独特表型簇状混浊先天性白内障的超微结构和疾病相关候选基因的定位和克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Localization and Cloning the Disease-associated Gene of a Special Fasciculiform Congenital Cataract
  • 作者:申屠形超
  • 论文级别:博士
  • 学科专业名称:眼科学
  • 学位年度:2005
  • 导师:姚克
  • 学科代码:100212
  • 学位授予单位:浙江大学
  • 论文提交日期:2005-01-01
摘要
白内障是全球首要致盲眼病。其中,先天性白内障是一种临床常见的儿童眼病,发病率为6/10000~6/1000。在天津、上海和北京等地的流行病学调查发现,约22~30%的盲童因此而致盲,占失明原因的第二位。目前手术仍是先天性白内障的主要治疗方法,但由于无法早期检查婴幼儿视力,常常造成手术时机的延误,而且儿童白内障手术疗效欠佳(术后后发障发生率几乎为100%),故有许多儿童因本病而导致不可逆转的弱视。此外,因基因突变引起的先天性白内障多为单基因显性遗传,患者后代的发病率为50%左右,具有很高的遗传性,严重影响了下一代的健康。先天性白内障的防治任重而道远,防治先天性白内障造成的视力障碍是世界卫生组织2020年消灭可避免视力下降的主要目标之一。
     环境因素和遗传因素是先天性白内障的两大病因,大约25%的先天性白内障与遗传缺陷有关。随着分子遗传学技术的发展,遗传因素是近年来研究的热点,越来越多的先天性
Cataracts are a leading cause of blindness worldwide and congenital cataracts are a common eye disease in children, which has the incident rate of 6/1000~6/l0000. In the epidemiological study in Beijing, Tianjing and Shanghai, it is the secondary cause of all blindness in children, which is nearly 22~30%. Because these congenital cataracts result in cloudy imaging onto the retina, the abnormal development of visual cortical synaptic connections results in amblyopia, which causes affected children irreversible visual loss if without suitable intervention. The gene mutation is the most common reason and the offspring also have the risk to have the same disease. Prevention of visual impairment due to congenital cataract is an important component of the World Health Organization's (WHO) international program for the elimination of avoidable blindness by 2020.Both environmental factor and genetic factor can cause the congenital cataract. About 25%
    of all congenital cataracts are inherited. With the development of advanced molecular biological techniques, more and more congenital cataract disease-associated genes have been identified, including 1) crystalline genes, which changing the structure and array of lens fiber cells, i.e.     central zone with the radially oriented metal-like refractivity. Autosomal dominant inheritance of the congenital cataract was demonstrated by chi square and Single Method test. We are going to study the ultrastructure and the candidate disease-associated gene of this special fasciculiform congenital cataract, clarifying the congenital cataract mechanisms in human. Informed consent in accordance with the Declaration of Helsinki and Zhejiang Institutional Review Board approval was obtained from all participants. Informed consent was also obtained from the subjects after explanation of the nature and possible consequences of the study.Part I The special fasciculiform congenital cataract familyThirty-seven individuals participated in the study: 13 affected individuals and 24 unaffected individuals of whom 12 were spouses. Affected status was determined by a history of cataract extraction or ophthalmologic examination, which including slit-lamp examination under dilated pupils, visual acuity testing and fundus examination. The cataract phenotype of the patients who had had cataract extraction was learned from the history records. All affected family members showed a special fasciculifor
引文
(1) Reddy MA, Francis PJ, Berry V, et al. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol 2004,49:300-315
    (2) 李凤鸣 眼科全书 北京:人民出版社,1996,1600-1605
    (3) Lambert S, Drack A. Infantile cataract. Surv Ophthalmol 1996;40:427-458
    (4) Thylefors B: A global initiative for the elimination of avoidable blindness. Indian J Ophthalmol 46: 129-30, 1998
    (5) Francois J. Genetics of cataract. Ophthalmologica 1982; 184:61-71
    (6) Litt M, Kramer P, LaMorticella DM, et al: Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7: 471-4, 1998
    (7) Rees MI, Watts P, Fenton I, et al: Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin46 (GJA3). Hum Genet 106: 206-9, 2000
    (8) Conley YP, Erturk D, Keverline A, et al: A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet 66: 1426-31, 2000
    (9) Semina EV, Ferrell RE, Mintz-Hittner HA, et al: A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 19:167-70 1998
    (10) Pras E, Levy-Nissenbaum E, Bakhan T, et al: A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family.Am J Hum Genet 70:1363-7, 2002
    (11) Litt M, Carrero-Valenzuela R, Lamorticella DM, et al. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet. 1997;6:665-668
    (12) Gill D, Klose R, Munier FL, et al. Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest Ophthalmol Vis Sci 2000;41 : 159-165
    (13) Francis PJ, Berry V, Bhattacharya SS, et al. The genetics of childhood cataract. J Med Genet 2000;37:481-8
    (14) He W, Li S. Congenital cataracts: gene mapping. Hum Genet 2000;106:1-13
    (15) Graw J. Cataract mutations as a tool for developmental geneticists. Ophthalmic Res 1996;28(suppl 1): 8-18
    (16) Marner E, Rosenberg T, Eiberg H: Autosomal dominant congenital cataract. Morphology and genetic mapping. Acta Ophthalmol (Copenh) 67:151-8, 1959
    (17) Nettleship E, Ogilvie FM: A peculiar form of hereditary congenital cataract. Trans Ophthalmol Soc UK ⅩⅩⅥ: 191-207, 1906
    (18) Eiberg H, Lund AM, Warburg M, Rosenberg T: Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36. Hum Genet 96:33-8, 1995
    (19) 江三多,吕宝忠.医学遗传数理统计方法[M].北京:科技出版社,1998:66-70
    (20) 沈福民.遗传医学.上海医科大学出版社,1994,172-185
    (21) Ibaraki N, Lin LR, Reddy VN. Effects of grouth factors on proliferation and differentiation in human lens epithelial cells in early subculture. Invest Ophthalmol Vis Sci. 1995; 36: 2304-2312
    (22) Kmoch S, Brynda J, Asfaw B, et al. Link between a novel human _γD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet. 2000;9(12);1779-1786
    (23) http://www.ncbi.nlm.nih.gov
    (24) Hochmeister MN. DNA technology in foresic application, in Molecular aspects of medicine. 1st ed. Kidlington: Elservier Science Ltd. 1995,397
    (25) Morton NE. Sequential tests for the detection of linkage. Am J Human Genet, 1959;7:277-318
    (26) 贺林.解码生命.科学出版社.2000.59-60
    (27) 江三多,吕宝忠.医学遗传数理统计方法[M].北京:科技出版社,1998:182-184
    (28) 贺林.解码生命.科学出版社.2000,227-239
    (29) Shiels A, Mackay D, lonides A, et al: A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q. Am J Hum Genet 62:526-32, 1998
    (30) Heon E, Priston M, Schorderet DF, et al: The gamma-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet 65:1261-7, 1999
    (31) Conley YP, Erturk D, Keverline A, et al: A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet 66: 1426-31, 2000.
    (32) Yu LC, Twu YC, Chang CY, et al. Molecular basis of the adult i phenotype and the gene responsible for the expression of the human blood group I antigen. Blood 98: 3840-3845, 2001
    (33) Azuma N, Hirakiyama A, Inoue T, et al. Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum. Molec. Genet. 9: 363-366, 2000
    (34) Glaser T, Jepeal L, Edwards JG, et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet.7: 463-471, 1994
    (35) Berry V, Francis P, Reddy MA, et al: Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. AmJHum Genet 69:1141-5, 2001 8.
    (36) Berry V, Francis P, Kaushal S, et al: Missense mutations in MIP underlie autosomal dominant 'polymorphic' and lamellar cataracts linked to 12q. Nat Genet 25:15-7, 2000
    (37) Bu L, Jin Y, Shi Y, et al: Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31:276-8, 2002
    (38) Jamieson RV, Perveen R, Kerr B, et al: Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet 11: 33-42, 2002
    (39) Bateman JB, Geyer DD, Flodman P, et al: A new betaA1-crystall in splice junction mutation in autosomal dominant cataract. Invest Ophthalmol Vis Sci 41:3278-85, 2000
    (40) Mumford AD, Vulliamy T, Lindsay J, Watson A: Hereditary hyperferritinemia-cataract syndrome: two novel mutations in the L-ferritin iron-responsive element. Blood 91:367-8,1998
    (41) Vanita , Sarhadi V, Reis A, et al: A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet 38:392-6,2001
    (42) Francis PJ, Berry V, Hardcastle AJ, et al: A locus for isolated cataract on human Xp. J Med Genet 39:105-9, 2002
    (43) Meakin S, Breitman M, Tsui L. Structural and evolutionary relationships among five members of the human γ-crystallins gene family. Mol Cell Biol. 1985 ;5(6): 1408-1414
    (44) Brent R. Genomic biology. Cell,2000;169-183
    (45) Marshall E. Snipping a way at genome patenting. Science,1997;227:1752-1753
    (46) Garber K. More SNPs on the way. Science, 1998;281:1788-1794
    (47) Harding, J. J. & Crabbe, M. J. C. (1984) in The Eye, ed. Davson, H. (Academic, New York),Vol. 1B, pp. 207-492.
    (48) Benedek GB. Cataract as a protein condensation disease: the Proctor Lecture. Invest Ophthalmol Vis Sci 1997 Sep;38(10):1911-21
    (49) Papaconstantinou J. Molecular aspects of the lens differentiation. Science. 1967,156:338-446
    (50) Delaye M, Tardieu A. Short-range order of crystalline proteins accounts for eye lens transparency. Nature. 1983;302:415-417
    (51) Wistow G, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem.1988;57:479-504
    (52) Stephan DA, Gillanders E, Vanderveen D, et al: Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci USA 96:1008-12, 1999
    (53) Nadrot E, Slingsby C, Basak A, et al: Gamma-D crystalline gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts. J Med Genet 40:262-7, 2003
    (54) Santhiya ST, Shyam MM, Rawlley D, et al: Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet 39:352-8, 2002
    (55) Armitage MM, Kivlin JD, Ferrell RE. A progressive early onset cataract gene maps to human chromosome 17q24. Nature Genet. 9: 37-40, 1995
    (56) Gill D, Klose R, Munier FL, et al: Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest Ophthalmol Vis Sci 41:159-65, 2000
    (57) Maeda YY, Funata N, Takahama S, et al: Two interactive genes responsible for a new inherited cataract (RCT) in the mouse. Mamm Genome 12:278-83, 2001
    (58) 欧阳曙光,贺福初.生物信息学:生物实验数据和计算技术结合的新领域 科学通报,1999,44:1457-1468
    (59) Hejtmancik JF. The genetics of cataract: our vision becomes clearer (editorial). Am J Hum Genet. 1998;62:520-525
    (60) Blundell T, Lindley P, Miller L, et al. The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin Ⅱ. Nature 1981 Feb 26; 289(5800):771-7
    (61) Wistow G, Turnell B, Summers L, et al. X-ray analysis of the eye lens protein gamma-Ⅱ crystailin at 1.9 A resolution. J Mol Biol 1983 Oct 15;170(1):175-202
    (62) Wistow, G., ed. (1995) Molecular Biology and Evolution of Crystallins: Gene Recruitment and Multifunctional Proteins in the Eye Lens (R. G. Landes, Austin, TX)
    (63) XU W, ZHENG S, XU S, et al. Autosomal dominant coralliform cataract related to a missense mutation of the _γD-crystallin gene Original article Chin Med J 2004; 117(5):727-732
    (64) Ying Xu and Dong Xu. Protein threading using PROSPECT: Design and evaluation. Proteins: Structure, Function, and Genetics. 40:343-354. 2000