仿刺参和一种肉芝软珊瑚化学成分及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋无脊椎动物中富含结构新颖的生物活性物质,一直是海洋天然产物研究中的热点领域。在寻找具有生物活性物质过程中,我们对采自中国渤海海域的仿刺参和南海海域的一种肉芝软珊瑚中的化学成分及其生物活性进行了系统研究。
     仿刺参(Apostichopus japonicus Selenka)属棘皮动物门(Echinopetrmata)、海参纲(Holothuroidea)、楯手目(Apidochiroia)、刺参科(Stichopodidae)、仿刺参属(Adpostichopus)动物,是食用海参中质量最好的一种,被誉为“参中之冠”,是我国唯一产于北方海域的海参,也是经济价值最高的海参。日本和俄罗斯学者曾于上世纪七十年代末及八十年代初对仿刺参中的皂苷类成分进行研究,得到4个皂苷类成分holotoxin A,holotoxin B,holotoxin A1和holotoxin B1。此后二十余年未见有皂苷类新成分的相关报道。为寻找海参中新的活性物质,我们对这种海参中的活性皂苷类成分进行了研究,运用现代色谱方法,结合波谱技术和化学方法从仿刺参中分离鉴定了13个皂苷类化合物。所鉴定化合物中,7个为新化合物(AJ-1~7),其中1个为骨架新颖的降三萜类皂苷(AJ-5),这是首次从海参中分离得到降三萜;2个非海参烷型皂苷(AJ-6,AJ-7),这使得从海参中得到的非海参烷型皂苷数量丰富至16个;1个侧链新颖的皂苷(AJ-4)和3个海参烷型三萜皂苷(AJ-1-3)。
     新化合物的结构分别为:3β-O-{2-O-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃葡萄糖]-4-O-[3-O-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖]-β-D-吡喃木糖)-海参烷-9(11),25(26)-二烯-16-酮(AJ-1);3β-O-{2-O-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃葡萄糖]-4-O-[β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖]-β-D-吡喃木糖)-海参烷-7(8),25(26)-二烯-16-酮(AJ-2);3β-O-{2-O-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃葡萄糖]-4-O-[β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖]-β-D-吡喃木糖)-海参烷-9(11),25(26)-二烯-16-酮(AJ-3);3β-O-{2-O-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃葡萄糖]-4-O-[3-O-甲基β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖]-β-D-吡喃木糖)-25,27-海参烷-7(8),25(26)-二烯-16-酮(AJ-4);3β-O-{2-O-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃葡萄糖]-4-O-[3-O-甲基β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖]-β-D-吡喃木糖)-25,27-降海参烷-7(8)-烯-16,25-二酮(AJ-5);3β-O-{2-O-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃葡萄糖]-4-O-[β-D-吡喃葡萄糖]-β-D-吡喃木糖}-lanosta-9(11),25(26)-二烯-16-酮(AJ-6);3β-O-{2-O[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃葡萄糖]-4-O-[3-O-甲基-β-D-吡喃葡萄糖]-β-D-吡喃木糖)-lanosta-9(11),25(26)-二烯-16-酮(AJ-7)。其它己知化合物分别是:3β-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃喹诺糖-(1-2)-[β-D-吡喃葡萄糖-(1-4)]-β-D-吡喃木糖}-海参烷-9,25-二烯-16-酮(AJ-8),Cladolosides B;3β-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃木糖-(1-4)-β-D-吡喃喹诺糖-(1-2)-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)]-β-D-吡喃木糖}-海参烷-9,25-二烯-16-酮(AJ-9),holotoxin A1;3β-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)-β-D-吡喃喹诺糖-(1-2)-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)]-β-D-吡喃木糖}-海参烷-9,25-二烯-16-酮(AJ-10),holotoxin B;3β,12α-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)-β-D-吡喃喹诺糖-(1-2)-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)]-β-D-吡喃木糖}-海参烷-9(11)-烯(AJ-11),bivittoside D;22-乙酰基3-O-{(3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)-β-D-吡喃喹诺糖-(1-2)-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)]-β-D-吡喃木糖}-海参烷-9(11)-烯-3β,12a-二醇(AJ-12),stichlorosides C1;3-O-[3-O-甲基-β-D-吡喃葡萄糖-(1-3)-β-D-吡喃葡萄糖-(1-4)-β-D-吡喃奎诺糖-(1-2)-4-O-硫酸钠-β-D-吡喃木糖]-22,25-环氧-海参烷-9(11)-烯-3β,12α,17α-三醇(AJ-13),holothurin A。
     肉芝软珊瑚种类多样,分布广泛,其生物体柔软而不被海洋中的动物所吞食,这被认为是与其次生代谢产物中含有能驱赶其它生物的化学防御物质有关,从而引起了化学家和药物学家的重视。
     肉芝软珊瑚Sarcophyton sp.属于软珊瑚目(Alcyonacea)软珊瑚科(Alcyoniidae)肉芝软珊瑚属(Sarcophyton)动物。我们对该种软珊瑚中的化学成分进行了系统研究,从中分离为一系列含有3β,5α,6β-羟基骨架的甾体化合物,鉴定了其中14个化合物的结构,其中化合物SA-1~7为新化合物。
     新化合物分别是24(25)-烯-胆甾-3β,5α,6β-三醇(SA-1),11α-乙酰氧基-24-甲基-22(23),25(27)-二烯-胆甾-3β,5α,6β-三醇(SA-2),11α-乙酰氧基-24(25)-烯-胆甾-3β,5α,6β-三醇(SA-3),11α乙酰氧基-goigostane-3β,5α,6β,12α-四醇(SA-4),24(S)-24-甲基-胆甾-1α,3β,5α,6β,11α-五醇(SA-5),23,24-二甲基-22(23)-烯-胆甾-3β,5a,6β,11α-四醇(SA-6),11α-乙酰氧基-gorgostane-3β,5a,6β-三醇(SA-7)。其它己知化合物分别是:gorgostane-1α,3β,5a,6β,11α-五醇(SA-8),goigostane-3β,5a,6β,11α-四醇(SA-9),24(S)-24-甲基-胆甾-3β,5a,6β,11α-四醇(SA-10),11α-乙酰氧基-24(S)-24-甲基-胆甾-3β,5a,6β-三醇(SA-11),24(S)-24-甲基-7(8)-烯-胆甾-3β,5α,6β-三醇(SA-12),23,24-二甲基-16(17)-烯-胆甾-3β,5α,6β,20(S)-四醇(SA-13),24(S)-24-甲基-胆甾-3β,5α,6β-三醇(SA-14)。对从仿刺参中分离得到的皂苷类成分的抗真菌活性进行研究,所得皂苷均显示不同程度的抗真菌活性。AJ-8对白色念珠菌有很强抑制活性,AJ-1,2,6,7,9和10对新生隐球菌有很强的抑制活性;AJ-8和9对热带念珠菌显示很强抑制活性,AJ-2,8和9对红色毛癣菌有很强的抑制活性;AJ-1,2,8,9,10,12和13对石膏状小孢子菌有很强的抑制活性,特别是AJ-8和AJ-9,对红色毛癣菌和石膏状小孢子菌的抗菌活性比对照药物两性霉素B和氟康唑活性均强,具有进一步研究的潜力。
     本课题对仿刺参中的皂苷类化学成分及其抗真菌活性以及肉芝软珊瑚Sarcophyton sp.中的化学成分进行了系统的研究,首次从这两种动物中分离得到多种化学成分,其中有14个新化合物,为进一步开发新的抗真菌药物提供了科学依据和有价值的先导化合物,也为海洋天然产物的研究积累了新的研究资料,对开发利用我国丰富的海洋生物资源具有较重要的意义。
Marine invertebrates as rich sources of novel bioactive metabolites have attracted more and more attention. In the processes of searching for bioactive compounds, we have chemically investigated the sea cucumber Apostichopus (=Stichopus) japonicus SELENKA and the soft coral Sarcophyton sp.
     The cold water sea cucumber Apostichopus (=Stichopus) japonicus SELENKA (family) belongs to class Holothuroidea, order Aspidochiroia and family Stichopodidae. The great interest has developed in studying triterpene glycosides from this sea cucumber since Elyakov et aL reported the isolation of three glycosides from this species in 1968. Later Kitagawa et aL clarified the structures of two main glycosides named holotoxin A and B. The structure of the minor glycoside holotoxin C, suggested to be the similar type as holotoxin A and B, remained unclear. Maltsev et al reported the isolation and structure elucidation of another two triterpene glycosides, holotoxin Ai and Bi from S. japonicus. No more new triterpene glycoside from this sea cucumber was reported in the following years.
     As a continuation of our searching for new bioactive compounds from echinoderms, we have investigated this specie collected from Bohai Sea of China, off Dalian coast. The crude extracts were separated employing solvent partitioning followed by various chromatographic methods to afford 13 triterpene glycosides (AJ-1~AJ-13), the structures of which were elucidated on the basis of extensive spectroscopic analysis, with seven new compounds. All of these triterpene glycosides except AJ-9 and AJ-10 were isolated from this species for the first time, seven of which were new.
     The structures of the new triterpene glycosides were identified as: 3β-O-{2-O-[3-O-methyl-β-D-glucopyranosyl-(13)-β-D-xylopyranosyl-(1-4)-β-D-gl ucopyranosyl]-4-O-[3-O-methyl-β-D-glucopyranosyl-(1-3)-β-D-glucopyranosyl]-β-D -xylopranosyl}-holosta-9(11),25(26)-dien-16-one (AJ-1); 3β-0-{2-O-[3-β-methyl-β-D-glucopyranosyl-(l-3-)-β-D-xylopyranosyl-(l-4)-β-D-quinovopyranosyl]-4-O-[β-D -glucopyrano-(l-3)-β-D-glucopyranosyl]-β-D-xylopranosyl}-holosta-7(8),25(26)-die n-16-one(AJ-2); 3β-O-{2-O-[3-0-methyl-β-D-glucopyranosyl(1-3)-β-D-xylopyran osyl( 1 -4)-β-D-gluco-pyranosyl]-4-O-[β-D-glucopyranosyl( 1-3)-β-D-glucopyranos yl]-β-D-xylopranosyl}-holosta-9(l l),25-dien-16-one (AJ-3); 3-0-{2-0-[3-0-methyl-β-D-glucopyranosyl(1-3)-β-D-xylopyranosyl(1-4)-β-D-quinovopyranosyl]-4-0-[3-O-methyl-β-D-glucopyranosyl(l -3)-β-D-glucopyranosyl]-β-D-xylopranosyl}-holost a-9(l l)-en-3β,25,26-triol-16-one (AJ-4); 3β-O-{2-O-[3-O-methyl-β-D-glucopyrano syl(l-3)-β-D-xylopyranosyl(l-4)-β-D-quinovopyranosyl]-4-O-[3-O-methyl-β-D-gl ucopyranosyl( 1-3 )-β-D-glucopyranosyl]-β-D-xylopranosyl }-dehoIosta-9( 11 )-en-16, 25-dione (5); 3β-0-{2-0-[β-D-glucopyranosyl-(l-3)-β-D-xylopyranosyl-(1-4)-β-D -quinovopyranosyl]-4-0-[β-D-glucopyranosyl]-β-D-xylopranosyl}-lanosta-7(8),25(26) -dien-16-one(6); 3β-0-{2-0-[3-0-methyl-β-D-glucopyranosyl-(l-3)-β-D-xylopyran osyl-(l-4)-β-D-quinovopyranosyl]-4-O-[β-D-glucopyranosyl]-β-D-xylopranosyl}-lan osta-7(8),25(26)-dien-16-one(7). The known compounds were cladolosides B (AJ-8), holotoxin A1 (AJ-9), holotoxin B (AJ-10), bivittoside D (AJ-11), stichlorosides C1 (AJ-12) and holothurin A (AJ-13).
     Soft corals are thought to contain various bioactive constituents that chemically defend against attack. The soft coral Sarcophyton sp. belonging to order Alcyonacea and family Alcyoniidae is one of the common species found in the South China Sea. We have isolated a series of sterols with 3β, 5a, 6β-hydroxy skeleton from this specie, and the structures of 14 compounds were identified, including 7 new compounds. The new corals are: 24 (25)-ene-cholesta-3β, 5a, 6β-triol (SA-1), 11a-acetoxy-24-methylcholesta-22 (23), 25 (27)-diene-3β, 5α, 6β-triol (SA-2), lla-acetoxy-24 (25)-ene-cholesta-3β, 5α, 6β-triol (SA-3), lla- acetoxy-gorgostane-3β, 5a, 6β, 12a-tetrol (SA-4), 24 (S)-24- methylcholesta-la, 3β, 5α, 6β, lla-pentol (SA-5), 23, 24-dimethylcholesta-22 (23)-ene-3β, 5α, 6β, lla-tetrol (SA-6), lla-acetoxy-gorgostane-3β, 5α, 6β-triol (SA-7). The known sterols are: gorgostane-la, 3β, 5a, 6β, lla-pentol (SA-8), gorgostane-3β, 5α, 6β, 11a-tetrol (SA-9), 24 (S)-24-methylcholesta-3β, 5α, 6β, 11a-tetrol (SA-10), 11a-acetoxy-24 (S)-24- methylcholesta-3β, 5a, 6β-triol (SA-11), 24 (S)-24-methylcholesta-7 (8)-ene-3β, 5α, 6β-triol (SA-12), 23, 24-dimethylcholesta-16 (17)-ene-3β, 5α, 6β20 (S)-tetrol (SA-13), 24(S)-24- methylcholesta-3β, 5α, 6β (SA-14).
     The antifungal active assay of these saponins indicated that glycosides AJ-1, AJ-2, AJ-6, AJ-7, AJ-9, AJ-10 and AJ-12 exhibit significant antifungal activities against Cryptococcus neoformans; glycosides AJ-1, AJ-2, AJ-7, AJ-8 and AJ-12 exhibit significant antifungal activities against Candida albicans; glycosides AJ-1, AJ-2, AJ-8 and AJ-9 exhibit significant antifungal activities against Candida tropicalis, MIC80<8μg/ml.
     Our studies focused on chemical constituents of A. japonicus and Sarcophyton sp. and their bioactivities have established a foundation for further research and development of these two marine organisms with abundant resources in China, and provided important leading compounds for the development of new antifungal drugs.
引文
[1] Stonik VA, Elyakov GB. In Bioorganic marine chemistry; Scheuer PJ Ed, Springer-Verlag: Berlin, 1988, Vol. 2, pp. 43-46.
    [2] Stonik VA, Kalinin VI, Avilov SA. J Nat Toxin, 1999, 235-248.
    [3] Stonik VA, Elyakov GB. In Handbook of natural toxins and venoms; Tu A, Ed; Marel Dekker Inc: New York, 1988, Vol. 3, pp. 107-120.
    [4] Sedov AM, Elkina SI, Sergeev VV, Kalina NG, Sakandelidze OG, Batrakov SG, Girshovich ES. Zhurn Mikrobiol Epidemiol Immunobiol, 1984, 5: 5-58.
    [5] Sedov AM, Apollonin AV, Sevastyanova EK, Alekseeva IA, Batrakov SG, Sakandelizde OG, Likhoded VG, Stonik VA, Avilov SA, Kupera. Antibiotiki i Khimioterapiya, 1990, 35: 23-26.
    [6] Sedov AM, Shepeleva IB, Zakharova NS, Sakadelidze OG, Sergeev VV, Hoshiashvilli IY, Zhurn Mikrobiol Epidemiol Immunol, 1984, 99: 100-104.
    [7] Grishin YI, Besednova NN, Stonik VA, Kovalevskaya AM, Avilov SA. Radiobiologia, 1990, 30:556.
    [8] Grishin TI, Kovalevskaya AM, Stonik VA, Avilov SA, Vlaznev VP, Slugin VS, Novosty Zverovodstva, 1991, 2: 19-23.
    [9] Grishin Y, Morozov E, Avilov S. In 8th conference of young scientists on organic and bioorganic chemistry, Riga, 1991, p. 181.
    [10] Kalinin V, Aminin D, Avilov SA, Silchenko AS, Stonik VA. In Studies in Natural Products Chemistry, Ed. Atta-ur-Rahman, 2008, 35:135.
    [11] Aminin DL, Agafonva IG, Berdyshev EV, Isachenko EG, Avilov SA, Stonik VA. J Med Food, 2001, 4: 127-135.
    [12] Elyakov GB, Stonik VA. Terpenoids of marine organisms; Nauka: Moskow, 1986.
    [13] Ishida H, Hirota Y, Nakazava H. Biochim Biophys Acta, 1993, 1145:58-62.
    [14] Aminin DL, Pinegin BV, Pichugina LV, Zaporozhets TS, Agafonova IG, Boguslavski VM, Silchenko AS, Avilova SA, Stonik VA. Internat Immunol, 1991, 306-310.
    [15] Aminin DL, Agafonva IG, Kalinin VI, Silchenko AS, Avilov SA, Stonik VA, Collin PD, Woodward C. J Med Food, 2006.
    [1] Molinski TF., Dalisay DS., Lievens SL. and Saludes JP. Drug development from marine natural products. Nature Reviews Drug Discovery, 2009, 8: 69.
    [2]廖玉麟.中国动物志(第1卷) [M].北京:科学出版社,1997.61.
    [3]赵学敏.本草纲目拾遗[M]北京:商务印书馆,1995.495.
    [4] Elyakov GB, Kuzentsova TA, and Vaslovsky VE. A composition of glycoside fraction from Stichopus japonicus. Khim. Prirod. Soedin., 1968, 4: 253.
    [5] Shimada S. Antifungal steroid glycoside from sea cucumber. Science, 1969, 163: 1462.
    [6] Kitagawa I., Yamanaka H., Kobayashi M., et al. Saponin and Sapogenol. XV. Antifungal glycoside from the sea cucumber Stichopus japonicus Selenka. (2). Structures of Holotoxin A and Holotoxin B. Chem Phar Bull, 1976, 24 (2):275.
    [7] KitagawI. a, Yamanaka H., Kobayashi M., et al. Saponin and Sapogenol. XXVII. Revised structure of Holotoxin A and Holotoxin B, two antifungal oliglycosides from the sea cucumber Stichopus japonicus Selenka. Chem Phar Bull, 1978, 26 (12):3722.
    [8] Maltser I.I, Stonik VA, Kalinovsky AI, et al. Triterpene glycosides from sea cucumber Stichopus japonicus Selenka. Comp. Biochem. Physiol. 1984, 78B (2): 421.
    [9] Kisa F, Yamada K, Kaneko M, et al. Constituents of holothuroidea, 14. Isolation and structure of new glucocerebroside molecular species from the sea cucumber Stichopus japonicus. Chem Pharm Bull. 2005, 53(4):382.
    [10] Avilov S. A. and Stonik V. A.. New triterpene glucosides glycosides from the holothurian Cladolabes sp. Khimiya Prirodnykh Soedinenii, 1988, 5: 764-765.
    [11] Kitagawa I, Kobayashi M, Hori M, et al. Marine natural products XVIII. Four lanostane-type triterpene oligoglycosides, brivittosides A, B, C and D, from the Okinawan sea cucumber Bohadschia bivittata Mitsukuri. Chem Pharm Bull. 1989, 37 (1): 61.
    [12] Kitagawa I, Kobayashi M, Hori M, et al. Stichlorogenol and dehydrostichlorogen, genuine aglycones of stichlorisides A1, B1, C1 and A2, B2, C2, from the sea cucumber Stichopus chloronotus (Brandt). Chem Pharm Bull. 1981, 29 (4): 1189.
    [13] Kitagawa I, Nishino T, Kobayash M, et al. Marine natural product VIII bioactive triterpene-oligoglycosides from the sea cucumber Holothuria leucospilota Brandt (2) structure ofholothurin A. Chem Pharm Bull, 1981, 29 (7): 1951.
    [14]黄宗国(Huang Z) .中国海洋生物种类与分布[M] .北京,海洋出版社:1994. 283.
    [15] Anjaneyulu A. S. R., Rao G. V. J. Ind. Chem. Soc., 1997, 74, 272.
    [16] Lin HW, Wang ZL, Wu JH, et al. Stellettins L and M, cytotoxic isomalabarican e-type triterpenes, and sterols from the marine sponge Stelletta tenuis. J Nat Prod. 2007, 70 (7):1114.
    [17] Ammanamanchi S. R. Anjaneyulu, Moturu V. R., et al. Novel Epoxy Steroids from the Indian Ocean Soft Coral Sarcophyton crassocaule. J. Nat. Prod. 2000, 63, 112.
    [18] Madaio A, Piccialli V, Sica D, et al. New polyhydrozysterols from the dityoceratid sponges Hippospongia communis, Spongia officinalis, Ircinia variabilis, and Spongionella gracilis. J. Nat. Prod., 1989, 52 (5), 952.
    [19] Rao C. B., Ramana K. V., Rao D.V., et al. Metabolites of the gorgonian Isis hippuris from India. J. Nat. Prod., 1988, 51 (5), 954.
    [20] Umeyama A, Shoji N, Ozeki M, et al. Sarcoaldesterols A and B, two new polyhydroxylated sterols from the soft coral Sarcophyton sp. J. Nat. Prod., 1996, 59 (9), 894.
    [21] Dong H, Gou YL, Kini M, et al. A new cytotoxic polyhydroxysterol soft coral Sarcophyton trocheliophorum. Chem Pharm Bull, 2000, 48 (7): 1087.
    [22] Duh C. Y, Wang S. K., Chung S. G., et al. Cytotoxic cembrenolides and steroids from the formosan soft coral Sarcophyton crassocaule. J. Nat. Prod. 2000, 63, 1634.