P3W to P8W,whereas the number of GluR2-IR neurons in normal rat visual cortex layer 4 gradually increased from P3W to P5W and had no significant changes from P5W to P8W. The number of GluR2-IR neurons in CSPG degradation rat visual cortex layer 2-3 was higher than that in normal rat visual cortex from P6W to P8W. The number of GluR2-IR neurons in CSPG degradation rat visual cortex layer 4 was higher than that in normal rat visual cortex from P7W to P8W. 3. After CSPG degradated, the increase percentage of NR1-IR neurons in rat visual cortex layer 2-4 was higher than that of GluR2-IR neurons. Using western blot, we investigated developmental changes in NR1 level and GluR2 level in visual cortex of CSPG degradation rat and normal rat. Results analyzed by western blot suggested that: 1. NR1 level in normal rat visual cortex decreased gradually. NR1 level in normal rat visual cortex from P3W to P4W were higher that those from P7W to P8W. NR1 level in CSPG degradation rat visual cortex was significant higher than that in normal rat visual cortex from P4W to P8W. 2. GluR2 level in normal rat visual cortex increased gradually from P3W to P6W and had no significant changes from P6W to P8W, whereas GluR2 level in CSPG degradaton rat visual cortex was higher than that in normal rat visual cortex from P6W to P8W.
     These results indicated that from the late phase to the end of critical period of visual plasticity, NMDA receptor had been present, whereas expression of NR1 protein was“shield”preferentially by PNNs formed with CSPG. This blocked the combination of transmitter and NMDA receptor. In addition, these results indicated that CSPG had only effects on AMPA receptor during adulthood.
     Summarized results in present study, it could be concluded that from the peak to the end of critical period, the PNNs formed with CSPG preferentially“shield”expression and function of NMDA receptor in rat visual cortex, leading to relatively enhancement in expression and function of AMPA receptor. This results in that AMPA receptor had predominate role in excitatory transmission around the end of critical period. These changes in NMDA receptor and AMPA receptor lead to that glutamatergic excitatory synapses were strengthened, synaptic plasticity decreased and critical period closured. Thus the PNNs formed with CSPG preferentially“shield”NMDA receptor in rat visual cortex lead to changes in constituent ratio of NMDA receptor and AMPA receptor in excitatory neuronal network in rat visual cortex that might be one of mechanisms ending critical period of visual plasticity.
引文
1.阴正勤.视觉发育可塑性关键期“终止”机制的研究进展.第三军医大学学报2003, 25(21):1878-1880.
    2. Hensch TK. Critical period plasticity in local cortical circuits Nature. Nature review /Neuroscience 2005, 6:877-888.
    3. Hensch TK, Fagiolini M, Mataga N, et al. Local GABA Circuit Control of Experience-Dependent Plasticity in Developing Visual Cortex. Science 1998, 282:1504– 1508.
    4.秦伟,阴正勤,王仕军,赵妍君.双眼形觉剥夺对大鼠视皮层神经元γ-氨基丁酸电流的影响.中华眼科杂志2005, 4(1):37-40.
    5. Pizzorusso T, Medini P, Berardi N, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 2002, 298: 1248–1251.
    6.阴正勤,高朋芬,王仕军,姚军平: CSPGs降解对大鼠视觉发育可塑性关键期末视皮层神经元突触传递影响的研究《.中华医学会第九届全国眼科学术大会论文汇编》,武汉:中华医学会, 2004:168.
    7.高朋芬,阴正勤,王仕军,姚军平: CSPGs降解对大鼠视皮层神经元GABAA受体介导的突触传递影响的研究.《第十一届全国斜视与小儿眼科学术会议论文汇编》,深圳:中华医学会眼科学分会, 2005: 82.
    8. Douglas RJ, Koch C, Mahowald M, Martin KAC, Suarez HH. Recurrent excitation in neocortical circuits. Science 1995, 269: 981-985.
    9. Golshani P. Warren RA. Jones EG. Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse. J Neurophysiol 1998, 80: 143-154.
    10. Burgard EC. Hablitz JJ. Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. J Neurophysiol 1993, 69: 230-240.
    11. Bear, MF. et al. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. Neurosci 1990, 10:909-925.
    12. Turrigiano, GG, Nelson, SB. Homeostatic plasticity in the developing nervous system. Nature review/ Neuroscience 2004, 5:97-107.
    13. Qin W, Yin ZQ, Wang SJ. Effects of binocular form deprivation on the excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors in rat visual cortex. Clinic Exp. & Ophthalmol 2004, 32(3):289-295.
    14.高朋芬,阴正勤,刘应兵,王仕军,范惠明.大鼠视觉发育可塑性关键期视皮层LTP的研究.中国神经科学杂志2002, 18(4):699-703.
    15. Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12(3): 529-40.
    16. Sheng M, Cummings J, Roldan LA, et al. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994, 368(6467): 144-7.
    17. Rumpel S, Hatt H, Gottmann K. Silent synapse in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J Neurosci 1998, 18(21): 8863-8874.
    18. Losi G, Prybylowski K, Fu Z, et al. Silent synapses in developing cerebellar granule neurons. J Neurophysiol 2002, 87(3): 1263-1270.
    19. Liao D, Scannevin RH, Huganir R. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptor. J Neurosci 2001, 21(16):6008-6017.
    20. Daw NW, et al. Injection of MK-801 affects ocular dominance shifts more than visual activity. J Neurophysiol 1999(81):204-215.
    21. Roberts EB, et al. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J Neurophysiol 1998(80):1021-1032.
    22. Simon R, Hanns H, Kurt G. Silent Synapses in the Developing Rat Visual Cortex: Evidence for Postsynaptic Expression of Synaptic Plasticity. Neuroscience 1998 (21):8863-8874.
    23. Simon R, Gunnar K, Kurt G. Silent Synapses in the Immature Visual Cortex:Layer-Specific Developmental Regulation. J Neurophysiol 2004(91): 1097-1101.
    24. Celio MR, et al. Perineuronal nets: past and present. Trends Neurosci. 1998, 21: 510–515.
    25. Zaremba S, et al. Characterization of an activity-dependent, neuronal surface proteoglycan identified with monoclonal antibody Cat-301. Neuron 1989,2:1207–1219.
    26. George P, Charles W原著,诸葛启钏主译.大鼠脑立体定位图谱[M].北京:人民卫生出版社,2005.
    27. Brückner G, H?rtig W, Kacza J, et al. (1996b) Extracellular matrix organization in various regions of rat brain grey matter. J Neurocytol 1996, 25:333–346.
    28. Dezhi Liao, Robert H. Scannevin, Richard Huganir. Activation of Silent Synapses by Rapid Activity-Dependent Synaptic Recruitment of AMPA Receptors. The Journal of Neuroscience 2001, 21(16):6008-6017.
    29. Fox K, Daw N, Sato H, Czepita D. Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex. Nature 1991, 350: 342–344.
    30. Carmignoto G and Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 1992, 258: 1007-1011.
    31. Gui-lan Ye, Si Yi, Georgi Gamkrelidze,et al. AMPA and NMDA receptor-mediated currents in developing dentate gyrus granule cells, Developmental Brain Research 2005, 155: 26– 32.
    32. Lu C, Cooper Nigel GF,. Mower George D.Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing .Molecular Brain Research 2000, 78:196-200.
    33. Isaac JTR, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 2007, 54:859-871.
    34. Wenzel A., Fritschy JM, Mohler H, et al. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 1997, 68 :469–478.
    35. Tongiorgi E, Cattaneo A, Domenici L. Co-expression of TrkB and the N-methyl-D -aspartate receptor subunits NR1-C1, NR2A and NR2B in the rat visual cortex.Neuroscience 1999,90:1361-1369.
    36. Zhiping C,. Lickey Marvin E, Lijuan L, et al. Postnatal development of NR1, NR2A and NR2B immunoreactivity in the visual cortex of the rat.Brain Research 2000,859: 26-37.
    37. Victor A . Derkach C, Michael. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Reviews Neuroscience 2007, 8:101-113.
    38. Michael C Oh , Victor A Derkach. Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII. Nature Neuroscience 2005, 8:853– 854.
    39. Conti F, Minelli A, Brecha NC. Cellular localization and laminar distribution of AMPA glutamate receptor subunits mRNAs and proteins in the rat cerebral cortex. J. Comp. Neurol 1994, 350:241–259.
    40. Mu?oz A, Woods TM, Jones EG. Laminar and cellular distribution of AMPA, kainate, and NMDA receptor subunits in monkey sensory-motor cortex. J. Comp. Neurol 1999, 407: 472–490.
    41. Katrien VD, Ann M, Frans V, et al. Distribution of the AMPA2 glutamate receptor subunit in adult cat visual cortex .Brain Research 2003, 960:1-8.
    42. Ryoo SR, Ahn CH, Lee JY,et al. Immunocytochemical localization of neurons containing the AMPA GluR2/3 subunit in the hamster visual cortex. Mol Cells 2003, 2:211-215.
    43. Wong-Riley MT, Jacobs P. AMPA glutamate receptor subunit 2 in normal and visually deprived macaque visual cortex.Vis Neurosci, 2002, 5:563-73.
    44. He HY, Hodos W, Quinlan EM.Visual Deprivation Reactivates Rapid Ocular Dominance Plasticity in Adult Visual Cortex. The Journal of Neuroscience 2006, 26(11):2951-2955.
    45. Ashok K, Reinhard S, Volker B. Postnatal development of NMDA, AMPA and kainate receptors in individual layers of rat visual cortex and the effect of monocular deprivation . International Journal of Developmental Neuroscience 1994, 12:31-41.
    46.阴正勤,余涛,陈莉.斜视性弱视猫发育过程中视皮层神经元NMDA-R1表达的免疫组织化学电镜观察.中华眼科杂志2002,38(8):472—475.
    47. Yin Z.Q. Crewther S G.Yang M. et al.Distribution and localization of NMDA receptor subunit 1 in the visual cortex of strabismic and anisometropic amblyopic cats. Neuroreport 1996, 7(18):2997-3003.
    48. Yin Z.Q. Crewther S G.Pirie B. et al. NMDA-R1 immunoreactivity in the developing visual cortex of strabismic kittens. Invest Ophthalmol Vis Sci 1999, 40(suppl):1608
    49.秦伟,阴正勤,王仕军,等.正常和双眼形觉剥夺大鼠发育过程中视皮层神经元NR1的表达.第三军医大学学报2003(25):1924-1926.
    50. Quinlan EM, Olstein DH, Bear MF, Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl. Acad. Sci. 1999, 96:12876–12880.
    1.阴正勤.视觉发育可塑性关键期“终止”机制的研究进展.第三军医大学学报2003, 25(21):1878-1880.
    2. Takao K. Hensch. Critical period plasticity in local cortical circuits. Nat. Neurosci 2005,(6):877-888.
    3. Takao K. Hensch.Critical period regulation.Nat. Neurosci 2004, (27)549-579
    4. T.N. Wiesel, D.H. Hubel. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol 1965. 28:1029–1040.
    5. N. Berardi. Critical periods during sensory development. Curr. Opin. Neurobiol 2000, 10 :138–145.
    6. L. Kiorpes.Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J. Neurosci 1998. 18:6411–6424.
    7. G.Y.Wu, R.Malinow, H.T.Cline, Maturation of a central glutamatergic synapse. science, 1996 (274):972-976.
    8. Chaelon I. O. Myme, Ken Sugino, Gina G. Turrigiano and Sacha B. Nelson.The NMDA-to-AMPA Ratio at Synapses Onto Layer 2/3 Pyramidal Neurons Is Conserved Across Prefrontal and Visual Cortices.J Neurophysiol 2003.(90): 771-779,
    9. Giorgio Carmignoto, Stefano Vicini; Activity-dependent decrease in NMDA receptor response during development of the visual cortex. Science 1992;258:1007-1011.
    10. Kevin Fox,Nigel Daw,Hiromichi Sato,et al ,Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex. Nature, 350:342–344.
    11.秦伟,阴正勤,王仕军,等.大鼠视皮层神经元N-甲基-D-天冬氨酸受体电流的发育变化.第三军医大学学报,2003,25(10):854-857.
    12. M.F. Bear, et al. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci 1990, 10 :909–925.
    13. Daw N W, et al. Injection of MK-801 affects ocular dominance shifts more than visual activity. J Neurophysiol 1999, 81:204–215.
    14. Roberts E B, et al. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J. Neurophysiol 1998, 80 : 1021–1032.
    15. Chen L, Cooper N G, Mower G D. Developmental changes in the expression of NMDA receptor subunits(NR1,NR2A,NR2B)in the cat visual cortex and the effects of dark rearing. Brain Res 2000, 78:196-200.
    16. Yi Nong, Yue-Qiao Huang, Michael W Salter. NMDA receptors are movin’in. Current Opinion in Neurobiology 2004, 14:353-361.
    17. Tomoyuki Takahashi. Postsynaptic receptor mechanisms underlying developmental speeding of synaptic transmission.Neuroscience Research 2005, 53 :229-240.
    18. Fagiolini M, et al. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc. Natl. Acad. Sci. U. S. A. 100 (2003): 2854–2859.
    19. Tongiorgi E, Cattaneo A, Domenici L. Co-expression of TrkB and the N-methyl–D -aspartate receptor subunits NR1-C1, NR2A and NR2B in the rat visual cortex.Neuroscience 1999, 90: 1361-1369.
    20. McAllister A K, et al. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci 1999, 22 :295–318.
    21. Sala R, et al. Nerve growth factor and brain-derived neurotrophic factor increase neurotransmitter release in the rat visual cortex. Eur. J. Neurosci 1998, 10: 2185–2191.
    22. Caleo M, et al. Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity. Eur. J. Neurosci 1999, 11: 2979–2984.
    23. Insuk Song and Richard L. Huganir. Regulation of AMPA receptors during synaptic plasticity. Trends in Neurosciences 2002, 25:578-588.
    24. M. Hollmann and S. Heinemann , Cloned glutamate receptors. Annu. Rev. Neurosci 1994, 17:31–108.
    25. M. C. Oh, V. A. Derkach.Dominant role of the GluR2 subunit in regulation of AMPA receptors by CaMKII. Nature Neurosci 2005, 8:853–854.
    26. T. R. I. John, C. A. Michael, J. M.Chris. The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity .Neuron 2007, 54 :859-871.
    27. F. Conti, A. Minelli, N.C. Brecha. Cellular localization and laminar distribution of AMPA glutamate receptor subunits mRNAs and proteins in the rat cerebral cortex. J. Comp. Neurol 1994, 350:241–259.
    28. A. Mu?oz, T.M. Woods, E.G. Jones . Laminar and cellular distribution of AMPA, kainate, and NMDA receptor subunits in monkey sensory-motor cortex. J. Comp. Neurol 1999, 407: 472–490.
    29. V. D. Katrien, M .Ann, V. Frans, et al. Distribution of the AMPA2 glutamate receptor subunit in adult cat visual cortex .Brain Research 2003, 960:1-8.
    30. S.R.Ryoo, C.H.Ahn, J.Y. Lee,et al. Immunocytochemical localization of neurons containing the AMPA GluR2/3 subunit in the hamster visual cortex. Mol Cells 2003, 2:211-215.
    31. M.T .Wong-Riley , P .Jacobs . AMPA glutamate receptor subunit 2 in normal and visually deprived macaque visual cortex.Vis Neurosci 2002, 5:563-73.
    32. Gutiérrez-Ibarluzea I, Mendizabal-Zubiaga JL, Reblet C, Bueno-López JL. GABAergic neurons with AMPA GluR1 and GluR2/3 immunoreactivity in the rat striate cortex. Neuroreport.1997, 8(11):2495-9.
    33. S . Sanjay, Kumar, Alberto Bacci,et al. A Developmental Switch of AMPA Receptor Subunits in Neocortical Pyramidal Neurons. J Neurosci 2002, 8:3005-3015.
    34. K.W. Roche, et al. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 1996, 16:1179–1188.
    35. R. Dingledine, et al. The glutamate receptor ion channels. Pharmacol. Rev 1999, 51: 7–61.
    36. G. Durand, et al. Long term potentiation and functional synapse induction in developing hippocampus. Nature 1996, 381 : 71–75.
    37. D. Liao, et al. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci 1999, 2:37–43.
    38. R.S. Petralia, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci 1999, 2:31–36.
    39. R. Simon, H. Hanns, G. Kurt. Silent Synapses in the Developing Rat Visual Cortex: Evidence for Postsynaptic Expression of Synaptic Plasticity. Neuroscience 1998, 21:8863-8874
    40. R. Simon, K. Gunnar, G. Kurt. Silent Synapses in the Immature Visual Cortex: Layer-Specific Developmental Regulation. J Neurophysiol 2004, 91: 1097-1101.
    41. R.J. O'Brien, et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 1998, 21:1067–1078.
    42. R.A. McKinney, M. Capogna, R. Durr, et al. Miniature synaptic events maintain dendriticspines via AMPA receptor activation. Nat Neurosci 999, 2: 44–49.
    43. A .Victor. Derkach, C .Michael. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Reviews Neuroscience 2007, 8:101-113.
    44. T.Takahashi, K. Svoboda, R. Malinow. Experience strengthening transmission by driving AMPA receptors into synapses. Science 2003, 299:1585–1588.
    45. Alanna J. Watt, Mark C. W. van Rossum, Katrina M. MacLeod,et al. Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses. Neuron 2000, 26: 659-670
    46. Z. Qian, et al. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 1993, 361:453–457.
    47. N. Mataga, et al. Permissive proteolytic activity for visual cortical plasticity. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:7717–7721.
    48. N. Mataga, et al. Enhancement of mRNA expression of tissue-type plasminogen activator by -threo-3,4-dihydroxyphenylserine in association with ocular dominance plasticity. Neurosci. Lett 1996, 218:149–152.
    49. C.M. Muller, C.B. Griesinger. Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex. Nat. Neurosci 1998, 1: 47–53.
    50. Y.P. Wu, et al. The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J. Cell Biol 2000, 148:1295–1304.
    51. L.L. Yuan, et al. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J. Neurosci 2002, 22: 4860–4868.
    52. Nicole O, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med 2001, 7 :59–64.
    53. Pizzorusso T, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 2002, 298:1248–1251.
    54. Mataga N, Nagai N, Hensch T K. Permissive proteolytic activity for visual cortical plasticity. Proc. Natl. Acad. Sci 2002, 99:7717–7721.
    55. Celio MR, et al. Perineuronal nets: past and present. Trends Neurosci 1998, 21:510–515.
    56. Zaremba S, et al. Characterization of an activity-dependent, neuronal surface proteoglycan identified with monoclonal antibody Cat-301. Neuron 1989, 2 :1207–1219.
    57. Fumiko Matsui , Masako Nishizuka , Atsuhiko Oohira.Proteoglycans in PerineuronalNets.ACTA HISTOCHEMICA ET CYTOCHEMICA 1999, 32:99-198.
    58. Kevin Fox , Bruce Caterson.Freeing the Brain from the Perineuronal Net.science 2002, 298:1187-1189
    59. Gerlinde K?ppe, Gert Brückner, Kurt Brauer. Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain.Cell Tissue Res 1997, 288:33–34,
    60. Bruckner G, et al., Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J. Comp. Neurol 2000, 428 :616–629.
    61. Koppe G, et al. Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain. Cell Tissue Res 1997, 288 :33–41.
    62. Hockfield S, et al. Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb. Symp. Quant. Biol 1990, 55 :505–514.
    63. Trachtenberg JT, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002,420:788–794.
    64. Grutzendler J, et al. Long-term dendritic spine stability in the adult cortex. Nature 2002,420:812–816.
    65. E.A. Stern et al. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 2001, 31:305–315.
    66. B. Lendvai et al., Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 2000,404:876–881.
    67. Nicoletta Berardi, Tommaso Pizzorusso, Lamberto Maffei. Extracellular Matrix and Visual Cortical Plasticity Freeing the Synapse. Neuron 2004, 44:905-908.
    68. N. Berardi et al. Critical periods during sensory development. Curr. Opin. Neurobiol 2000, 10:138–145.