白桦四倍体的生长生殖特征及基因转录组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林木多倍体形态上的巨大性受到林木育种工作者的广泛重视,研究林木染色体加倍后基因转录调控的变化,对于深入理解林木多倍体的变异具有重要意义。本研究以前期获得的白桦四倍体为试材,对其表型特征、光合特性、生理指标、花粉特性等进行观察,同时开展了基于RNA-Seq技术的转录组学研究,为深入理解白桦四倍体的变异、白桦重要性状关键调控基因的克隆以及白桦基因工程育种提供了参考。研究结果如下:
     白桦四倍体的叶部形态具有明显的巨大性,其叶面积和气孔长度分别高于二倍体的10.54%和95.73%。四倍体的光合作用明显强于二倍体,其净光合速率、PSⅡ实际光化学效率和光化学淬灭分别比二倍体高13.33%、12.38%和10.68%。四倍体在生理指标和激素含量方面与二倍体的差异达到显著水平,四倍体的可溶性糖含量、可溶性蛋白含量、叶绿素含量、生长素含量、脱落酸含量和赤霉素含量分别比二倍体高8.24%、12.52%、6.21%、32.93%、13.15%和39.43%。白桦四倍体的花序也表现出巨大性,雄花序长度和雄花主苞片长度分别比二倍体高44.02%和9.30%,果序长度和果序直径分别高于二倍体16.40%和33.69%,花粉直径较二倍体高27.75%。白桦四倍体的不育性主要体现在雄配子体上,白桦四倍体的花粉萌发率比二倍体低64.66%。此外,不同白桦四倍体的生长和生殖特性也具有明显的差异。
     采用Solexa技术测定了白桦四倍体和白桦二倍体的转录组,通过转录组的测序和组装,共得到132427个unigene,其中47.61%的unigene得到注释。根据Nr数据库的注释结果,55.78%的unigene与已知序列具有较高的同源性;17.99%的unigene与已知序列具有较高的相似度;来源于葡萄的unigene最多,占注释unigene的34.08%。白桦四倍体与二倍体相比,共有1166个unigene上调表达,890个unigene下调表达。GO分析表明白桦四倍体与二倍体在其他器官细胞凋亡、细菌起源分子的细胞响应、细胞凋亡铁离子结合、蛋白丝氨酸-苏氨酸磷酸酶活性、血红素结合、单加氧酶活性、高亲和性铜离子跨膜转运蛋白活性和四吡咯结合等9个方面差异显著。Pathway分析表明白桦四倍体与二倍体在RNA聚合酶、嘧啶代谢、植物与病原体相互作用、嘌呤代谢、二苯乙烯类化合物、二芳基庚酸类化合物和姜辣素的生物合成、柠檬烯和蒎烯的降解和次生代谢产物生物合成等7个途径差异显著。白桦四倍体与二倍体以及不同白桦四倍体之间在RNA聚合酶、基础转录因子、核糖体、植物激素合成及信号转导、糖代谢以及昼夜节律方面发生了明显变化,初步认为白桦四倍体与二倍体以及不同白桦四倍体之间在生长和生殖上的差异与其在RNA聚合酶、基础转录因子、核糖体、植物激素合成及信号转导、糖代谢以及昼夜节律方面的变化有关。
Tree breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on phenotype and transcriptome, morphology, photosynthesis, physiology, pollen characterist and transcriptome were measured between diploid and autotetraploid. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. These results were as follows:
     There were significant variations in leaf morphology between diploid and autotetraploid. The leaf area and stoma length of autotetraploid were increased10.54%and95.73%respectively compared to those of diploid. The photosynthsis of autotetraploid was superior to that of diploid. The net photosynthetic rate, actual photochemical efficiency of PS Ⅱ and photochemical quenching of autotetraploid were increased13.33%,12.38%and10.68%respectively compared to those of diploid. There were significant variations in physiology and plant hormones between diploid and autotetraploid. The content of soluble sugar, soluble protein, chlorophyll, auxin, abscisic acid, gibberellin of autotetraploid were increased8.24%,12.52%,6.21%,32.93%,13.15%and34.93%respectively compared to those of diploid. The size of flower was larger in autotetraploid compared with diploid. The length of catkin and primary bract from staminate flowers, pollen diameter, the length and diameter of fruit of autotetraploid were increased44.02%,9.30%,27.75%.16.40%and33.69%respectively compared to those of diploid. The sterility of autotetraploid was reflected in male gamete. The germination rate of pollen in autotetraploid was decreased64.66%compared to that of diploid. In addition, there were significant variations in growth and reproduction in different autotetraploids.
     In the present study, we compared differences between transcriptomes of diploid and autotetraploid using Solexa sequencing technology. Short reads were assembled into unigenes, taking the distance of pair-end reads into account. All of the sequences were assembled, yielding132427non-redundant unigenes. Approximately47.61%of the unigenes were annotated by Blastx and Blastn against six public databases (Nr, Nt, Swiss-Prot, KEGG, COG and GO), with a threshold of10-5. The E-value distribution of the top hits in the Nr database revealed that55.78%of the mapped sequences showed strong homology (E-value≤10-30), and17.99%of the sequences shared greater than80%similarity. Nearly34.08%of the unigenes could be annotated using sequences from Vitis vinifera which was the most top-hit specie. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of1166unigenes and the downregulation of890unigenes. GO enrichment analysis revealed that significant differences were seen between autotetraploid and diploid in the GO categories killing of cells of other organism, cellular response to molecule of bacterial origin, cell killing, iron ion binding, protein serine/threonine phosphatase activity, heme binding, monooxygenase activity, high affinity copper ion transmembrane transporter activity and tetrapyrrole binding. Differences in the dynamics and absolute levels of unigene expression between autotetraploid and diploid were seen in the following categories:RNA polymerase, pyrimidine metabolism, plant-pathogen interaction, purine metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, limonene and pinene degradation and biosynthesis of secondary metabolites. Transcriptome analysis revealed that143genes involved in RNA polymerase, basal transcription factors, ribosome, plant hormone biosynthesis and signal transduction, sugar metabolism, circadian rhythm were altered after genome duplication, which may have contributed to phenotypic changes.
引文
[1]Adams K L. Wendel J F. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology,2005,8(2):135-141
    [2]Adams K L. Evolution of duplicate gene expression in polyploidy and hybrid plants. Journal of Heredity,2007,98:136-141
    [3]Leitch A R, Leitch I J. Genomic plasticity and the diversity of polyploid plants. Science, 2008,320:481-483
    [4]Tupper W W, Bartlett H H. A comparison of the wood structure of Oenothera Stenomeres and its tetraploid mutation gigas. Genetics,1916,1(2):177 - 184
    [5]Blakeslee A F, Avery A G. Methods of inducing doubling of chromosomes in plants. Journal of Heredity,1937,28(12):393-411
    [6]Leitch I J, Bennett N D. Polyploidy in angiosperms. Trends in Plant Science,1997,2(12): 470-476
    [7]Osborn C T, Pires J C, Birchler J A, et al. Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics,2003,19(3):141-147
    [8]杨寅桂,庄勇,陈龙正,等.蔬菜多倍体育种及其应用.江西农业大学学报,2006,28(4):534~538
    [9]Riddle N C, Kato A, Birchler J A. Genetic variation for the response to ploidy change in Zea mays L. Theoretical and Applied Genetics,2006,114:101 - 111
    [10]Riddle N C, Birchler J A. Comparative analysis of inbred and hybrid maize at the diploid and tetraploid levels. Theoretical and Applied Genetics,2008,116:563-576
    [11]刘选明,何立珍,刘清波,等.黄花菜二倍体与四倍体植株的比较解剖学初步研究.湖南农学院学报,1994,20(3):228-232
    [12]刘平,刘孟军.四倍体与二倍体枣花及花粉特性的比较.园艺学报,2009,36(增刊):1914
    [13]李赞,束怀瑞,石荫坪.苹果三倍体和二倍体细胞超微结构观察.西北农业学报,1999,8(3):68-70
    [14]张杰,张蜀宁,徐伟钰,等.二、四倍体青花菜净光合速率日变化及其影响因子的相关和通径分析.江苏农业科学,2006,(6):220-223
    [15]徐伟钰,张蜀宁,万双粉,等.二、四倍体萝卜光合特性比较研究.中国生态农业学报,2008,16(1):164-167
    [16]李赞,束怀瑞,石荫坪.苹果二倍体和三倍体的同工酶电泳分析.山东农业大学学报,1999b,30(1):6~10
    [17]李树贤,吴志娟,杨志刚,等.同源四倍体茄子品种新茄一号的选育.中国农业科 学,2002,35(6):686-689
    [18]刘惠吉,王华,肖守华,等.四倍体白菜热优二号选育.南京农业大学学报,1992,15(4):39-44
    [19]刘惠吉,王华,吕兴泉.四倍体不结球白菜“寒优一号”的选育.园艺学报,1995,22(2):193-194
    [20]刘选明,周朴华,何立珍,等.四倍体黄花菜蓓蕾性状和营养成分分析.园艺学报,1995,22(2):191~192
    [21]李天艳,李文信.国内外西瓜品种选育概况及趋势.中国西瓜甜瓜,1994(1)10-12
    [22]郝晨,李云,姜金仲,等.四倍体刺槐大小孢子发育时期与花器形态的相关性.核农学报,2006,20(4):292-295
    [23]Diao W P, Bao S Y, Jiang B, et al. Cytological studies on meiosis and male gametophyte development in autotetraploid cucumber. Biologia Plantarum,2010,54(2):373-376
    [24]刘建新,陈建国,陈冬玲,等.四倍体水稻花器和花粉性状研究.中国农业科学,2008,41(12):3941-3951
    [25]邓秀新,Gmitter F G, Grosser J W.柑橘同源及异源四倍体花粉与性研究.园艺学报,1995,22(1):16-20
    [26]韩继成,赵胜建,郭紫娟.三倍体葡萄品种花粉形态及其坐果率的研究.果树学报,2005,22(5):561-563
    [27]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in newly synthesized wheat allopolyploid. Genetics,2002,160:1651 - 1659
    [28]Lee H S, Chen Z. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proceedings of the National Academy of Sciences of the United States of America,2001,98:6753-6758
    [29]Adams K L, Percifield R, Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics,2004,168:2217-2226
    [30]黄荣峰,郭培路,黄大防.植物DNA甲基化.生物技术通报,2001(5):1-3
    [31]Yu Z, Habererb G, Matthesa M, et al. Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America,2010,107(41):17809-17814
    [32]Shaked H, Kashkush K, Ozkan H, et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell,2001,13(8):1749-1759
    [33]Madlung A, Masuelli R W, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic arabidopsis allotetraploids. Plant Physiology,2002,129(2):733-746
    [34]Pikaard C S. Nucleolar dominance and silencing of transcription. Trends Genetics.1999, 4:478-483
    [35]Chen Z. Pikaard C S. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression silencing of progetor rRNA genes is developmentally regulated in Brassica. Proceedings of the National Academy of Sciences of the United States of America,1997,94:3442-3447
    [36]Houchins K O, Dell M, Flavell R B, et al. Cytosine methylation and nucleolar dominance in cereal hybrids. Molecular Genetics,1997.255(3):294-301
    [37]庄勇,陈龙正,杨寅桂,等.植物异源多倍体进化中的基因表达变化.植物学通报,2006,23(2):207-214
    [38]Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics,2003,33:102-106
    [39]He P, Friebe B R, Gill B S, et al. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology,2003,52:401-414
    [40]岳桂东,高强,罗龙海,等.高通量测序技术在动植物研究领域中的应用.中国科学:生命科学,2012,42(2):107-124
    [41]Wu T, Qin Z, Zhou X, et al. Transcriptome profile analysis of floral sex determination in cucumber. Journal of Plant Physiology,2010,167:905-913
    [42]Sun C, Li Y, Wu Q, et al. De novo arvtiocle sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics,2010,11:262
    [43]Feng C, Chen M, Xu C, et al. Transcriptomic analysis of Chinese bayberry (Myrica rubrd) fruit development and ripening using RNA-Seq. BMC Genomics.2012.13:19
    [44]Nilsson-Ehle H. Uber eine in der nature gefundene gigasform von Populus tremula. Hereditas,1936,21:379-382
    [45]Muntzing A. The chromosomes of a giant Populus tremula. Hereditas,1936,21:383-393
    [46]Johnsson H, Eklundh C. Colchicine treatment as a method in breeding hardwood species. Svensk Papperstidning,1940,43:373-377
    [47]Einspahr D W. Production and utilization of triploid hybrid aspen. Iowa State Journal of Research,1984,58(4):401-409
    [48]Zhu Z, Kang X, Zhang Z. Advances in the Triploid Breeding Program of Populus tomentosa in China. Journal of Beijing Forestry University (English Eidtion),1997,6:1-8
    [49]康向阳.林木多倍体育种研究进展.北京林业大学学报,2003,25(4):70-74
    [50]康向阳.关于杨树多倍体育种的几点认识.北京林业大学学报,2010,32(5): 149~153
    [51]Li B, Wyckoff G W. Hybrid aspen performance and genetic gains. Northern Journal of Applied Forestry,1993,10(3):117-121
    [52]朱之悌,林惠斌,康向阳.毛白杨异源三倍体B301等无性系选育的研究:林业科学,1995,31(6):499-505
    [53]邢新婷,张志毅.三倍体毛白杨无性系木材密度遗传变异研究.北京林业大学学报,2000,22(6):16-20
    [54]邢新婷,张志毅,张文杰.三倍体毛白杨新无性系木材干缩性的遗传分析.林业科学,2004,40(1):137-141
    [55]孟凡娟,王秋玉,王建中,等.四倍体刺槐的抗盐性.植物生态学报,2008,32(3):654-663
    [56]Liu L, Huang F, Luo Q, et al. cDNA-AFLP analysis of the response of tetraploid black locust(Robinia pseudoacacia L.) to salt stress. African Journal of Biotechnology,2012, 11(13):3116-3124
    [57]王茜龄,周金星,余茂德,等.桑树组织培养诱导多倍体植株.林业科学,2008,44(6):164-167
    [58]余茂德,敬成俊,吴存容,等.人工三倍体桑树新品种嘉陵20号的选育.蚕业科学,2004,30(3):225-229
    [59]易霭琴,蒋丽娟.绿玉树诱变材料的抗寒性比较.中国麻业,2005,27(6):294-299
    [60]Illies Z M. The development of aneuploidy in somatic cells of experimentally produced triploid larches. Heredity,1966,21:379-385
    [61]Johnsson H. Observations on induced polyploidy in some conifers. Silvae Genetica,1975, 24(2-3):62-68
    [62]Rogers D L. Inheritance of allozymes from seed tissues of the hexaploid gymnosperm, Sequoia sempervirens (D. Don) Endl.) (Coast redwood). Heredity,1997,78:166-175
    [63]Ahuja M R, Neale D B. Origins of polyploidy in coast redwood(Sequoia sempervirens (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genetica,2002,51(2-3):93-100
    [64]Ahuja M R. Polyploidy in gymnosperms:revisited. Silvae Genetica,2005,54(2):59-69
    [65]Eriksson G, Jonsson A. A review of the genetics of Betula. Scandinavian Journal of Forest Research,1986,1(1-4):421-434
    [66]Love A. A new triploid Betula verrucosa. Svensk Botanisk Tidskrift,1944,38(4):381-393
    [67]Li W, Berlyn G P, Ashton P M. Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifer. American Journal of Botany, 1996.83(1):15-20
    [68]Johnsson H. Auto-and allotriploid Betula families derived from colchicine treatment. Zeitschrift fur Forstgenetik Forstpflanzenziichtung.1956.5(3):65 - 70
    [69]Valanne T. Colchicine effects and colchicine-induced polyploidy in Betula. Annales Academiae Scientiarum Fennicae. Ser. A.4:Biologica:1972.191:1 - 28
    [70]Pieninkeroinen K. Valanne T. Old colchicines-induced polyploidy materials of Betula pendula Roth and Betula pubescens Ehrh. Annales des Sciences Forestieres,1989.46: 264-266
    [71]Sarkilahti E, Valanne T. Induced polyploidy in Betula. Silva Fennica,1990,24(2):227-234
    [72]Cameron A D. Autotetraploid plants from callus cultures of Betula pendula Roth. Tree Physiology,1990.6(2):229-234
    [73]穆怀志.多倍体白桦的诱导及其生长、光合特性的分析.东北林业大学硕士论文.2010:25~37
    [74]杜琳,李永存,穆怀志,等.四倍体与二倍体白桦的光合特性比较.东北林业大学学报,2011,39(2):1-4
    [75]Mu H, Jiang J. Li H, et al. Seed vigor, photosynthesis and early growth of saplings of different triploid Betula families. Dendrobiology.2012.68:11-20
    [76]Mu H. Liu Z, Lin L, et al. Transcriptomic analysis of phenotypic changes in birch(Betula platyphylla) autotetraploids. International Journal of Molecular Sciences,2012.13: 13012-13029
    [77]Lin L, Yao Q, Xu H. et al. Characteristics of the staminate flower and pollen from autotetraploid Betula platyphylla. Dendrobiology.2013.69:3 - 11
    [78]Stupar R M, Bhaskar P B, Yandell B S, et al. Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics,2007,176:2055-2067
    [79]Riddle N C, Jiang H, An L, et al. Gene expression analysis at the intersection of ploidy and hybridity in maize. Theoretical and Applied Genetics.2010,120:341-353
    [80]Wang Z, Gerstein M. Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nature Reviews Genetics,2009,10:57-63
    [81]Fu X, Fu N, Guo S. et al. Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics,2009,10:161
    [82]Garber M, Grabherr M G, Guttman M, et al. Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods,2011,8(6):469-477
    [83]Wang Z, Fang B, Chen J, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato(Ipomoea batatas). BMC Genomics,2010,11:726
    [84]Wang Y, Gao C, Zheng L, et al. Building an mRNA transcriptome from the shoots of Betula platyphylla by using Solexa technology. Tree Genetics & Genomes,2012,8: 1031 - 1040
    [85]Bierhuizen J F, Slatyer R O. Effect of atmospheric concentration of water vapor and CO2 in determining transpiration-photosynthesis relationship of cotton leaves. Agricultural Meteorology,1965,2:259-270
    [86]Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research,1990,25:147-150
    [87]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:184-185,195-197
    [88]吴颂如,陈婉芬,周燮.酶联免疫法(ELISA)测定内源植物激素.植物生理学通讯,.1988,24(5):53~57
    [89]Karlsdottir L, Thorsson AE Th, Hallsdottir M, et al. Differentiating pollen of Betula species from Iceland. Grana,2007,46:78-84
    [90]Karlsdottir L, Hallsdottir M, Thorsson AE Th, et al. Characteristics of pollen from natural triploid Betula hybrids. Grana,2008,47:52-59
    [91]Perveen A, Qaisek M. Pollen flora of Pakistan -XXXI. Betulaceae. Pakistan Journal of Botany,1999,31(2):243-246
    [92]Wong C E, Prem L B, Harald O, et al. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance. BMC Plant Biology, 2008,8:73
    [93]曾凡锁,南楠,詹亚光.富含多糖和次生代谢产物的白桦成熟叶中总RNA的提取.植物生理学通讯,2007,43(5):913-916
    [94]Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology,2011,29:644-652
    [95]Pertea G, Huang X, Liang F, et al. TIGR gene indices clustering tools (TGICL):A software system for fast clustering of large EST datasets. Bioinformatics,2003,19:651-652
    [96]Iseli C, Jongeneel C V, Bucher P. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Processings of the International Conference of Intelligence System Molecular Biology,1999,99:138-148
    [97]Conesa A, Gotz S, Garcia-Gomez J M, et al. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21(18): 3674-3676
    [98]Li R, Yu C, Li Y, et al. SOAP2:An improved ultrafast tool for short read alignment. Bioinformatics,2009,25:1666-1667
    [99]Mortazavi A, Williams B A, Kenneth M, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods,2008,5(7):621-628
    [100]Robinson M D, McCarthy D J, Smyth G K. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics,2010.26: 139-140
    [101]Benjamini Y, Drai D, Elmer G, et al. Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research,2001,125:279-284
    [102]房桂干,邓拥军,李萍.三倍体毛白杨制浆性能的评价.林业科技管理,2001,(增刊):87-90
    [103]尚宗燕,张继祖.漆树染色体观察及三倍体漆树的发现.西北植物学报,1985,5(3):187-191
    [104]Wang J, Kang X, Zhu Q. Variation in pollen formation and its cytological mechanism in an allotriploid white poplar. Tree Genetics & Genomes,2010,6:281-290
    [105]Niwa Y, Sasaki Y. Plant self-defense mechanisms against oxidative injury and protection of the forest by planting trees of triploids and tetraploids. Ecotoxicology and Environmental Safety,2003,55:70-81
    [106]Eifler I. The individual results of crosses between B. verrucosa and B. pubescens. Silvae Genetica,1960,9:159-165
    [107]Nie J, Stewart R, Zhang H, et al. TF-Cluster:A pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM). BMC Systems Biology,2011,5:53